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Abstract
Though the fusiform is well-established as a key node in the face perception network, its role in facial expression processing
remains unclear, due to competing models and discrepant findings. To help resolve this debate, we recorded from 17 subjects with
intracranial electrodes implanted in face sensitive patches of the fusiform. Multivariate classification analysis showed that facial
expression information is represented in fusiform activity and in the same regions that represent identity, though with a smaller
effect size. Examination of the spatiotemporal dynamics revealed a functional distinction between posterior fusiform and
midfusiform expression coding, with posterior fusiform showing an early peak of facial expression sensitivity at around 180ms
after subjects viewed a face and midfusiform showing a later and extended peak between 230 and 460ms. These results support
the hypothesis that the fusiform plays a role in facial expression perception and highlight a qualitative functional distinction
between processing in posterior fusiform and midfusiform, with each contributing to temporally segregated stages of expression
perception.

Key words: face perception, facial expressions, fusiform, intracranial electroencephalography, multivariate temporal pattern
analysis

Introduction
Face perception, including detecting a face, recognizing face
identity, assessing sex, age, emotion, attractiveness, and other
characteristics associated with the face, is critical to social
communication. An influential cognitive model of face proces-
sing distinguishes processes associated with recognizing the
identity of a face from those associated with recognizing
expression (Bruce and Young 1986). A face sensitive region of
the lateral fusiform gyrus, sometimes called the fusiform face
area, is a critical node in the face processing network (Haxby
et al. 2000; Calder and Young 2005; Ishai 2008; Duchaine and
Yovel 2015) that has been shown to be involved in identity per-
ception (Barton et al. 2002; Barton 2008; Nestor et al. 2011;
Goesaert and Op de Beeck 2013; Ghuman et al. 2014). What role,

if any, the fusiform plays in face expression processing con-
tinues to be debated, particularly given the hypothesized cogni-
tive distinction between identity and expression perception.

Results demonstrating relative insensitivity of the fusiform
to face dynamics (Pitcher et al. 2011), reduced fusiform activity
for attention to gaze direction (Hoffman and Haxby 2000), and
findings showing insensitivity of the fusiform to expression
(Breiter et al. 1996; Whalen et al. 1998; Streit et al. 1999; Thomas
et al. 2001; Foley et al. 2012) led to a model that proposed that
this area was involved strictly in identity perception and not
expression processing (Haxby et al. 2000). This model provided
neuroscientific grounding for the earlier cognitive model that
hypothesized a strong division between identity and expression
perception (Bruce and Young 1986). Recently, imaging studies
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have increasingly suggested that fusiform is involved in expres-
sion coding (Vuilleumier et al. 2001; Ganel et al. 2005; Fox et al.
2009; Xu and Biederman 2010; Bishop et al. 2015; Achaibou et al.
2016). Positive findings for fusiform sensitivity to expression
have led to the competing hypothesis that the division of face
processing is not for identity and expression, but rather form/
structure and motion (Duchaine and Yovel 2015). However,
mixed results have been reported in examining whether the
same patches of the fusiform that code for identity also code for
expression (See [Zhang et al. 2016] for a study that examined both,
but saw negative results for expression coding). Furthermore,
some studies show the fusiform has an expression-independent
identity code (Nestor et al. 2011; Ghuman et al. 2014). Taken
together, prior results provide some, but not unequivocal, evi-
dence for a role of the fusiform in expression processing.

Beyond whether the fusiform responds differentially to expres-
sion, one key question is whether the fusiform intrinsically codes
for expression or if differential responses are due to task-related
and/or top-down modulation of fusiform activity (Dehaene and
Cohen 2011). Assessing this requires a method with high temporal
resolution to distinguish between early, more bottom-up biased
activity, and later activity that likely involved recurrent interac-
tions. Furthermore, a passive viewing or incidental task is required
to exclude biases introduced by variable task demands across sti-
muli. The low temporal resolution of fMRI makes it difficult to dis-
entangle early bottom-up processing from later top-down and
recurrent processing. Some previous intracranial electroen-
cephalography (iEEG) studies have used an explicit expression
identification task, making task effects difficult to exclude
(Tsuchiya et al. 2008; Kawasaki et al. 2012; Musch et al. 2014).
Those that have used an implicit task have shown mixed
results regarding whether early fusiform response is sensitive
to expression (Pourtois et al. 2010; Musch et al. 2014). Furthermore,
iEEG studies often lack sufficient subjects and population-level
analysis to allow for a generalizable interpretation.

To help mediate between these 2 models and clarify the role
of the fusiform in facial expression perception, iEEG was recorded
from 17 subjects with a total of 31 face sensitive electrodes in face
sensitive patches of the fusiform gyrus while these subjects
viewed faces with neutral, happy, sad, angry, and fearful expres-
sions in a gender discrimination task. Multivariate temporal pat-
tern analysis (MTPA) on the data from these electrodes was used
to analyze the temporal dynamics of neural activity with respect
to facial expression sensitivity in fusiform. In a subset of 7 sub-
jects, identity coding was examined in the same electrodes also
using MTPA. In addition to examining the overall patterns across
all electrodes, the responses from posterior fusiform and midfusi-
form, as well as the left and right hemisphere, were compared.
To supplement these iEEG results, a meta-analysis of 64 neuroim-
aging studies was done examining facial expression sensitivity in
the fusiform. The results support the view that fusiform response
is sensitive to facial expression and suggest that the posterior
fusiform and midfusiform regions play qualitatively different
roles in facial expression processing.

Materials and Methods
Participants

The experimental protocols were approved by the Institutional
Review Board of the University of Pittsburgh. Written informed
consent was obtained from all participants.

A total of 17 human subjects (8 males, 9 females) under-
went surgical placement of subdural electrocorticographic

electrodes or stereoelectroencephalography (together electro-
corticography and stereoelectroencephalography are referred
to here as iEEG) as standard of care for seizure onset zone
localization. The ages of the subjects ranged from 19 to 65
years old (mean = 37.9, SD = 12.7). None of the participants
showed evidence of epileptic activity on the fusiform electro-
des used in this study nor any ictal events during experimen-
tal sessions.

Experiment Design

In this study, each subject participated in 2 experiments.
Experiment 1 was a functional localizer experiment and
Experiment 2 was a face perception experiment. The experi-
mental paradigms and the data preprocessing methods were
similar to those described previously by Ghuman and collea-
gues (Ghuman et al. 2014).

Stimuli
In Experiment 1, 180 images of faces (50% males), bodies (50%
males), words, hammers, houses, and phase scrambled faces
were used as visual stimuli. Each of the 6 categories contained
30 images. Phase scrambled faces were created in MATLABTM

by taking the 2D spatial Fourier spectrum of each of the face
images, extracting the phase, adding random phases, recom-
bining the phase and amplitude, and taking the inverse 2D spa-
tial Fourier spectrum.

In Experiment 2, face stimuli were taken from the
Karolinska Directed Emotional Faces stimulus set (Lundqvist
et al. 1998). Frontal views and 5 different facial expressions
(fearful, angry, happy, sad, and neutral) from 70 faces (50%
male) in the database were used, which yielded a total of 350
unique images. A short version of Experiment 2 used a subset
of 40 faces (50% males) from the same database, which yielded
a total of 200 unique images. Four subjects participated in the
long version of the experiment, and all other subjects partici-
pated in the short version of the experiment.

Paradigms
In Experiment 1, each image was presented for 900ms with
900ms intertrial interval during which a fixation cross was pre-
sented at the center of the screen (~10° × 10° of visual angle). At
random, 1/3 of the time an image would be repeated, which
yielded 480 independent trials in each session. Participants
were instructed to press a button on a button box when an
image was repeated (1-back).

In Experiment 2, each face image was presented for 1500ms
with 500ms intertrial interval during which a fixation cross
was presented at the center of the screen. This yielded 350 (200
for the short version) independent trials per session. Faces sub-
tended approximately 5° of visual angle in width. Subjects were
instructed to report whether the face was male or female via
button press on a button box.

Paradigms were programmed in MATLABTM using Psychtoolbox
and custom written code. All stimuli were presented on an LCD
computer screen placed approximately 150 cm from participants’
heads.

All of the participants performed one session of Experiment 1.
The 9 of the subjects performed one session of Experiment 2, and
the other 8 participants performed 2 or more sessions of
Experiment 2.
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Data Analysis

Data Preprocessing
The electrophysiological activity was recorded using iEEG electro-
des at 1000Hz. Common reference and ground electrodes were
placed subdurally at a location distant from any recording elec-
trodes, with contacts oriented toward the dura. Single-trial poten-
tial signal was extracted by band-passing filtering the raw data
between 0.2 and 115Hz using a fourth order Butterworth filter to
remove slow and linear drift, and high-frequency noise. The
60Hz line noise was removed using a forth order Butterworth fil-
ter with 55–65Hz stop-band. Power spectrum density (PSD) at
2–100Hz with bin size of 2Hz and time-step size of 10ms was
estimated for each trial using multitaper power spectrum analy-
sis with Hann tapers, using FieldTrip toolbox (Oostenveld et al.
2011). For each channel, the neural activity between 50 and
300ms prior to stimulus onset was used as baseline, and the PSD
at each frequency was then z-scored with respect to the mean
and variance of the baseline activity to correct for the power scal-
ing over frequency at each channel. The broadband gamma sig-
nal was extracted as mean z-scored PSD across 40–100Hz. Event-
related potential (ERP) and event-related broadband gamma sig-
nal (ERBB), both time-locked to the onset of stimulus from each
trial, were used in the following data analysis. Specifically, the
ERP signal is sampled at 1000Hz and the ERBB is sampled at
100Hz.

To reduce potential artifacts in the data, raw data were
inspected for ictal events, and none were found during experi-
mental recordings. Trials with maximum amplitude 5 standard
deviations above the mean across all the trials were eliminated.
In addition, trials with a change of more than 25 μV between
consecutive sampling points were eliminated. These criteria
resulted in the elimination of less than 1% of trials.

Electrode Localization
Coregistration of grid electrodes and electrode strips was
adapted from the method of Hermes et al. (2010). Electrode con-
tacts were segmented from high-resolution postoperative CT
scans of patients coregistered with anatomical MRI scans
before neurosurgery and electrode implantation. The Hermes
method accounts for shifts in electrode location due to the
deformation of the cortex by utilizing reconstructions of the
cortical surface with FreeSurferTM software and co-registering
these reconstructions with a high-resolution postoperative CT
scan. SEEG electrodes were localized with Brainstorm software
(Tadel et al. 2011) using postoperative MRI coregistered with
preoperative MRI images.

Electrode Selection
Face sensitive electrodes were selected based on both anatomical
and functional constraints. Anatomical constraint was based
upon the localization of the electrodes on the reconstruction
using postimplantation MRI. In addition, MTPA was used to func-
tionally select the electrodes that showed sensitivity to faces,
comparing to other conditions in the localizer experiment (see
below for MTPA details). Specifically, 3 criteria were used to
screen and select the electrodes of interest: 1) electrodes of inter-
est were restricted to those that were located in the midfusiform
sulcus (MFS), on the fusiform gyrus, or in the sulci adjacent to
fusiform gyrus; 2) electrodes were selected such that their peak 6-
way classification d′ score for faces (see below for how this was
calculated) exceeded 0.5 (P < 0.01 based on a permutation test, as
described below); and 3) electrodes were selected such that the
peak amplitude of the mean ERP and/or mean ERBB for faces was

larger than the peak of mean ERP and/or ERBB for the other non-
face object categories in the time window of 0–500ms after stim-
ulus onset. Dual functional criteria are used because criterion 2)
insures only that faces give rise to statistically different activity
from other categories, but not necessarily activity that is greater
in magnitude. Combining criteria 2) and 3) insures that face activ-
ity is both statistically significantly different from other categories
and greater magnitude in the electrodes of interest.

Multivariate Temporal Pattern Analysis
Multivariate methods were used instead of traditional univari-
ate statistics because of their superior sensitivity (Ghuman
et al. 2014; Haxby et al. 2014; Hirshorn et al. 2016; Miller et al.
2016). In this study, MTPA was applied to decode the coding of
stimulus condition in the recorded neural activity. The time-
course of the decoding accuracy was estimated by classification
using a sliding time window of 100ms. Previous studies have
demonstrated that both the low-frequency and the high-
frequency neural activity contribute to the coding of facial
information (Ghuman et al. 2014; Miller et al. 2016; Furl et al.
2017), therefore, both ERP and ERBB signals in the time window
are combined as input features for the MTPA classifier.
According to our preprocessing protocol, the ERP signal is sam-
pled at 1000Hz and the ERBB is sampled at 100 Hz, which yields
110 temporal features in each 100ms time window (100 voltage
potentials for ERP and 10 normalized mean power-spectrum
density for ERBB). The 110-dimensional data were then used as
input for the classifier (see Supplementary Results for a
detailed analysis on the contribution by ERP and ERBB features
for the classification, Fig. S1). The goal of the classifier was to
learn the patterns of the data distributions in such 110-
dimensional space for different conditions and to decode the
conditions of the corresponding stimuli from the testing trials.
The classifier was trained on each electrode of each subject
separately to assess the electrode sensitivity to faces and facial
expressions. For Experiment 1, it was a 6-way classification
problem and we specifically focused on the sensitivity of face
category against other nonface categories. Therefore, we used
the sensitivity index (d′) for face category against all other non-
face category as the metric of face sensitivity. d′ was calculated
as Z(true positive rate) – Z(false positive rate), where Z is the
inverse of the Gaussian cumulative distribution function. d′
was used because it is an unbiased measure of effect size and
one that takes into both the true positive and false positive
rates. It also has the advantage that it is an effect size measure
that has similar interpretation as Cohen’s d (Cohen 1988;
Sawilowsky 2009) while also being applicable to multivariate
classification. In addition, we provide full receiver–operator
characteristic (ROC) curves for completeness and as validation
of d′ values. For Experiment 2, averaged pairwise classification
between every possible pair of facial expressions (10 pairs in
total) was used.

The choice of the classifier is an empirical problem. The per-
formance of the classifier depends on whether the assumptions
of the classifier approximate the underlying truth of the data.
Additionally, the complexity of the model and the size of the
dataset affect performance (bias-variance trade-off). In this study,
we employed Naïve Bayes (NB) classifiers, which assumes that
each of the input features are conditionally independent from
one another, and are Gaussian distributed. The classification
accuracy of the classifier was estimated through 5-fold cross-vali-
dation. Specifically, all the trials were randomly and evenly spited
into 5-fold. In each cross-validation loop, the classifier was
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trained based on 4-fold and the performance was evaluated on
the left out fold. The overall performance was estimated by aver-
aging across all the 5 cross-validation loops. In general, different
classifiers gave similar results. Specifically, we evaluated the per-
formance of different classifiers (NB, support vector machines,
and random forests) on a small subset of the data, and NB classi-
fier tended to perform better than other commonly used classi-
fiers in the current experiment, but other classifiers also gave
similar results. In addition, our previous experience (Hirshorn
et al. 2016) with similar datasets also suggested that NB per-
formed reasonably well in such classification analysis. We there-
fore used NB throughout the work presented here. The advantage
of the Naïve Bayes classifier in the current study is likely due to
intrinsic properties of the high dimensional problem (Bickel and
Levina 2004) that make a high-bias low-variance classifier (i.e., NB
classifier) preferable compared with the low-bias high-variance
classifiers (i.e., support vector machines).

Permutation Testing
Permutation testing was used to determine the significance of
the sensitivity index d′. Multivariate temporal pattern analysis
For each permutation, the condition labels of all the trials were
randomly permuted and the same procedure as described
above was used to calculate the d′ for each permutation. The
permutation was repeated for a total of 1000 times. The d′ of
each permutation was used as the test statistic and the null
distribution of the test statistic was estimated using the histo-
gram of the permutation test.

K-Means Clustering
K-means clustering was used to cluster the electrodes into
groups based on both functional and anatomical features
(Kaufman and Rousseeuw 2009). Specifically, we applied k-
means clustering algorithm to the electrodes in a 2D feature
space of MNI y-coordinate and the peak classification accuracy
time. Note that each dimension was normalized through
z-scoring in order to account for different scales in space and
time. See Supplemental Information for detailed analysis using
Bayesian information criterion (BIC) and Silhouette analysis for
model selection.

Facial Feature Analysis
The facial features from the stimulus images were extracted fol-
lowing the similar process as (Ghuman et al. 2014). Anatomical
landmarks for each picture were first determined by IntraFace
(Xiong and De la Torre 2013), which marks 49 points on the face
along the eyebrows, down the bridge of the nose, along the base
of the nose, and outlining the eyes and mouth. Based on these
landmarks we calculated 17 facial feature dimensions listed in
Table S3. The values for these 17 feature dimensions were nor-
malized by subtracting the mean and dividing by the standard
deviation across all the pictures. The mean representation of
each expression in facial feature space was computed by averag-
ing across all faces of the same expression.

Representational Similarity Analysis
Representational similarity analysis (RSA) was used to analyze
the neural representational space for expressions (Kriegeskorte
and Kievit 2013). With pairwise classification accuracy between
each pair of facial expressions, we constructed the representa-
tional dissimilarity matrix (RDM) of the neural representation of
facial expressions, with the element in the i-th column of the j-
th row in the matrix corresponding to the pairwise classification

accuracy between the i-th and j-th facial expressions. The corre-
sponding RDM in the facial feature space was constructed by
assessing the Euclidean distance between the vectors for the i-th
and the j-th facial expressions averaged over all identities in the
17-dimensional facial feature space (Fig. 3, top left).

Results
Electrode Selection and Face Sensitivity

The locations of the 31 fusiform electrodes from 17 participants
sensitive to faces are shown in Figure 1A and Table 1. The aver-
aged event-related potential (ERP) and event-related broadband
gamma activity (ERBB) responses (see Materials and Methods
for detailed definitions of ERP and ERBB) for each category
across all channels are shown in Figure 1C,D, respectively. The
averaged sensitivity index (d′) for faces peaked at 160ms (d′ =
1.22, P < 0.01 in every channel, Fig. 1B). Consistent with previ-
ous findings (Allison et al. 1999; Eimer 2000c, 2011; Ghuman
et al. 2014), strong sensitivity for faces was observed in the fusi-
form around 100–400ms after stimulus onset.

Facial Expression Classification at the Individual and
Group Level

For each participant, the classification accuracy between each
pair of facial expressions was estimated using 5-fold cross-valida-
tion (see Materials and Methods for details). As shown in
Figure 2B, the averaged timecourse peaked at 190ms after stimu-
lus onset (average decoding at peak d’ = 0.12, P < 0.05, Bonferroni
corrected for multiple comparisons). In addition to the grand
average, on the single electrode level, 21 out of the 31 electrodes
from 12 out of 17 subjects showed a significant peak in their indi-
vidual timecourses (P < 0.05, permutation test corrected for multi-
ple comparisons). The locations of the significant electrodes are
shown in Figure 2A and all electrodes are listed in Table 1.

The effect size for the mean peak expression classification is
relatively low. This is in part because the electrodes consisted
of 2 distinct populations with different timecourses (see below).
Additionally, due to the variability in electrode position, iEEG
effect sizes can be lower in some cases than what would be
seen with electrodes optimally placed over face patches. To
assess whether this was the case, we examined the correspon-
dence between face category decoding and expression decoding
based on the logic that placement closer to face patches should
lead to higher face category decoding accuracy. A significant
positive correlation between the decoding accuracy (d′) for face
category and the decoding accuracy (d′) for facial expressions
was seen (Pearson correlation r = 0.57, N = 21, P = 0.007). This
suggests that electrode position relative to face patches in the
fusiform can explain some of the effect size variability for
expression classification. That suggests the true effect size for
expression classification for optimal electrode placement may
be closer to what was seen for electrodes with higher accuracy
(0.4–0.6, see Table 1) rather than the mean across all electrodes.

Spatiotemporal Dynamics of Facial Expression
Decoding

The next question we addressed was whether spatiotemporal
dynamics of facial expression representation in fusiform was
location dependent. Specifically, we compared the dynamics of
expression sensitivity between left and right hemispheres, and
between posterior fusiform and midfusiform regions for elec-
trodes showing significant expression sensitivity.
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We first analyzed the lateralization effect for the expression
coding in fusiform. The mean timecourses of decoding accu-
racy for left and right fusiform did not differ at the P < 0.05
uncorrected level at any time point (Fig. S3).

In contrast substantial differences were seen in the timing
and representation of expression coding between posterior fusi-
form and midfusiform. This was first illustrated by plotting the
time of the peak decoding accuracy in each individual electrode
against the corresponding MNI y-coordinate of the electrode
(Fig. 2C). A qualitative difference was seen between the peak
times for electrodes posterior to approximately y = −45 compared
with those anterior to that, rather than a continuous relationship
between y-coordinate and peak time. This was quantified by a
clustering analysis using both BIC (Kass and Wasserman 1995)
and Silhouette analysis (Kaufman and Rousseeuw 2009) (Fig. S4),
which both showed evidence for a cluster-structure in the
data (Bayes factor >20) with k = 2 as the optimal number of
clusters (mean Sillhouette coefficient = 0.59). The 2 clusters corre-
sponded to the posterior fusiform and midfusiform (Fig. 2C; see
Supplemental Information for detailed analysis on clustering and
the selection of models with different values of k). The border
between these data-driven clusters corresponds well with prior
functional and anatomical evidence showing that the midfusi-
form face patch falls within a 1 cm disk centered around the

anterior tip of MFS (which falls at y = −40 in MNI coordinates)
with high probability (Weiner et al. 2014). That would make the
border between the midfusiform and posterior fusiform face
patch approximately y = −45 in MNI coordinates, which is very
close to the border produced by the clustering analysis (y = −45.9).

The timecourse of the posterior fusiform and midfusiform
clusters were then examined in detail. As shown in Figure 2D,
the timecourse of decoding accuracy in the posterior group
peaked at 180ms after stimulus onset and the timecourse of
midfusiform group first peaked at 230ms and the peak
extended until approximately 450ms after stimulus onset.

Representational Similarity Analysis

A recent meta-analysis suggests that fusiform is particularly
sensitive to the contrast between specific pairs of expressions
(Vytal and Hamann 2010). To examine this in iEEG data, the
representation dissimilarity matrices (RDMs) for facial expres-
sions in the early and late activity in posterior fusiform and mid-
fusiform were computed (Fig. 3). No contrasts between
expressions showed significant differences in posterior fusiform
in the late window or in midfusiform in the early window (P >
0.1 in all cases, T-test), as expected due to the corresponding low
overall classification accuracy. In the early posterior fusiform,

Figure 1. The face sensitive electrodes in the fusiform. (A) The localization of the 31 face sensitive electrodes in (or close to) the fusiform, mapped onto a com-

mon space based on MNI coordinates. We moved depth electrode locations to the nearest location on the overlying cortical surface, in order to visualize all the

electrodes. (B) The timecourse of the sensitivity index (d′) for faces versus the other categories in the 6-way classification averaged across all 31 fusiform electro-

des. The shaded areas indicate standard error of the mean across electrodes. The red line corresponds to P < 0.01 with Bonferroni correction for multiple com-

parisons across 60 time points. (C) The ERP for each category averaged across all face sensitive fusiform electrodes. The shaded areas indicate standard error of

the mean across electrodes. (D) The ERBB for each category averaged across all face sensitive fusiform electrodes. The shaded areas indicate standard error of

the mean across electrodes.
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expressions of negative emotions (fearful, angry) were dissimilar
to happy and neutral expressions (P < 0.05 in each case, T-test),
but not very distinguishable from one another. In the late midfu-
siform activity, happy and neutral expressions were both distin-
guishable from expressions of negative emotions and from each
other (P < 0.05 in each case, T-test). The results showed partial
consistency with a previous meta-analysis based on neuroimag-
ing studies (consistent in angry vs. neutral, fearful vs. neutral,
fearful vs. happy, and fear vs. sad) (Vytal and Hamann 2010).
However, the previous meta-analysis also reported statistical
significance for the contrasts of fearful versus angry and angry
versus sad, which were absent in our results.

One question is the degree to which the representation in fusi-
form reflects the structural properties of the facial expressions sub-
jects were viewing. To examine this question, an 17-dimensional
facial feature space was constructed based on a computer vision
algorithm (Xiong and De la Torre 2013). The features characterize
structural and spatial frequency properties of each image, for
example, eye width, eyebrow length, nose height, eye–mouth width
ratio, and skin tone. An RDM was then built between the expres-
sions in this feature space and compared with the neural feature
spaces. There was a significant correlation between posterior fusi-
form representation space in the early time window (Spearman’s
rho = 0.24, P < 0.05, permutation test). The correlation between
midfusiform representation space in the late time window and
the facial feature space was smaller and did not reach statistical
significance (Spearman’s rho = 0.15, P > 0.1, permutation test).

Comparison to Facial Identity Classification

Given the strongly supported hypothesis the fusiform plays a
central role in face identity recognition, the effect size of identity
and expression coding in the fusiform was compared. Due to the
relatively few repetitions of individual faces, individuation was
examined in only the 7 subjects that had sufficient repetitions of
each face identity allowing for multivariate classification of
identity across expression; identity decoding was previously
reported for 4 of these subjects in a recent study (Ghuman et al.
2014). Across the 7 total subjects (3 here and 4 reported previ-
ously), the mean peak d’ = 0.50 for face identity decoding was
significantly greater than the mean peak accuracy for facial
expression decoding in the exact same set of electrodes (mean
peak d’ = 0.20; t[6] = 3.7821, P = 0.0092). With regards to the tim-
ing of identity (mean peak time = 314ms) versus expression sen-
sitivity, the posterior peak time for expression classification was
significantly earlier than the peak time for identity (t[18] = 4.45,
P = 0.0003). The midfusiform extended peak time for expression
classification overlapped with the peak time for identity.

Discussion
Multivariate classification methods were used to evaluate the
encoding of facial expressions recorded from electrodes placed
directly in face sensitive fusiform cortex. Though the effect size for
expression classification is smaller than for identity classification,

Table 1 MNI coordinates and facial expression sensitivity (d′) for all face sensitive electrodes

Electrode ID X (mm) Y (mm) Z (mm) Peak time (ms) Peak d’ Sensitive to expressions

S1a 35 −59 −22 260 0.29 Y
S1b 33 −53 −22 150 0.31 Y
S1c 42 −56 −26 200 0.20 N
S2a 40 −57 −23 170 0.34 Y
S3a −33 −44 −31 580 0.18 N
S4a −38 −36 −30 440 0.12 N
S5a −38 −36 −20 300 0.25 Y
S5b −42 −37 −19 330 0.25 Y
S6a 34 −40 −11 540 0.24 Y
S6b 39 −40 −10 490 0.33 Y
S7a 36 −57 −21 100 0.42 Y
S8a −22 −72 −9 100 0.23 Y
S8b −40 −48 −23 170 0.38 Y
S9a 32 −46 −7 180 0.34 Y
S9b 36 −48 −8 160 0.40 Y
S10a 29 −46 −15 310 0.31 Y
S11a −25 −38 −17 580 0.36 Y
S11b −34 −38 −18 400 0.46 Y
S11c −49 −37 −20 430 0.27 Y
S12a 41 −33 −19 70 0.06 N
S12b 37 −51 −9 70 0.22 Y
S12c 35 −59 −4 80 0.23 Y
S13a 43 −36 −13 400 0.11 N
S13b 44 −48 −11 190 0.10 N
S14a −52 −54 −17 30 0.14 N
S15a −37 −47 −10 180 0.64 Y
S16a −39 −45 −11 160 0.03 N
S17a −43 −53 −26 90 0.20 N
S17b −46 −50 −28 110 0.31 Y
S17c −30 −63 −20 120 0.27 Y
S17d −45 −56 −25 40 0.13 N

aNote: Electrode ID is labeled by subject number (SX) and electrode from that subject (a, b, etc.). Sensitivity to expression defined as P < 0.05 decoding accuracy cor-

rected for multiple comparisons.
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the results support a role for the fusiform in the processing of facial
expressions. Electrodes that were sensitive to expression were also
sensitive to identity, suggesting a shared neural substrate for iden-
tity and expression coding in the fusiform. The results also show
that the posterior fusiform and midfusiform are dynamically
involved in distinct stages of facial expression processing and have
different representations of expressions. The differential represen-
tation and magnitude of the temporal displacement between the
sensitivity in posterior fusiform and midfusiform suggests these
are qualitatively distinct stages of facial expression processing and
not merely a consequence of transmission or information proces-
sing delay along a feedforward hierarchy.

Fusiform is Sensitive to Facial Expression

The results here show that the fusiform is sensitive to expres-
sion, though the effect size for classification of expression in the
fusiform using iEEG is small-to-medium (Cohen 1988) (d′ is on
the same scale as Cohen’s d and they are equivalent when the

data is univariate Gaussian, so d′s between 0.2 and 0.5 are
“small” and 0.5 and 0.8 are medium.). The results also suggest
that the same patches of the fusiform that are sensitive to
expression are sensitive to identity as well. Given the variability
of the effect size due to the proximity of electrode placement rel-
ative to face patches, the relative effect size may be more infor-
mative than the absolute effect size. The magnitude for facial
expression classification is approximately half what was seen
for face identity classification. This suggests that while fusiform
contributes to facial expression perception, it is to a lesser
degree than face identity processing. Greater involvement in
identity than expression perception is expected for a region
involved in structural processing of faces because identity relies
on this information more than expression because expression
perception also relies on facial dynamics. These results support
models that hypothesize fusiform involvement in form/struc-
tural processing, at least for posterior fusiform (see discussion
on Multiple, Spatially, and Temporally Segregated Stages of Face
Expression Processing in the Fusiform section below), which can

Figure 2. The timecourse of the facial expression classification in fusiform. (A) The locations of the electrodes with significant face expression decoding accuracy,

with the posterior fusiform group colored in cyan and the midfusiform group colored in magenta. (B) The timecourse of mean and standard error for pairwise classifi-

cation between different face expressions in all 31 fusiform electrodes. The shaded areas indicate standard error of the mean across electrodes. Dashed line: P = 0.05

threshold with Bonferroni correction for 60 time points (600ms with 10ms stepsize). (C) The time of the peak classification accuracy was plotted against the MNI

y-coordinate for each single electrode with significant expression classification accuracy. K-means clustering partitions these electrodes into posterior fusiform and

midfusiform groups. Dashed oval represent the 2-σ contour using the mean and standard deviation along the MNI x- and y-axes. (D) The mean and standard error for

pairwise classification between different face expressions in posterior fusiform electrodes and midfusiform electrodes. The posterior group peaked at 180ms after

stimulus onset and the midfusiform group had an extended peak starting at 230ms and extending to 450ms (both P < 0.05, binomial test, Bonferroni corrected;

dashed line: P = 0.05 threshold with Bonferroni correction for 60 time points [600ms with 10ms stepsize]). The shaded areas indicate standard error of the mean

across electrodes. See supplement for receiver operator characteristic (ROC) curves validating classification analysis (Fig. S2).
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support facial expression processing (Calder and Young 2005;
Duchaine and Yovel 2015). These results do not support models
that hypothesize a strong division between facial identity and
expression processing (Bruce and Young 1986; Haxby et al. 2000).

To test what a brain region codes for one must examine its
response for early, bottom-up activation during an incidental
task or passive viewing (Dehaene and Cohen 2011), otherwise it
is difficult to disentangle effects of task demands and top-
down modulation. Indeed, previous studies have demonstrated
that extended fusiform activity, particularly in the broadband
gamma range, is modulated by task-related information (Engell
and McCarthy 2011; Ghuman et al. 2014). Some previous iEEG
studies of expression coding in the fusiform have used an
explicit expression judgment task and examined only broad-
band gamma activity, making it difficult to draw definitive con-
clusions about fusiform expression coding from these results
(Tsuchiya et al. 2008; Kawasaki et al. 2012). One previous study
that used an implicit task did not show evidence of expression
sensitivity during the early stage of activity in the fusiform
(Musch et al. 2014); another did show evidence of expression
sensitivity, though it reported results only from a single subject
(Pourtois et al. 2010). The results here show in a large iEEG sam-
ple that the early response of the fusiform most sensitive to
bottom-up processing is modulated by expression, at least for
the posterior fusiform.

The effect size for facial expression classification is consis-
tent with mixed findings in the neuroimaging literature for
expression sensitivity in the fusiform (Haxby et al. 2000;
Tsuchiya et al. 2008; Harry et al. 2013; Harris et al. 2014; Skerry
and Saxe 2014; Zhang et al. 2016). IEEG generally has greater
sensitivity and lower noise than noninvasive measures of brain
activity. Methods with lower sensitivity, such as fMRI, would be
expected to have a substantial false negative rate for facial
expression coding in the fusiform. To quantify fMRI sensitivity
to expression we performed a meta-analysis on 64 studies. Of

these studies, 24 reported at least one expression sensitive loci
in the fusiform. However, at the meta-analytic level, no signifi-
cant cluster of expression sensitivity was seen in the fusiform
after whole brain analysis (see Supplementary Tables S1, S2,
and Fig. S5). Thus, consistent with the iEEG effect size for
expression decoding in the fusiform seen here, there is some
suggestion in the fMRI literature for expression sensitivity in
the fusiform, but it is relatively small in magnitude and does
not achieve statistical significance at the whole brain level.

Multiple, Spatially, and Temporally Segregated Stages
of Face Expression Processing in the Fusiform

Using a data-driven analysis, posterior fusiform and midfusi-
form face patches were shown to contribute differentially to
expression processing. The dividing point between posterior
fusiform and midfusiform electrodes found in a data-driven
manner is consistent with the anatomical border for the poste-
rior fusiform and midfusiform face patches previously
described, suggesting a strong coupling between the anatomi-
cal and functional divisions in fusiform (Weiner et al. 2014).
While posterior fusiform and midfusiform have been shown to
be cytoarchitectonically distinct regions each with separate
face sensitive patches (Freiwald and Tsao 2010; Weiner et al.
2014, 2016), functional differences between these patches have
remained elusive in the literature. The results here suggest that
these anatomical and physiological distinctions correspond to
functional distinctions in the role of these areas in face proces-
sing, as reflected in qualitatively different temporal dynamics
in these regions for facial expression processing. Specifically,
posterior fusiform participates in a relatively early stage of
facial expression processing that may be related to structural
encoding of faces. Midfusiform demonstrates a distinct pattern
of extended dynamics and participates in a later stage of pro-
cessing that may be related to a more abstract and/or

Figure 3. Representational similarity analysis (RSA) between the facial feature space and the representational spaces of posterior fusiform and midfusiform at both early

and late stages. Top row: representational dissimilarity matrices (RDM) of facial expressions in the facial feature space (left), RDM of posterior fusiform at early stage (middle),

RDM of posterior fusiform at late stage (right). Bottom row: RDM of midfusiform at early stage (middle), RDM of midfusiform at late stage (right). Abbreviations: AF = fearful;

AN = angry; HA = happy; NE = neutral; SA = sad.
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multifaceted representation of expression and emotion. These
results support the revised model of fusiform function that
posits the fusiform contributes to structural encoding of facial
expression during the initial stages of processing (Calder and
Young 2005; Duchaine and Yovel 2015), with the notable addi-
tion that it may be primarily posterior fusiform contributes to
structural processing.

The early time period of expression sensitivity in posterior
fusiform overlaps with strong face sensitive activity measured
noninvasively around 170ms after viewing a face, which is
thought to reflect structural encoding of face information
(Bentin and Deouell 2000; Eimer 2000a, 2000c; Blau et al. 2007;
Eimer 2011). Face sensitive activity in this time window has
been shown to be insensitive to attention and is thought to
reflect a “rapid, feedforward phase of face-selective processing”
(Furey et al. 2006). Additionally, a face adaptation study showed
that activity in this window reflects the actual facial expression
rather than the perceived (adapted) expression (Furl et al. 2007).
Consistent with these previous findings, the RSA results here
show that the early posterior activity is significantly correlated
to the physical/structural features of the face.

The expression sensitivity in midfusiform onset began later
than the posterior fusiform (around 230ms), and remained
active until ~450ms after viewing a face. Face sensitive activity
in this time window has been shown to be sensitive to face
familiarity and to attention (Eimer 2000b; Eimer et al. 2003).
Previous studies and the results presented here show that face
identity can be decoded from the activity in this later time win-
dow in midfusiform (Ghuman et al. 2014; Vida et al. 2017) and
reflects a distributed code for identity among regions of the
face processing network (Li et al. 2017). Thus, this later activity
may relate to integration of multiple kinds of face information,
such integration of identity and expression. Additionally, the
previously mentioned face adaptation study showed that activ-
ity in this window reflects the subjectively perceived facial
expression after adaptation (Furl et al. 2007). The RSA analysis
here showed that the activity in this time window in midfusi-
form was not significantly correlated with physical similarity of
the facial expressions. This lack of correlation with the physical
features of the space, combined with the result that midfusi-
form activity does show significant expression decoding, sug-
gests that the representation in midfusiform may reflect a
more conceptual representation of expression. Taken together,
these results and prior findings suggest the midfusiform
expression sensitivity in this later window reflect a more
abstract and subjective representation of expression and may
be related to integration of multiple face cues, including iden-
tity and expression. This abstract and multifaceted representa-
tion is likely to reflect processes arising from interactions
across the face processing network (Ishai 2008).

To conclude, the results presented here support the hypoth-
esis that the fusiform contributes to expression processing
(Calder and Young 2005; Duchaine and Yovel 2015). The finding
that the same part of the fusiform is sensitive to both identity
and expression contradicts models that hypothesize separate
pathways for their processing (Bruce and Young 1986; Haxby
et al. 2000) and instead supports the hypothesis the fusiform
supports structural encoding of faces in service of both identity
and expression (Duchaine and Yovel 2015). The results also
show there is a qualitative distinction between face processing
in posterior fusiform and midfusiform, with each contributing
to temporally and functionally distinct stages of expression
processing. This distinct contribution of these two fusiform
patches suggest that the structural and cytoarchitectonic

differences between posterior fusiform and midfusiform are
associated with functional differences between the contribu-
tions of these areas to face perception. The results here illus-
trate the dynamic role the fusiform plays in multiple stages of
facial expression processing.
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Supplementary material is available at Cerebral Cortex online.

Funding
National Institute on Drug Abuse under award (NIH
R90DA023420 to Y.L.), the National Institute of Mental Health
under award (NIH R01MH107797 and NIH R21MH103592 to A.S.G.),
and the National Science Foundation under award (1734907 to A.
S.G.). The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National
Institutes of Health or the National Science Foundation.

Notes
We thank the patients for participating in the iEEG experiments
and the UPMC Presbyterian epilepsy monitoring unit staff and
administration for their assistance and cooperation with our
research. We thank Michael Ward, Ellyanna Kessler, Vincent
DeStefino, Shawn Walls, Roma Konecky, Nicolas Brunet, and
Witold Lipski for assistance with data collection and thank Ari
Kappel and Matthew Boring for assistance with electrode locali-
zation. Conflict of Interest: None declared.

References
Achaibou A, Loth E, Bishop SJ. 2016. Distinct frontal and amyg-

dala correlates of change detection for facial identity and
expression. Soc Cogn Affect Neurosci. 11:225–233.

Allison T, Puce A, Spencer DD, McCarthy G. 1999.
Electrophysiological studies of human face perception. I:
Potentials generated in occipitotemporal cortex by face and
non-face stimuli. Cereb Cortex. 9:415–430.

Barton JJ. 2008. Structure and function in acquired prosopagno-
sia: lessons from a series of 10 patients with brain damage.
J Neuropsychol. 2:197–225.

Barton JJ, Press DZ, Keenan JP, O’Connor M. 2002. Lesions of the
fusiform face area impair perception of facial configuration
in prosopagnosia. Neurology. 58:71–78.

Bentin S, Deouell LY. 2000. Structural encoding and identifica-
tion in face processing: erp evidence for separate mecha-
nisms. Cogn Neuropsychol. 17:35–55.

Bickel PJ, Levina E. 2004. Some theory for Fisher’s linear dis-
criminant function, ‘naive Bayes’, and some alternatives
when there are many more variables than observations.
Bernoulli. 10:989–1010.

Bishop SJ, Aguirre GK, Nunez-Elizalde AO, Toker D. 2015. Seeing
the world through non rose-colored glasses: anxiety and the
amygdala response to blended expressions. Front Hum
Neurosci. 9:152.

Blau VC, Maurer U, Tottenham N, McCandliss BD. 2007. The
face-specific N170 component is modulated by emotional
facial expression. Behav Brain Funct. 3:7.

Breiter HC, Etcoff NL, Whalen PJ, Kennedy WA, Rauch SL,
Buckner RL, Strauss MM, Hyman SE, Rosen BR. 1996.
Response and habituation of the human amygdala during
visual processing of facial expression. Neuron. 17:875–887.

Spatiotemporal Dynamics of Expression in Fusiform Li et al. | 3217



Bruce V, Young A. 1986. Understanding face recognition. Br J
Psychol. 77(Pt 3):305–327.

Calder AJ, Young AW. 2005. Understanding the recognition of
facial identity and facial expression. Nat Rev Neurosci. 6:
641–651.

Cohen J. 1988. Statistical power analysis for the behavioral
sciences. Hillsdale, NJ: L. Erlbaum Associates.

Dehaene S, Cohen L. 2011. The unique role of the visual word
form area in reading. Trends Cogn Sci. 15:254–262.

Duchaine B, Yovel G. 2015. A revised neural framework for face
processing. Annu Rev Vis Sci. 1:393–416.

Eimer M. 2000a. Effects of face inversion on the structural
encoding and recognition of faces. Evidence from event-
related brain potentials. Brain Res Cogn Brain Res. 10:
145–158.

Eimer M. 2000b. Event-related brain potentials distinguish pro-
cessing stages involved in face perception and recognition.
Clin Neurophysiol. 111:694–705.

Eimer M. 2000c. The face-specific N170 component reflects late
stages in the structural encoding of faces. Neuroreport. 11:
2319–2324.

Eimer M. 2011. The face-sensitive N170 component of the
event-related brain potential. In: Calder AJ, Rhodes G,
Johnson MH, Haxby JV, editors. The Oxford handbook of
face perception. Oxford: Oxford University Press. p. 329–344.

Eimer M, Holmes A, McGlone FP. 2003. The role of spatial atten-
tion in the processing of facial expression: an ERP study of
rapid brain responses to six basic emotions. Cogn Affect
Behav Neurosci. 3:97–110.

Engell AD, McCarthy G. 2011. The relationship of gamma oscil-
lations and face-specific ERPs recorded subdurally from
occipitotemporal cortex. Cereb Cortex. 21:1213–1221.

Foley E, Rippon G, Thai NJ, Longe O, Senior C. 2012. Dynamic
facial expressions evoke distinct activation in the face per-
ception network: a connectivity analysis study. J Cogn
Neurosci. 24:507–520.

Fox CJ, Moon SY, Iaria G, Barton JJ. 2009. The correlates of sub-
jective perception of identity and expression in the face net-
work: an fMRI adaptation study. Neuroimage. 44:569–580.

Freiwald WA, Tsao DY. 2010. Functional compartmentalization
and viewpoint generalization within the macaque face-
processing system. Science. 330:845–851.

Furey ML, Tanskanen T, Beauchamp MS, Avikainen S, Uutela K,
Hari R, Haxby JV. 2006. Dissociation of face-selective cortical
responses by attention. Proc Natl Acad Sci USA. 103:
1065–1070.

Furl N, Lohse M, Pizzorni-Ferrarese F. 2017. Low-frequency
oscillations employ a general coding of the spatio-temporal
similarity of dynamic faces. Neuroimage. 157:486–499.

Furl N, van Rijsbergen NJ, Treves A, Friston KJ, Dolan RJ. 2007.
Experience-dependent coding of facial expression in super-
ior temporal sulcus. Proc Natl Acad Sci USA. 104:
13485–13489.

Ganel T, Valyear KF, Goshen-Gottstein Y, Goodale MA. 2005.
The involvement of the “fusiform face area” in processing
facial expression. Neuropsychologia. 43:1645–1654.

Ghuman AS, Brunet NM, Li Y, Konecky RO, Pyles JA, Walls SA,
Destefino V, Wang W, Richardson RM. 2014. Dynamic encod-
ing of face information in the human fusiform gyrus. Nat
Commun. 5:5672.

Goesaert E, Op de Beeck HP. 2013. Representations of facial
identity information in the ventral visual stream investi-
gated with multivoxel pattern analyses. J Neurosci. 33:
8549–8558.

Harris RJ, Young AW, Andrews TJ. 2014. Brain regions involved
in processing facial identity and expression are differen-
tially selective for surface and edge information.
Neuroimage. 97:217–223.

Harry B, Williams MA, Davis C, Kim J. 2013. Emotional expres-
sions evoke a differential response in the fusiform face area.
Front Hum Neurosci. 7:692.

Haxby JV, Connolly AC, Guntupalli JS. 2014. Decoding neural
representational spaces using multivariate pattern analysis.
Annu Rev Neurosci. 37:435–456.

Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed
human neural system for face perception. Trends Cogn Sci.
4:223–233.

Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey
NF. 2010. Automated electrocorticographic electrode locali-
zation on individually rendered brain surfaces. J Neurosci
Methods. 185:293–298.

Hirshorn EA, Li Y, Ward MJ, Richardson RM, Fiez JA, Ghuman
AS. 2016. Decoding and disrupting left midfusiform gyrus
activity during word reading. Proc Natl Acad Sci USA. 113:
8162–8167.

Hoffman EA, Haxby JV. 2000. Distinct representations of eye
gaze and identity in the distributed human neural system
for face perception. Nat Neurosci. 3:80–84.

Ishai A. 2008. Let’s face it: it’s a cortical network. Neuroimage.
40:415–419.

Kass RE, Wasserman L. 1995. A reference bayesian test for
nested hypotheses and its relationship to the Schwarz crite-
rion. J Am Stat Assoc. 90:928–934.

Kaufman L, Rousseeuw PJ. 2009. Finding groups in data: an intro-
duction to cluster analysis. Hoboken, NJ: John Wiley & Sons.

Kawasaki H, Tsuchiya N, Kovach CK, Nourski KV, Oya H,
Howard MA, Adolphs R. 2012. Processing of facial emotion
in the human fusiform gyrus. J Cogn Neurosci. 24:1358–1370.

Kriegeskorte N, Kievit RA. 2013. Representational geometry:
integrating cognition, computation, and the brain. Trends
Cogn Sci. 17:401–412.

Li Y, Richardson RM, Ghuman AS. 2017. Multi-connection pat-
tern analysis: decoding the representational content of neu-
ral communication. Neuroimage. 162:32–44.

Lundqvist D, Flykt A, Öhman A. 1998. The Karolinska directed
emotional faces (KDEF). CD ROM from Department of
Clinical Neuroscience, Psychology section, Karolinska
Institutet; 91-630.

Miller KJ, Schalk G, Hermes D, Ojemann JG, Rao RP. 2016.
Spontaneous decoding of the timing and content of human
object perception from cortical surface recordings reveals com-
plementary information in the event-related potential and
broadband spectral change. PLoS Comput Biol. 12:e1004660.

Musch K, Hamame CM, Perrone-Bertolotti M, Minotti L, Kahane
P, Engel AK, Lachaux JP, Schneider TR. 2014. Selective atten-
tion modulates high-frequency activity in the face-
processing network. Cortex. 60:34–51.

Nestor A, Plaut DC, Behrmann M. 2011. Unraveling the distrib-
uted neural code of facial identity through spatiotemporal
pattern analysis. Proc Natl Acad Sci USA. 108:9998–10003.

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip:
open source software for advanced analysis of MEG, EEG,
and invasive electrophysiological data. Comput Intell
Neurosci. 2011:156869.

Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N.
2011. Differential selectivity for dynamic versus static infor-
mation in face-selective cortical regions. Neuroimage. 56:
2356–2363.

3218 | Cerebral Cortex, 2019, Vol. 29, No. 7



Pourtois G, Spinelli L, Seeck M, Vuilleumier P. 2010. Modulation
of face processing by emotional expression and gaze direc-
tion during intracranial recordings in right fusiform cortex.
J Cogn Neurosci. 22:2086–2107.

Sawilowsky SS. 2009. New effect size rules of thumb. J Mod
Appl Stat Methods. 8:597–599.

Skerry AE, Saxe R. 2014. A common neural code for perceived
and inferred emotion. J Neurosci. 34:15997–16008.

Streit M, Ioannides AA, Liu L, Wolwer W, Dammers J, Gross J,
Gaebel W, Muller-Gartner HW. 1999. Neurophysiological cor-
relates of the recognition of facial expressions of emotion as
revealed by magnetoencephalography. Brain Res Cogn Brain
Res. 7:481–491.

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. 2011.
Brainstorm: a user-friendly application for MEG/EEG analy-
sis. Comput Intell Neurosci. 2011:879716.

Thomas KM, Drevets WC, Whalen PJ, Eccard CH, Dahl RE,
Ryan ND, Casey BJ. 2001. Amygdala response to facial
expressions in children and adults. Biol Psychiatry. 49:
309–316.

Tsuchiya N, Kawasaki H, Oya H, Howard MA 3rd, Adolphs R.
2008. Decoding face information in time, frequency and
space from direct intracranial recordings of the human
brain. PLoS One. 3:e3892.

Vida MD, Nestor A, Plaut DC, Behrmann M. 2017. Spatiotemporal
dynamics of similarity-based neural representations of facial
identity. Proc Natl Acad Sci USA. 114:388–393.

Vuilleumier P, Armony JL, Driver J, Dolan RJ. 2001. Effects of
attention and emotion on face processing in the human
brain: an event-related fMRI study. Neuron. 30:829–841.

Vytal K, Hamann S. 2010. Neuroimaging support for discrete
neural correlates of basic emotions: a voxel-based meta-
analysis. J Cogn Neurosci. 22:2864–2885.

Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts
K, Zilles K, Fischl B, Grill-Spector K. 2016. The cytoarchitec-
ture of domain-specific regions in human high-level visual
cortex. Cereb Cortex.

Weiner KS, Golarai G, Caspers J, Chuapoco MR, Mohlberg H,
Zilles K, Amunts K, Grill-Spector K. 2014. The mid-fusiform
sulcus: a landmark identifying both cytoarchitectonic and
functional divisions of human ventral temporal cortex.
Neuroimage. 84:453–465.

Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike
MA. 1998. Masked presentations of emotional facial expres-
sions modulate amygdala activity without explicit knowl-
edge. J Neurosci. 18:411–418.

Xiong X, De la Torre F. 2013. Supervised descent method and its
application to face alignment. IEEE CVPR.

Xu X, Biederman I. 2010. Loci of the release from fMRI adapta-
tion for changes in facial expression, identity, and view-
point. J Vis. 10:36.

Zhang H, Japee S, Nolan R, Chu C, Liu N, Ungerleider LG. 2016.
Face-selective regions differ in their ability to classify facial
expressions. Neuroimage. 130:77–90.

Spatiotemporal Dynamics of Expression in Fusiform Li et al. | 3219


	Posterior Fusiform and Midfusiform Contribute to Distinct Stages of Facial Expression Processing
	Introduction
	Materials and Methods
	Participants
	Experiment Design
	Stimuli
	Paradigms

	Data Analysis
	Data Preprocessing
	Electrode Localization
	Electrode Selection
	Multivariate Temporal Pattern Analysis
	Permutation Testing
	K-Means Clustering
	Facial Feature Analysis
	Representational Similarity Analysis


	Results
	Electrode Selection and Face Sensitivity
	Facial Expression Classification at the Individual and Group Level
	Spatiotemporal Dynamics of Facial Expression Decoding
	Representational Similarity Analysis
	Comparison to Facial Identity Classification

	Discussion
	Fusiform is Sensitive to Facial Expression
	Multiple, Spatially, and Temporally Segregated Stages of Face Expression Processing in the Fusiform

	Supplementary Material
	Funding
	Notes
	References




