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Abstract 
The mammalian/mechanistic target of rapamycin (mTOR) is a key 
component of cellular metabolism that integrates nutrient sensing 
with cellular processes that fuel cell growth and proliferation. 
Although the involvement of the mTOR pathway in regulating life 
span and aging has been studied extensively in the last decade, the 
underpinning mechanisms remain elusive. In this review, we highlight 
the emerging insights that link mTOR to various processes related to 
aging, such as nutrient sensing, maintenance of proteostasis, 
autophagy, mitochondrial dysfunction, cellular senescence, and 
decline in stem cell function.
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Introduction
Aging is characterized by the gradual decline in physiologi-
cal functions occurring in most tissues and organisms1. The 
acceleration of aging in specific tissues leads to a variety 
of disorders, including neurodegeneration, obesity, diabe-
tes, and cardiovascular and neoplastic diseases2. One of the  
main pharmacological interventions prolonging life span in sev-
eral model organisms (that is, yeast, nematodes, fruit flies, and 
mice) is rapamycin3. Rapamycin, a natural product isolated from 
Streptomyces hygroscopicus, was discovered on the island of 
Rapa Nui in 19724. It possesses anti-fungal, immunosuppres-
sive, and anti-cancer proprieties, which are mediated by the  
inhibition of its target: mechanistic/mammalian target of rapamy-
cin (mTOR)5–7. Accordingly, mTOR has been implicated in 
many of the processes that are associated with aging, including  
cellular senescence, immune responses, cell stem regulation, 
autophagy, mitochondrial function, and protein homeostasis  
(proteostasis)3,8–10. Finally, in some model organisms, interventions 
expanding life span (for example, caloric restriction, or 
CR) were shown to involve TOR3. This article provides an  
overview of the role of mTOR signaling in coordinating  
cellular processes involved in regulation of life span, aging, and  
age-related pathologies and puts an emphasis on mammals.

Regulation and functions of mTOR pathway
TOR is a serine/threonine kinase that is evolutionary con-
served, and homologues are found in yeast, nematodes, flies, 
plants, and mammals11. In higher eukaryotes, including mam-
mals, mTOR is encoded by a single gene and its protein product 
is a component of two distinct complexes—mTOR complex 1 
(mTORC1) and 2 (mTORC2)3 —which differ functionally and 
structurally and in their sensitivity to rapamycin12–14 (Figure 1).  
The two mTOR complexes share the components mLST8 and 
DEPTOR (DEP domain-containing mTOR-interacting protein), 
whereas RAPTOR and PRAS40 are present exclusively in 
mTORC13. In turn, RICTOR, mSIN1, and Protor-1/2 are found 
within mTORC23. In yeast, TOR1 and TOR2 are encoded by 
distinct genes; TOR2 engages in both TORC1 and TORC2 com-
plexes, and TOR1 is exclusive for the TORC1 complex15. mTORC1  
responds to a plethora of extracellular stimuli and intracellular 
cues, such as amino acids, hormones, growth factors, energetic 
stress, and oxygen. These factors initiate mTOR-dependent ana-
bolic processes, including nucleotide, lipid, and protein synthe-
sis while inhibiting autophagy, which results in stimulation of  
cellular growth and proliferation3,16 (Figure 1). Several regula-
tors that signal via the PI3K/PDK1/AKT (phosphoinositide  
3-kinase/3-phosphoinositide-dependent protein kinase 1/protein 
kinase B) pathway (for example, insulin and IGFs) stimu-
late mTORC1 by inhibiting the tuberous sclerosis complex  
(TSC) (Figure 1) which is composed of TSC1 scaffold and 
TSC2. This complex acts as a Ras homologue enriched in brain 
(RHEB) GTPase-activating protein17. TSC1/2 complex asso-
ciates with auxiliary factor TBC1D7 (TBC1 domain family  
member 7)18. TSC2 inactivates RHEB, leading to mTORC1 inhi-
bition19,20. One of the major roles of mTORC1 is the regulation 
of protein synthesis, which is mediated via the phosphorylation  
of a multitude of substrates3,16, the best characterized of  
which are the eukaryotic translation initiation factor 4E (eIF4E)- 
binding proteins (4E-BPs) and ribosomal protein S6 kinases 

(S6Ks)21. By affecting protein synthesis (that is, 4E-BPs) or by 
substrate phosphorylation (that is, S6Ks) or both, these factors 
also mediate the effects of mTOR on metabolic processes, includ-
ing nucleotide synthesis, lipid metabolism (via sterol regula-
tory element-binding protein 1, or SREBP1), and mitochondrial 
function and dynamics (detailed in the “mTOR and the regu-
lation of mitochondrial function” section) (Figure 1). In most 
cell types, mTORC1 inhibition by rapamycin leads to a strong 
decrease in S6K phosphorylation while only marginally  
affecting 4E-BP phosphorylation22,23.

In contrast, mTORC2 regulates cytoskeletal organization and 
the activity of several members of the AGC family of kinases 
(for example, AKT and SGK1) and has been implicated in the 
degradation of newly synthesized polypeptides. It is involved 
in glucose and lipid metabolism through AKT-dependent  
and independent mechanisms24–26, controls ion transport  
via SGK127, and affects the cytoskeleton and cell migration 
through protein kinase C alpha (PKCα)28 (Figure 1). In addition, 
both AKT and SGK negatively regulate FOXO1/3A (forkhead 
box protein O/O3A), which are transcription factors that regu-
late metabolism and apoptosis28. In most cell lines, mTORC2 is 
insensitive to short-term (<24 hours) rapamycin treatment14,29, 
but it has been reported that mTORC2 is downregulated during  
prolonged rapamycin exposure in several cell lines and tis-
sues (such as hepatocytes, adipose tissues, skeletal muscle, 
heart, pancreas, liver, lung, and spleen) in vivo30–32. Regulation 
of mTOR and its functions, including governing mRNA trans-
lation, is covered in detail in a number of excellent recent  
reviews (for example,3,16,21,33,34).

TOR as a negative regulator of life span
The relationship between TOR and longevity was first shown 
in non-vertebrates by using genetic manipulations. For  
example, deletion of S6K homologue SCH9 in Saccharomyces 
cerevisiae or depletion of TOR (let-363)35 or RAPTOR (mTORC1 
protein member; daf-15) by RNA interference (RNAi) in 
Caenorhabditis elegans36,37 extends life span in both models. 
Similar effects were observed in Drosophila melanogaster either  
through the overexpression of TOR suppressors dTsc1 of 
dTsc2 or by expressing dominant-negative forms of dTOR or 
dS6K38. Pharmacological inhibition of TOR by rapamycin in 
S. cerevisiae, C. elegans, D. melanogaster, or Mus musculus 
confirmed the evolutionary conserved and fundamental role  
of mTOR as a regulator of longevity3,39–47.

mTOR and the beneficiary effects of dietary restriction on 
life span
The central role for the mTOR pathway in regulating life span 
has been attributed in part to its function as a nutrient sensor 
(Figure 2). Nutrient-sensing pathways, including the insulin/
insulin-like growth factor 1 (IGF-I) signaling (IIS) network, are 
thought to act as major determinants of longevity. The impor-
tance of IIS, like mTOR pathway inhibition, in regulating life  
span was firmly established in numerous species (C. elegans,  
D. melanogaster, or M. musculus)48–52. IIS activation via bind-
ing of insulin or IGF-I to the insulin receptor (IR) or IGF-1 
receptor (IGF1R) (or both) leads to activation of PI3K/AKT. 
Signaling through additional growth factor receptors (for  
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Figure 1. mTOR acts as a nutrient sensor coordinating cellular functions linked to proliferation, growth, and survival. mTOR operates 
within two functionally and structurally distinct complexes: mTORC1 and mTORC2. The two mTOR complexes share the components mLST8 
and DEPTOR, while RAPTOR and PRAS40 are present exclusively in mTORC1. RICTOR, mSIN1, and Protor-1/2 are found exclusively within 
mTORC2. Growth factors or hormones (for example, insulin through IR) activate the PI3K/PDK1/AKT or ERK signaling pathways, which 
inactivate the TSC2 subunit of the TSC complex. Inactivation of the TSC complex upregulates the activity of RHEB, which in turn stimulates 
mTORC1. The activity of mTORC1 is also positively regulated by amino acid–mediated stimulation of the RAG complex of GTPases: Rag A/B 
and Rag C/D. GATOR1 inhibits RAG GTPases. SAM inhibits the activation of GATOR1 by SAMTOR. GATOR1 is also repressed by GATOR2, 
which in turn is regulated by Sestrin2 and CASTOR in response to leucine and arginine, respectively. The FLCN FNIP1/2 complex is also 
thought to stimulate the RAG activity. mTORC1 is suppressed under conditions where energy or glucose is limiting through AMPK signaling, 
which activates TSC2 and inhibits the mTORC1 subunit RAPTOR, and by hypoxia via the HIF-1α/REDD1 axis. mTORC1 orchestrates several 
anabolic processes via transcriptional or translational regulation or both. mTORC1 controls protein synthesis in part through its two main 
effectors: S6K and 4E-BP1. mTORC1 also stimulates mitochondrial function, through 4E-BP1 and PGC-1α/YY1, and mitochondrial dynamics 
(via MTFP1). The control of mTORC1-mediated nucleotide synthesis is governed by S6K, ATF4, and PRPS2 (which is translationally regulated 
via 4E-BP/eIF4E), while lipid biosynthesis and adipogenesis are regulated by S6K and Lipin1. mTORC1 controls autophagy by inhibiting the 
activity of ULK1 and TFEB; the latter also mediates mTORC1-dependent lysosome biogenesis. Conversely, the activity of mTORC2 may be 
regulated by growth factors through PI3K activation and generation of PIP3. PIP3 has been suggested to bind to mSin1, thereby activating 
mTORC2. mTORC2 activation promotes AKT signaling involved in glycolysis, lipid biosynthesis, and cell migration, while SGK signaling is 
involved in ion transport. Both AKT and SGK negatively regulate FOXO1/3A, which is a regulator of key metabolic pathways and apoptosis. 
mTORC2 also controls cytoskeleton and cell migration through PKCα. 4E-BP, eukaryotic initiation factor 4E-binding protein; AKT, protein kinase 
B; AMPK, AMP-activated protein kinase; ATF4, activating transcription factor 4; CASTOR, cellular arginine sensor for mTORC1; DEPTOR, 
DEP domain-containing mTOR-interacting protein; eIF4E, eukaryotic translation initiation factor 4E; ERK, extracellular signal-regulated kinase; 
FLCN, folliculin; FNIP1/2, folliculin interacting protein 1/2; FOXO1/3, forkhead box protein O1/O3; GATOR1, GTPase-activating proteins toward 
Rags 1; GATOR2, GTPase activating proteins toward Rags 2; HIF-1α, hypoxia-inducible factor 1 alpha; IGF1R, insulin-like growth factor 1 
receptor; IR, insulin receptor; KICSTOR, KPTN-, ITFG2-, C12orf66-, and SZT2-containing regulator of mTORC1; mLST8, mammalian lethal 
with SEC13 protein 8; mSIN1, mammalian stress-activated protein kinase interacting protein 1; MTFP1, mitochondrial fission process 1; 
mTOR, mechanistic target of rapamycin kinase; mTORC1, mechanistic target of rapamycin complex 1; mTORC2, mechanistic target of 
rapamycin complex 2; PDK, 3-phosphoinositide-dependent protein kinase-1; PGC1α, peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha; PI3K, phosphoinositide 3-kinase; PIP3, phosphatidylinositol (3,4,5)-triphosphate; PKC, protein kinase C alpha; Pras40, 
Proline-rich AKT1 substrate 1; Protor, protein observed with Rictor-1; PRPS2, phosphoribosyl pyrophosphate synthetase 2; RAG, Ras-related 
GTP-binding protein, subunits A/B or C/D; RAPTOR, regulatory-associated protein of mTOR; REDD1, regulated in development and DNA 
damage response 1; RHEB, Ras homolog, mTORC1 binding; RICTOR, rapamycin-insensitive companion of mTOR; S6K, ribosomal protein 
S6 kinase; SAMTOR, S-adenosylmethionine sensor for the mTORC1 pathway; SGK, serum and glucocorticoid-regulated kinase 1; SREBP1, 
sterol regulatory element-binding transcription factor 1; TBC1D7, TBC1 domain family member 7; TFAM, mitochondrial transcription factor a; 
TFEB, transcription factor EB; TSC, tuberous sclerosis complex; ULK1, Unc-51-like autophagy activating kinase; YY1, Yin Yang 1.
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example, epidermal growth factor receptor family, or ERBB)  
activates the RAS/RAF/MEK/ERK pathways. As AKT, ERK, and 
its downstream effector RSK1 all phosphorylate and inactivate  
TSC253–56, PI3K and RAS/RAF/MEK/ERK pathways largely  
converge on mTORC1 (Figure 1)3.

Suppression of the IIS/mTOR axis is thought to be one of the 
underpinning mechanisms of the beneficiary effects of dietary 
restriction (DR), which not only prolongs life span but also 
delays the onset of age-related pathologies (commonly referred 
to as health span) across a variety of organisms (yeasts, nema-
todes, fruit flies, rats, mice, and primates)57–59. DR incorporates 
both the classic concept of CR (where the total caloric intake is  
reduced, usually by 20 to 40%) and restriction of specific 
nutrients or regimens of restriction for intermittent time  
periods60. Consistent with the central role of mTOR in nutrient  
sensing, CR did not further prolong life span under condi-
tions in which TORC1 was inhibited by TOR1 deletion in  
S. cerevisiae, TOR RNAi in C. elegans, or overexpression of  
dTsc2 in D. melanogaster38,61,62. Conversely, several reports 
suggested that rapamycin may potentiate the effect of CR in  
increasing life span in D. melanogaster, indicating poten-
tial complexity in the role of mTOR inhibition in mediating the  
beneficiary effects of CR40. Comparison of the effects of rapamy-
cin and CR in liver and white adipose tissues in mice63,64, or  
experiments carried out in S. cerevisiae65, revealed that 
rapamycin and CR induce discrete changes in transcriptome 
and metabolome, suggesting that CR may extend life span 
through mTOR-independent mechanisms. Notably, rapamycin  

incompletely inhibits some of mTORC1 substrates, including  
4E-BPs22,23,66. This is particularly significant when compar-
ing the impact of mTOR inhibition and CR on metabolome, 
as 4E-BPs mediate mTORC1-dependent translational regu-
lation of several metabolic processes (for example, cellular  
energetics, mitochondrial dynamics, and non-essential amino 
acid synthesis)67–69 (Figure 1). Translatome studies thus are  
warranted to grasp the full overlap between the effects of CR  
and mTOR on life span and aging.

As CR is not readily translatable to the clinic, alternative DR 
strategies based on macronutrient restrictions have been tested. 
In these approaches, specific macronutrient intake is limited 
without a reduction in calories60. DRs were shown to improve 
healthy aging in humans; one of the most effective interventions 
appears to be the reduction of protein and amino acid intake 
(protein restriction, or PR)70–72. Indeed, PR extends both life  
span and health span in mice but was linked to reductions in 
cancer, diabetes, and overall mortality in humans70. In some 
cases, the reduction of a single amino acid, such as methionine 
or tryptophan, was able to cause these effects73–82. In  
addition to methionine deprivation, restriction of leucine and 
other branched-chain amino acids (BCAAs) (isoleucine and 
valine) improved metabolic health (such as better glucose  
tolerance and reduced fat mass gain) in both normal and 
obese mice83–85. Conversely, long-term exposure of mice to an  
isocaloric yet high BCAA-containing diet led to hyperphagia  
and obesity and reduced life span86. Interestingly, the mecha-
nism was not related to increased total BCAA intake or high 

Figure 2. mTOR regulates several hallmarks of aging. Schematic representation of the role of the mTOR pathway in the regulation 
of hallmarks of aging (black arrows), such as nutrient availability (represented by amino acid availability), energy homeostasis, cellular 
senescence, cell stemness, and proteostasis. mTOR activity is regulated in part by amino acid levels, while mTOR in turn stimulates the 
synthesis of non-essential amino acids (see the “mTOR and the beneficiary effects of dietary restriction on life span” section). The depicted 
hallmarks of aging are also interconnected (grey arrows), suggesting that aging is a coordinated process in which mTOR plays a significant 
role. mTOR, mechanistic target of rapamycin kinase.
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mTORC1 but to an amino acid imbalance (shift in the rela-
tive quantity of dietary BCAAs versus other amino acids such 
as tryptophan and threonine)86. Metabolites derived from amino 
acids might also influence life span. Recent evidence indi-
cates that homocysteine, a component of the methionine cycle, 
can activate mTORC187. Moreover, given that amino acid  
availability is a major regulator of mTORC13 (detailed in the 
“mTORC1 as a sensor of amino acids” section; Figure 2) and 
that mTOR inhibition induces increased life span, it is plausi-
ble that the beneficial effects of PR on life span and health span 
are mediated via mTOR. Although this has yet to be determined 
in the context of aging, a study using a breast cancer xenograft 
model showed that PR inhibits tumor growth, while reduc-
ing mTORC1 (but not mTORC2) activity in both tumor and  
normal tissues88.

mTORC1 as a sensor of amino acids
Nutrient sensing is often dysregulated in aging cells1 (Figure 2). 
Amino acids act as pivotal mTORC1 regulators3 and indica-
tors of nutrient availability. Indeed, mTORC1 is a central  
sensor of amino acid availability, which regulates cellular and 
organismal energetics89–91. In mammals, mTORC1 activation 
by amino acids is mediated by Ras-related GTP binding (RAG) 
GTPases92,93 which form A/B and C/D heterodimers that asso-
ciate with lysosomal membranes via the Ragulator complex, 
also known as LAMTOR (late endosomal/lysosomal adaptor,  
MAPK and MTOR activator)94. Active RAG heterodim-
ers (in which RAG A/B and RAG C/D are bound to GTP and 
GDP, respectively) recruit mTORC1 to the lysosomal sur-
face, where mTORC1 becomes activated by RHEB95. As 
observed for mTORC1, RHEB localization is also modulated 
by amino acid signaling, which promotes amino acid–depend-
ent interaction of RHEB with microspherule protein 1 (MCRS1),  
leading to its maintenance at the lysosome96. RAGs are  
controlled mainly by the GATOR1/2 interplay. GATOR1, a  
complex containing DEP domain containing 5 (DEPDC5), nitro-
gen permease regulator 2-like (NPRL2), and nitrogen permease 
regulator 3-like (NPRL3) proteins, acts as a GTPase-activating  
protein (GAP) toward RAGs A/B, thereby negatively regulating 
mTORC197. GATOR1 recruitment to the lysosomal surface in 
the context of amino acid or glucose deprivation is mediated by 
KICSTOR, a complex composed of kaptin, actin binding protein  
(KPTN), integrin alpha FG-GAP repeat containing 2 (ITFG2), 
chromosome 12 open reading frame 66 (C12orf66), and 
SZT298. In turn, GATOR2, which is composed of MIOS (meio-
sis regulator for oocyte development), WD repeat domain 24 
(WDR24), WDR59, SEH1-like nucleoporin (SEH1L), and 
SEC13, suppresses GATOR1, thus activating mTORC197.  
In addition, the folliculin (FLCN)-folliculin-interacting pro-
tein (FNIP) complex was shown to display GAP activity toward 
RAG C/D, therefore contributing to RAG heterodimer complete 
activation in response to amino acids99,100. However, it is worth 
mentioning that FLCN loss does not always result in mTORC1 
inhibition, suggesting a context-dependent function for FLCN in  
TORC1 signaling or the presence of compensatory mecha-
nisms leading to mTORC1 activation in the absence of FLCN  
(discussed in 100,101).

It appears that the mechanisms of activation of mTORC1 are 
amino acid–specific. To this end, lysosomal amino acid trans-
porter SLC38A9 is necessary for the arginine-dependent  
activation of mTORC1 via its interaction with the RAG-LAM-
TOR-v-ATPase (vacuolar-type H + ATPase) complex102–105. 
In parallel, mTORC1 downregulation in response to arginine 
deprivation was shown to require cellular arginine sensor for  
mTORC1 (CASTOR1)106, which interacts with GATOR2 to 
inhibit its function107. Conversely, arginine binding by CAS-
TOR1 triggers its dissociation from GATOR2 and consequently 
activates mTORC1106,107. Through a similar mechanism, Sestrin2 
functions as a direct leucine sensor108 by binding to and repress-
ing GATOR2 in the absence of leucine109,110. Upon binding to 
leucine, Sestrin2 dissociates from GATOR2, which leads to 
mTORC1 activation108–112. It has been reported that, in addition  
to Sestrin2, leucyl-tRNA synthetase (LRS) participates in leu-
cine-dependent modulation of mTORC1 signaling113. It has been 
proposed that LRS positively regulates the RAG GTPase cycle 
by acting as a GAP toward RAG D113–115, although this model 
has been challenged by other reports100,116. A recent study evi-
denced LRS-mediated leucylation on lysine residues of RAG 
A/B, resulting in mTORC1 activation117. Methionine avail-
ability is indirectly sensed by the SAMTOR protein, which can 
bind to S-adenosylmethionine (SAM), a metabolite derived 
from methionine. SAM disrupts the SAMTOR–GATOR1 asso-
ciation and thus relieves the inhibitory effect of this complex on  
mTORC1 signaling118. Finally, glutamine-dependent activation 
of mTORC1 is dependent on v-ATPase and also requires the 
adenosine diphosphate ribosylation factor 1 (ARF1) GTPase119. 
Although a number of studies show that alterations of these 
newly discovered mTOR regulators (for example, Sestrin2) 
may play a role in aging120–122, their precise effects on life span  
and aging-related pathologies remain to be established.

mTOR as a regulator of food intake and global energy 
homeostasis
The mechanisms by which CR and DR expand life span are com-
plex and comprise organismal level regulation, including sensory 
food perception and modulation of food intake behaviour. For 
example, recent work in C. elegans showed that activation of a 
food deprivation signal through chemical manipulation mim-
ics a state of DR, leading to prolonged life span123. Food intake 
behaviour is in part controlled by neurons in the mediobasal 
hypothalamus (MBH), a key region of the brain implicated in  
regulation of energy balance124. In MBH neurons, mTORC1 
activity is induced by food intake and repressed by fasting125, 
thereby suggesting that mTORC1 plays a pivotal role in the 
hypothalamic regulation of energy balance126,127. Several studies,  
however, failed to confirm the role of mTOR in the regulation 
of energy balance or feeding behaviour91,128 though confirming  
mTORC1 function in regulating glucose metabolism128. Impor-
tantly, overexpression of DEPTOR (either systemic or restricted 
to MBH neurons) prevents obesity induced by a high-fat diet 
and improves glucose metabolism129. DEPTOR is a compo-
nent of both mTORC1 and mTORC2 and is able to suppress the  
activity of both complexes130. In addition, mTORC1 in  
agouti-related protein (AGRP) neurons (part of the MBH) 
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appears to facilitate integration of food-related cues and adap-
tive energy expenditure131. This supports a role for mTOR in 
regulating systemic energy homeostasis91, which may have 
an impact on metabolic disorders and aging. Moreover, in 
addition to its activity in MBH neurons, alterations of the  
mTORC1 pathway in the liver and adipose tissue were shown 
to impact whole-body metabolism via peroxisome proliferator-
activated receptor gamma coactivator 1 alpha (PGC-1α, a tran-
scriptional coactivator controlling mitochondrial biogenesis132) 
and fibroblast growth factor 21 (FGF21, a secreted pro-
tein that is a key mediator of fatty acid oxidation and lipid  
metabolism133), respectively134. Finally, RAPTOR knockout 
(KO) in the adipose tissue of mice resulted in lean phenotype 
which was accompanied by elevated mitochondrial respiration135.  
In conclusion, although these findings position mTOR as a cen-
tral metabolic regulator at the cellular or whole-organism level 
or both, the precise relationship between these mTOR functions  
and life span, health span, and aging is incompletely understood.

The role of mTOR in age-associated processes 
(hallmarks of aging)
In an attempt to define common denominators of aging, the 
following nine “hallmarks” have been proposed: genomic 
instability, telomere attrition, epigenetic alterations, loss of 
proteostasis, deregulated nutrient-sensing, mitochondrial dys-
function, cellular senescence, stem cell exhaustion, and altered 
intercellular communication1. Not surprisingly, in keeping 
with the observations implicating mTOR in increasing life  
span, a significant proportion of these “hallmarks” are known 
to be affected by mTOR. In this section, we describe recent 
advances linking mTOR to these key age-associated processes 
and explore how aberrant mTOR signaling may orchestrate their  
coordinated dysregulation.

Loss of proteostasis
Alterations in protein production, degradation, folding, and traf-
ficking—proteostasis—are linked to aging136. For instance, 
the chronic expression and accumulation of misfolded or 
aggregated proteins lead to the development of various age- 
associated diseases (for example, Alzheimer’s disease [AD] 
and Parkinson’s disease and cataracts)137. Proteostasis is main-
tained via orchestration of protein synthesis, protein clearance  
(via proteasomal degradation or autophagy), and quality con-
trol mechanisms (for example, unfolded protein response, or 
UPR), all of which are thought to be influenced by mTOR. 
In model organisms, including S. cerevisiae, C. elegans, and  
D. melanogaster, deletion of different components of the trans-
lational machinery and subsequent decrease in protein biosyn-
thesis significantly increase life span138. mTORC1 stimulates  
protein synthesis through several mechanisms that have been 
highly characterized and that involve two main mTORC1 effectors: 
S6K and 4E-BPs21. mTORC1 also suppresses autophagy, in 
part by inhibiting Unc-51-like autophagy-activating kinase  
(ULK1)139. It is now emerging that protein synthesis and 
autophagy, coupled with nutrient sensing, are coordinated by 
mTORC1 to maintain energy and protein homeostasis139 (Figure 2).  
In addition to autophagy, mTOR may suppress protein deg-
radation by controlling proteasomal activity (Figure 2). For 

example, mTORC1, but not mTORC2, inhibition increases 
protein degradation by the proteasome by enhancing ubiquiti-
nation through a mechanism that remains to be elucidated140. 
Moreover, in yeast and mammalian cells, TOR/mTOR inhibi-
tion upregulates the levels of the regulatory particle assembly  
chaperones (RACs) through the activity of MAPKs Mpk1 (in 
yeast) or ERK5 (in mammalian cells), and increases protea-
some abundance141. These findings contradict previous reports 
that mTORC1 inhibition reduces proteolysis by suppress-
ing expression of proteasomal subunits in a nuclear respiratory  
factor 1 (NRF-1)-dependent manner142.

To maintain proteostasis under stress, cells engage quality 
control mechanisms, such as the UPR, which plays a major 
role in aging in both cell-autonomous and non-autonomous  
manners143. The activation of the UPR declines with age, as was 
shown in multiple model organisms (C. elegans, M. musculus, or  
Rattus norvegicus)143. Conversely, UPR activation can extend life 
span143. The UPR is initiated through the activation of three arms:  
inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase 
(PERK), and activating transcription factor 6 (ATF6)144. ATF6 
and IRE1 increase abundance and splicing of the mRNA 
encoding X-box binding protein 1 (XBP1), respectively145–147.  
XBP1 is a transcription factor that controls the expression of 
genes implicated in protein folding, quality control, and lipid 
biosynthesis143. IRE1 also activates stress signaling, including 
JNK and nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB)148. Rapamycin suppresses IRE1-dependent 
JNK induction, XBP1 splicing, and activation of PERK149,150,  
which suggests significant cross-talk between mTOR and UPR.

The integrated stress response (IRS) is the arm of the UPR 
which is under governance of PERK151. It is centered on the 
α-subunit of eIF2, which is phosphorylated by four eIF2α 
kinases—PERK, double-stranded RNA-dependent protein kinase 
(PKR), heme-regulated eIF2α kinase (HRI), and general con-
trol non-derepressible 2 (GCN2)—in response to ER stress, 
viral infection, heme insufficiency, and amino acid depletion,  
respectively7. eIF2 delivers initiator tRNA (tRNA

i
Met) as part of 

the eIF2:GTP:tRNA
i
Met ternary complex (TC), whereby upon 

tRNA
i
Met delivery GTP is hydrolyzed to GDP33. A multi-subunit 

guanine nucleotide exchange factor (GEF) eIF2B exchanges 
eIF2-bound GDP to GTP, which allows recycling of TC to 
facilitate the next initiation round152,153. Phosphorylation of 
eIF2α suppresses the GEF activity of eIF2B, which limits TC 
recycling154. This results in downregulation of global protein  
synthesis with concomitant translational activation of mRNAs 
which contain inhibitory upstream open reading frames 
(uORFs) in their 5′ untranslated regions (5′UTRs)155. Tran-
scripts that contain uORFs are enriched in those encoding stress- 
responsive transcription factors, including activating transcription  
factor 4 (ATF4) and CCAAT enhancer-binding protein homolo-
gous protein (CHOP)156–158. As is the case for UPR, several 
cross-talk mechanisms between ISR and mTORC1 have been  
observed. For example, during chronic ER stress, which leads 
to significant reprogramming of translational machinery  
that is distinct from the acute ISR159, eIF2α phosphorylation is  
paralleled with the ATF4-dependent transcriptional induction  
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of amino acid transporter expression160 which increases intra-
cellular amino acid levels, thus elevating mTORC1 activity161.  
However, long-term stress may also decrease protein synthe-
sis via the suppression of mTORC1-mediated translational 
control, through an AKT-dependent, eIF2α phosphoryla-
tion-independent mechanism161, highlighting the fine-tuned  
regulation of translational activity in conditions of stress. In turn, 
upon nutrient, growth factor, or hormone stimulation (or a com-
bination of these), mTORC1 in concert with casein kinase II 
(CK2) phosphorylates the eIF2β subunit of eIF2. eIF2β recruits 
the non-catalytic region of tyrosine kinase adaptor protein 1 
(NCK1) that serves as an adaptor for the protein phosphatase 
1 (PP1), thereby leading to eIF2α dephosphorylation162.  
mTORC1 inhibition is also paralleled by GCN2 activation 
and increased eIF2α phosphorylation through a mechanism 
dependent on protein phosphatase 6 (PP6C)163. In addition, in 
cells characterized by the loss of its negative regulator TSC,  
mTORC1 downregulates eIF2α phosphorylation by attenuat-
ing PERK activity, which is accompanied by increased reactive 
oxygen species (ROS) production164. Finally, mTORC1 can influ-
ence ISR via regulation of ATF4 protein levels by stabilizing 
and promoting translation of ATF4 mRNA, which is mediated  
by 4E-BP1165. Given the central role of UPR and in particular 
ISR in aging, these data suggest that the aging-related effects of 
mTOR may be influenced at least in part by its cross-talk with  
the UPR/ISR machinery.

mTOR and the regulation of mitochondrial function
Aberrant mitochondrial function is a major characteristic of 
aging cells1. For example, genetic models of mitochondrial  
dysfunction (such as mutation of mitochondrial DNA polymer-
ase in mice) correlate with reduced life span166. However, many 
interventions that extend life span (CR and rapamycin) are asso-
ciated with reduced energy intake and decreased mitochondrial  
functions167. These apparently contradictory findings revealed 
complex and antagonistic functions of mitochondria in aging 
and have been at least partially reconciled by a biphasic mod-
eling of mitochondrial dysregulation167. This model proposes 
that alterations of mitochondrial functions are not linear with 
the aging of the organism but rather that they increase and peak  
in middle age, followed by a decline in older age167.

Mitochondrial dysfunction in aging cells is characterized by  
several factors, including elevated ROS production and mito-
chondrial DNA mutations; decreased electron transport function, 
membrane potential, and ATP production; altered mitochondrial 
dynamics; or dysregulated mitophagy1,168. Functionally, altered 
mitochondrial activity participates in inducing cellular senes-
cence169, chronic inflammation, and a decline in stem cell activity 
associated with aging1 (Figure 2).

mTORC1 regulates mitochondrial biogenesis, functions, and 
dynamics through translational and transcriptional mechanisms 
(Figure 1). mTORC1 stimulates translation of nuclear-encoded 
mitochondria-related mRNAs—for example, components of  
complex I and V, mitochondrial ribosomal proteins, and mito-
chondrial transcription factor a (TFAM)68,170—and fission  
process 1 (MTFP1) mRNA69. mTORC1 activity therefore 

stimulates mitochondrial respiration and ATP production to 
meet the high energetic requirements of cancer cells68. Trans-
lational suppression of MTFP1 levels leads to mitochondrial 
hyperfusion and protection from apoptosis69. In addition to  
these translational mechanisms which are thought to be engaged 
during acute activation of mTORC1 (12 hours or less), it has 
been shown that, during prolonged stimulation, mTORC1 regu-
lates transcription of nuclear-encoded mitochondrial genes 
by engaging PGC-1α and transcription factor Yin-Yang 1  
(YY1)171. mTORC2 was also shown to play a role in mitochondrial 
functions in both mouse embryonic fibroblasts and cancer cells, 
and its suppression was paralleled by increases in mitochondrial  
membrane potential, ATP production, and calcium uptake172.

Mitophagy is the selective degradation of mitochondria by 
autophagy that serves as a quality control mechanism to 
ensure recycling and removal of damaged mitochondria173. 
Several studies have shown that mitophagy can extend life  
span174,175. Interestingly, it was recently revealed that, in addi-
tion to having an established role in inhibiting autophagy139, 
mTORC1 is involved in the regulation of mitophagy176. In 
TSC2-null cells, in which mTORC1 is hyperactive, the levels of 
mitophagy induced by a mitochondrial uncoupling agent were  
reduced176. This was accompanied by an mTORC1-depend-
ent decrease in PTEN-induced kinase 1 (PINK1) levels and a 
decrease in PARK2 translocation to the outer mitochondrial 
membrane, which are thought to be essential for the degradation  
of uncoupled mitochondria by mitophagy176.

Collectively, these findings implicate mTOR in many aspects of 
mitochondrial functions, biogenesis, degradation, and dynam-
ics. However, more work is still needed to establish the extent 
of mTOR involvement in mitochondrial dysfunction in aging 
cells and how this is linked to the aging phenotype and orches-
trated with other aging hallmarks (for example, cellular  
senescence).

The role of mTOR in cellular senescence
Cellular senescence is an evolutionary conserved phenom-
enon characterized by a permanent and stable cell cycle exit177. 
Senescent cells are characterized by an increase in cell size and 
mitochondrial mass, mitochondrial dysfunction, and the devel-
opment of a multi-component senescence-associated secre-
tory phenotype (SASP; comprising growth factors, cytokines,  
metalloproteases, etc)1,178–181. Cellular senescence can be 
induced in response to a variety of stresses and signals (onco-
genes, DNA damage, telomeric dysfunction, and oxidative  
stress)182–186 and, depending on the context, can be either ben-
eficial (for example, in wound healing)187 or deleterious (for 
example, during aging)188–190. The deleterious effects exhibited 
in aging are strongly linked to the SASP, whose components 
include a large number of cytokines, chemokines, growth fac-
tors, and proteases promoting inflammation, angiogenesis191,  
tissue degeneration, and tumor growth192. This explains why 
the accumulation of only a small percentage (2 to 3%) of senes-
cent cells in tissues can have a significant negative impact192. 
Owing in large part to SASP and the need to produce and 
secrete large quantities of factors, senescent cells are highly 
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metabolically active and show high levels of protein synthesis193.  
mTOR plays an important role in promoting the secretory 
phenotype of senescent cells194 and its inhibition was shown  
to prevent stem cell senescence8,9. For example, rapamycin 
was shown to reduce interleukin 1 receptor (IL-1R)-dependent 
SASP by inhibiting the translation of IL-1α mRNA, which reduces 
transcription of inflammatory genes regulated by the pro-inflam-
matory transcription factor NF-κB195. Moreover, mTORC1 
is thought to interact with MAPK to increase translation of 
the MK2 kinase (MAPKAPK2), which prevents the degrada-
tion of numerous SASP factor transcripts by ZFP36 ring finger  
protein-like 1 (ZFP36L1)196. Inhibition of mTOR by rapamycin 
was observed to impede increases in mitochondrial DNA, biomass,  
and ROS associated with genotoxic stress-induced senescence197. 
Interestingly, mTORC1 activation in senescent cells may 
be the result of defects in amino acid and growth factor  
sensing198. Namely, it was observed that the induction of senes-
cence in human fibroblasts by stress, replicative exhaustion, 
or oncogene activation renders mTORC1 constitutively active  
and insensitive to serum and amino acid starvation198.

Importantly, several other age-associated hallmarks such as 
mitochondria dysfunction and dysregulation of proteostasis 
are directly linked to cellular senescence, as both a cause and a 
consequence177. Given the central role of mTOR in regulat-
ing the main aspects of these hallmarks of aging, it is plausible 
that aberrant mTOR signaling underlies their concerted  
dysregulation (Figure 2).

The role of mTOR in stem cell maintenance and stem cell 
function decline in aging
Adult tissues contain populations of somatic stem cells (also 
referred to as adult stem cells), which allow their regenera-
tion under normal physiological conditions (for example, due 
to cellular turnover) and during response to injury199. Adult 
stem cells are able to self-renew and differentiate into multi-
ple cell types and they reside in specialized niches within the  
tissues199. However, they can accumulate mutations or undergo  
epigenetic changes (or both) which may compromise their func-
tions or lose the ability to divide (a phenomenon referred to 
as stem cell exhaustion)199. To avoid this, adult stem cells are  
maintained in a quiescent state until activated199. Quiescent stem 
cells are characterized by a reduction in metabolic, transcriptional, 
and translational activity, which correlates with a suppression of 
mTORC1199,200. Depending on the tissue type, stem cells accu-
mulate with age (for example, hematopoietic stem cells [HSCs]  
or intestinal stem cells [ISCs]) or are reduced in number 
(for example, neural stem cells [NSCs] or germline stem  
cells)201–203. Importantly, stem cells in aging tissues show impaired 
stem cell functions because of cell-intrinsic factors (accu-
mulation of DNA damage, epigenetic alterations, and ROS;  
mitochondrial dysfunction; and loss of proteostasis) and extrin-
sic factors (disruption of the niche and chronic inflammation)204,  
which ultimately lead to impaired tissue regeneration.

mTOR has been implicated in the self-renewal, prolifera-
tion, and differentiation of both embryonic and adult stem cells  
(reviewed in 205). Although the role of mTORC1 in these  

processes is better established205, the importance of mTORC2 
is also observed in promoting osteoblast and inhibiting adi-
pocyte differentiation, reducing neural progenitor cell prolif-
eration, and promoting HSC formation from endothelial cells205.  
Collectively, these studies suggest that increased mTOR activ-
ity can be both beneficial and detrimental to stem cells, depend-
ing on the cellular context. For example, it was shown that CR 
in mice causes Paneth cells in the ISC niche to secrete cyclic 
ADP ribose, which in turn activates SIRT1 in ISCs206. Contrary 
to what is expected under CR, this increases mTORC1 activ-
ity toward S6K1 and protein synthesis, thus resulting in higher  
ISC numbers206. mTOR was also shown to be beneficial in 
NSCs in the hippocampus. Indeed, the mTOR pathway is  
compromised in aged NSCs, while its activation can revitalize 
the NSCs by increasing proliferation and promoting  
neurogenesis207. By contrast, in Ercc1−/Δ mice, in which DNA  
damage repair is compromised (thus leading to premature 
aging), mTOR signaling is activated in muscle-derived stem/
progenitor cells (MDSPCs)208. Rapamycin treatment stimulates 
autophagy and improves the myogenic differentiation capacity 
of the Ercc1−/Δ MDSPCs, suggesting that in this context hyper-
active mTOR contributes to stem cell dysfunction208. Finally, 
in S6K1−/− mice that show extended life span, age-associated 
decrease in HSC function was improved, as compared with wild-
type mice209, suggesting that increased mTORC1 signaling may  
decrease the HSC function during aging.

Although there have been great advances in dissecting how the 
mTOR pathway regulates various aspects of adult stem cell  
function, it is becoming apparent that this role of mTOR is 
dependent on the cellular and tissue context. Moreover, the role 
of mTOR in coordinating stemness with other hallmarks of aging 
is still largely unknown. For instance, senescence-associated 
reprogramming was shown to promote cancer stemness190,  
whilst impairment in cell stemness is facilitated by mitochon-
drial and proteostatic dysfunctions and is accompanied by  
an altered metabolic state199.

The role of mTOR in aging tissues
Although the modulation by mTOR of the hallmarks of aging 
described above—see the “TOR as a negative regulator of life 
span” and “The role of mTOR in age-associated processes 
(hallmarks of aging)” sections—could be generalized to many  
cellular and tissue types, several studies to date have investigated 
the role of the mTOR pathway in the aging of specific  
tissues. Some examples are provided below.

Heart tissue
mTORC1 is necessary for normal cardiovascular development, 
maintenance, and function at both the embryonic and post-
natal states210. This was demonstrated in various mouse mod-
els carrying constitutive or inducible cardiac tissue-specific 
deletions of mTOR, RAPTOR, RICTOR, or RHEB211–215.  
Nonetheless, mTORC1 suppression seems to be beneficial in 
aging cardiac tissue210, as rapamycin treatment in 24-month-old 
mice showed improved cardiovascular function and a reversal or  
attenuation of age-related heart pathologies (heart inflamma-
tion and cardiac fibrosis)216. RNA sequencing analysis suggested 

Page 9 of 21

F1000Research 2019, 8(F1000 Faculty Rev):998 Last updated: 19 SEP 2023



that these benefits were linked to changes in inflammatory,  
metabolic, and anti-hypertrophic profiles216. Moreover, both CR 
and rapamycin treatments significantly reversed age-associated 
proteomics changes observed in old hearts217, which were 
characterized by reduced abundance of proteins involved in 
mitochondrial functions, electron transport chain, the citric  
acid cycle, and fatty acid metabolism217.

Central nervous system
Similar to cardiac tissue, mTOR is required for normal neuro-
logical development and function (synaptic plasticity, neuroen-
docrine regulation, and neuronal recovery) and for adequate 
cognitive function218–220 but is dysregulated in older tissue220,221. 
Although mTOR activity had been found to be downregulated 
in the aged versus mid-age naked mole rats (as evidenced by  
the p-mTOR/mTOR ratio)222, the mTOR pathway was 
shown to be hyperactivated in AD in both mouse models and 
humans221. AD is characterized by a reduction in autophagy 
(and loss of proteostasis in general), impaired glucose metabo-
lism, and decreased mitochondrial functions, all of which are  
governed by mTOR (as discussed in the “Loss of proteostasis”  
and “mTOR and the regulation of mitochondrial func-
tion” sections and 10). When administered in the early stages 
of the disease, rapamycin or rapalogs (rapamycin analogs) 
were shown to prevent cognitive decline in mouse models 
of AD223–226, which correlated with a decrease in aggregated  
beta-amyloid plaques, tau tangles, and microglia activation, all  
main characteristics of AD224–226. In addition, a recent study 
tested the use of a novel rapamycin intranasal administration 
protocol (InRapa), aimed at maximizing brain delivery while 
reducing systemic side effects227. In a mouse model of Down 
syndrome, InRapa administration ameliorated Alzheimer-like 
cognitive decline, in part by rescuing autophagy and attenuat-
ing dysregulated insulin signaling227. Intriguingly, in human  
trials of immunosuppression after heart transplantation, patients 
taking the rapalog everolimus showed improved memory 
and concentration compared with the control group228. Col-
lectively, these new findings suggesting the use of mTORC1 
inhibitors for improving cognitive function and neurogenera-
tive disorders, combined with improved strategies for drug  
delivery that reduce side effects, represent promising therapeutic  
perspectives for the future.

Adipose tissue
There are two major adipose tissues: white adipose tis-
sue (WAT), which stores energy in the form of triglyceride  
droplets and mediates energy status signaling to the hypotha-
lamus229, and brown adipose tissue (BAT), which can dissipate 
energy in response to cold exposure and caloric excess through 
coupled and uncoupled respiration and heat production230–232. 
Therefore, BAT confers protection from obesity and other  
metabolic diseases231,233. BAT also shows increased mito-
chondrial density and activity compared with WAT234. A third 
population of adipocytes was recently identified, called beige  
adipocytes235, which has characteristics of BAT and can be 
found in clusters within WAT. With age, there is a decline in  
both BAT and the “browning” of WAT (the appearance of  
thermogenic adipocytes within WAT depots)236. The importance 
of BAT in aging was highlighted by recent findings showing 
that regulator for G protein signaling 14 (RGS14) KO mice have 

an extended life span that is associated with an increase in BAT, 
protection against cold exposure, and improved metabolism237. 
Importantly, transplantation of BAT from RGS14 mice exerts 
the same protective effect in wild-type recipient mice237. The  
TSC1/mTORC1 axis was shown to control the BAT-to-WAT 
phenotypic switch in adipocytes, whereas rapamycin treat-
ment reverses the adipocyte phenotypic switch238. Moreover,  
adipose-specific depletion of RAPTOR, which leads to a 
lean phenotype with enhanced mitochondrial respiration135, 
also promotes beige adipogenesis through prostaglandins  
(PGs) synthesized by cyclooxygenase-2 (COX-2)239. Mechanis-
tically, COX-2 is negatively regulated by mTOR via the phos-
phorylation of CREB-regulated transcription coactivator 2 
(CRTC2)239. DEPTOR (inhibitor of mTOR and part of mTORC1) 
is also a regulator of adipogenesis inasmuch as its reduc-
tion of mTORC1-mediated feedback inhibition of insulin sig-
naling activates the proadipogenic Akt/PKB-PPAR-γ axis240.  
Indeed, DEPTOR has elevated expression in WAT of obese mice 
whereas in humans DEPTOR expression in WAT correlates with 
the degree of obesity240.

In light of the protective roles of BAT and adipocyte brown-
ing against aging phenotypes, it can be speculated that the 
positive effects of mTORC1 inhibition on BAT and the stimula-
tion of beige adipogenesis contribute to the anti-aging effects 
of rapamycin. This is plausibly also linked to the organismal 
energy status signaling capacity of BAT and the central role 
that mTOR plays in nutrient and energy sensing (detailed in the  
“mTORC1 as a sensor of amino acids” and “mTOR as a regula-
tor of food intake and global energy homeostasis” sections). 
More work is necessary to understand how these complex 
interplays of networks and tissues are dysregulated in aging  
organisms.

Skeletal muscle
Aging skeletal muscle is characterized by muscle fiber loss lead-
ing to atrophy (sarcopenia). Although mTORC1 signaling is 
needed for increased muscle mass in response to exercise or  
during tissue repair241, very recent studies showed that mTORC1 
signaling is activated in a subset of skeletal muscle fibers in 
aging mouse and human, which paradoxically was associated 
with fiber damage242. In addition, hyperactivation of mTORC1  
(such as in TSC1 KO mice) led to abnormal mitochondria,  
oxidative stress, and damage and loss of fibers. The mecha-
nisms involved mTORC1 regulation of STAT3 phosphorylation, 
associated with an increase in the expression of growth  
differentiation factors (GDF 3, 5, and 15) and of genes involved in  
oxidative stress and mitochondrial catabolism242. These processes 
were reversed by mTOR inhibition242. Moreover, as discussed 
in the “role of mTOR in stem cell maintenance and stem cell 
function decline in aging” section, in a model of premature 
aging, mTOR activity is increased in MDSPCs and causes stem  
cell dysfunction208. This indicates that maintaining a low basal 
state of the mTOR signaling in aging tissue could be important  
for maintenance of muscle function.

Future perspectives
Consistent with its role in coordinating protein synthesis, 
energy metabolism, and autophagy in cancer10,139, emerging 
evidence suggests that mTOR may act as a central node that 
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orchestrates many aspects of cellular and organismal biology 
related to aging phenotypes (Figure 2). Inhibition of the mTOR  
pathway by rapamycin or genetic means has profound effects 
on life span and age-associated phenotypes across a wide array 
of organisms. However, the underlying mechanisms are still  
unclear as it has been reported that during aging mTOR activ-
ity is both increased and decreased, depending on, for exam-
ple, tissue or sex202,243–251. It was suggested that, in spite of these  
variations, overall aging does not result in a generalized increase 
in mTOR signaling243. If this is the case, it is possible that 
mTOR activity aligns with the antagonistic pleiotropy theory of 
aging252, whereby its levels are beneficial during development  
but limit the health span in adult life.

Owing to its central role in age-related processes, mTOR repre-
sents an appealing target to ameliorate age-related pathologies. 
Despite its capacity to expand life span, the function of rapamy-
cin (and of rapalogs) as an immunosuppressant3 might be of 
concern, as a decline in immune function (immunosenescence) 
already occurs in the elderly, leading to infection-related  
morbidity and mortality253,254. Intriguingly, several studies in both 
mice and humans suggest that mTOR inhibitors could reduce  
immunosenescence202,255. In mice, rapamycin can restore the 
self-renewal and hematopoiesis of HSCs and enable effec-
tive vaccination against the influenza virus202. A randomized 
trial testing the effects of rapalog RAD001 in a cohort of 
healthy elderly patients also showed an enhanced response 
to the influenza vaccination, accompanied by a reduction in  
programmed death 1 (PD-1) receptor expressing CD4 and CD8  
T lymphocytes255. PD-1 expression, which increases with 
age, inhibits T-cell signaling and reduces responses to antigen 
stimulation256. Moreover, a pilot study concluded that short-
term rapamycin treatment (8 weeks) in healthy older persons  
was safe257.

Contrary to active-site mTOR inhibitors, allosteric inhibi-
tion of mTORC1 by rapamycin has little effect on 4E-BP phos-
phorylation22,23 and thus is expected to incompletely suppress 
mTORC1-dependent perturbations in translatome, mitochon-
drial functions, and metabolome10. Indeed, studies in D. mela-
nogaster showed that 4E-BP extends life span upon DR by 
enhancing mitochondrial activity258. More recent studies showed 
that, in D. melanogaster, 4E-BP mediates temperature-induced 
effects on metabolism and life span259 but that, in male mice,  
4E-BP1 is involved in protecting against diet-induced obes-
ity and insulin resistance260,261. Both second generation of mTOR 
inhibitors that target its active site and third generation (combin-
ing allosteric and active-site inhibition; Rapalink-1) potently 
suppress 4E-BP phosphorylation7,262. Compared with what is 
known about rapamycin, however, much less is known of the 
effects of the active-site mTOR inhibitors in the context of  
aging.

Another limitation of rapamycin is that its chronic exposure 
in mice leads to mTORC2 inhibition in, for example, hepato-
cytes30,31. Active-site mTOR inhibitors also inhibit mTORC27. 
Strikingly, selective suppression of mTORC2 reduces life 
span263,264 and is associated with changes in endocrinology 

and metabolism (for example, insulin resistance), which have 
a negative impact on health span31. Thus, developing specific  
inhibitors which effectively suppress all mTORC1 outputs 
(including 4E-BP phosphorylation), but do not exert a major 
effect on mTORC2, appears to be warranted as a strategy to tar-
get age-related pathologies and improve health span. Interest-
ingly, in a recent trial of healthy elderly patients, the combination 
of low-dose RAD001 (rapalog) and BEZ235 (dual mTOR/PI3K  
catalytic inhibitor) was proposed to selectively inhibit 
mTORC1 and not mTORC2 and led to enhanced immune func-
tion and a reduction in infections265. However, it is important 
to note that complete inhibition of mTORC1 can be deleteri-
ous. Deficiency in RagA, a GTPase responsible for mTORC1  
activation by nutrients, leads to loss of mTORC1 activity and 
is embryonic lethal in mice266. Moreover, conditional dele-
tion of RAPTOR (mTORC1 subunit) causes abnormalities in 
hematopoietic organs of adult mice267. Given these serious side 
effects of total mTORC1 inhibition and in light of the posi-
tive data from the RAD001/BEZ235 low-dose trial, it would  
be tempting to speculate that incomplete mTORC1 inhibition 
achieved by intermittent or low-dose treatment with mTOR 
inhibitors (or both) would carry the benefits of mTORC1  
inhibition while limiting the side effects268,269.

Biguanides (for example, metformin) are pharmaceuticals 
which are thought to have a beneficiary effect (in aging) that 
indirectly impinges on mTOR270. Metformin is a first-line anti-
diabetic drug which has been used for more than 60 years in 
the clinic and has very few side effects. It was shown to modu-
late life span in model organisms (C. elegans or M. musculus),  
to affect several processes dysregulated in aging (for exam-
ple, cellular senescence, inflammation, autophagy, and protein 
synthesis), and (with the exception of one study271) to improve 
cognitive function and neurodegeneration in humans270. At the  
organismal level, metformin reduces gluconeogenesis in the 
liver, which leads to normalization of glucose levels, decrease 
in insulinemia, and improvement of insulin resistance in fat, 
liver, and muscle272. By inhibiting mitochondrial complex I,  
metformin causes energetic stress which results in mTORC1 
inhibition through AMPK (5′ AMP-activated protein kinase)-
dependent and independent mechanisms273. Furthermore, 
metformin limits the secretion of numerous SASP factors  
by senescent cells274 and has been shown to limit the spread-
ing of cellular senescence in vivo191. Although many studies have 
uncovered possible targets of metformin action in the cell in the 
context of aging, the full extent of metformin’s mechanism of 
action at the cellular and organismal levels is still incompletely 
understood. This is complicated by the issues of achievable  
drug doses in humans compared with the concentration used 
in cell culture and animal models272. Nonetheless, clinical  
trials in which metformin is used to improve health span or 
aging-related conditions are being proposed. For instance, in 
the TAME (targeting aging with metformin) clinical trial, a  
placebo-controlled multi-center study of about 3000 elderly  
patients who are 65 to 79 years old, the effects of metformin 
on the development of age-associated outcomes like car-
diovascular events, cancer, dementia, and mortality will be  
monitored270. In addition to providing information about  
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metformin efficacy, the TAME study could provide the basis 
of establishing aging as an indicator for therapeutic purposes, 
which may encourage the development of next-generation 
drugs that target aging and extend healthy life span by  
modulating mTOR.

Significant progress has been made toward understanding 
how the mTOR signaling pathway regulates cellular processes  
relevant to aging (cellular and organismal energetics, proteos-
tasis, cell stemness, cellular senescence, and so on), but as many 
of these advances were made in the context of cancer, much 
less is known about how these regulations influence the fate of 
the aging cell. Notwithstanding that mTOR inhibition clearly  
extends life span, outstanding questions abound regarding 
the underpinning mechanisms. For example, is inhibition of 
mTORC1 (as opposed to mTORC2) the main driver of increased 
life span and health span? What is the extent to which mTOR 
inhibition mediates the positive effects of CR/DR? What is the 
role of the mTORC1-specific mRNA translation program in  
aging? Much work is still needed to fill many gaps in knowl-
edge related to the function of mTOR in the context of aging. 
This work may uncover unappreciated regulators or pathways 
that control the aging process and could lead to the development  
of drugs aimed at improving the health of the aging population.
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