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Abstract
Spatial size tuning in the visual cortex has been considered as an important neuronal functional property for sensory
perception. However, an analogous mechanism in the auditory system has remained controversial. In the present study,
cell-attached recordings in the primary auditory cortex (A1) of awake mice revealed that excitatory neurons can be categorized
into three types according to their bandwidth tuning profiles in response to band-passed noise (BPN) stimuli: nonmonotonic
(NM), flat, and monotonic, with the latter two considered as non-tuned for bandwidth. The prevalence of bandwidth-tuned
(i.e., NM) neurons increases significantly from layer 4 to layer 2/3. With sequential cell-attached and whole-cell voltage-clamp
recordings from the same neurons, we found that the bandwidth preference of excitatory neurons is largely determined by
the excitatory synaptic input they receive, and that the bandwidth selectivity is further enhanced by flatly tuned inhibition
observed in all cells. The latter can be attributed at least partially to the flat tuning of parvalbumin inhibitory neurons. The
tuning of auditory cortical neurons for bandwidth of BPN may contribute to the processing of complex sounds.
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Introduction
In the mammalian auditory system, complex sound signals are
first decomposed by narrow frequency filters, a process similar to
that performed by a frequency analyzer (Kiang 1968). At a certain
neuronal processing stage, signals from these lower-order fre-
quency filters need to be integrated by higher-order neurons for
auditory object recognition (Suga 1988, 1992; Doupe 1997;
Rauschecker 1998b; Griffiths et al. 2004; Nelken 2008). Frequency
integration can be effectively assessed with band-passed noise
(BPN) stimuli, which can be well defined by a center frequency

(CF) and bandwidth. BPN bursts are fundamental elements of
many natural sounds, including those used for animal communi-
cations (Hauser 1996; Rauschecker and Tian 2000; Wang 2000;
Wang and Kadia 2001; Akimov et al. 2017).

Previously, neuronal responses to BPN have been reported
in the auditory cortex of anesthetized rhesus monkeys
(Rauschecker et al. 1995; Rauschecker and Tian 2004). It has
been found that neurons in the core areas (e.g., primary audi-
tory cortex) in general have stronger responses to pure tones
than BPN bursts, whereas those in lateral belt areas have more
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robust responses to BPN bursts than pure tones (Rauschecker
and Tian 2004). In addition, the latter neurons usually exhibit a
preference to certain bandwidths of BPN bursts. In other words,
they are tuned for bandwidth. These neurons are thought to be
analogous to size-tuned cells in the visual cortex (Hubel and
Wiesel 1965; Desimone and Schein 1987; DeAngelis et al. 1994;
Gilbert et al. 1996; Nolt et al. 2004; Angelucci and Bressloff 2006;
Adesnik et al. 2012), and may form an important stage in the
preprocessing of communication sounds (Rauschecker et al.
1995). However, due to the use of anesthetized animals and
concerns over the design of testing BPN stimuli in those previ-
ous studies, it remains unclear whether bandwidth-tuned neu-
rons are present in awake auditory cortex including the
primary auditory cortex.

In this study, we examined bandwidth tuning in the primary
auditory cortex (A1) of awake mice, using in vivo cell-attached
recording. We found that bandwidth-tuned neurons are pres-
ent in A1 and are more prevalent in layer 2/3 than layer 4.
Using sequential cell-attached and whole-cell voltage-clamp
recordings, we further revealed the synaptic mechanisms
underlying bandwidth tuning. By dissecting excitatory and
inhibitory inputs to layer 2/3 neurons, we found that excitation
exhibits variable tuning profiles, including nonmonotonic (NM),
flat, and monotonic (M), whereas inhibition ubiquitously dis-
plays flat tuning. The tuning property of the cell is thus inher-
ited from the excitatory input it receives, while the universally
flat inhibition plays an important role in enhancing bandwidth
selectivity. Our study has, for the first time to our knowledge,
elucidated the synaptic mechanisms for bandwidth tuning of
auditory cortical neurons.

Materials and Methods
Experiments were carried out in the University of Southern
California. Experimental procedures used in this study were
approved by the Animal Care and Use Committee at the
University of Southern California.

Animal Preparation

C57BL/6 J mice of both genders aged 2–3 months were used.
Animals for awake recordings were prepared in a similar way
as we previously described (Zhou et al. 2014; Xiong et al. 2015).
Mice were housed with a 12-h light/dark cycle. A few days
before the recording, the mouse was anesthetized with isoflur-
ane (1.5%, vol/vol) and a screw for head fixation was mounted
on top of the skull with dental cement. Skull over the A1 was
cleaned and protected from being covered by dental cement.
During the recovery period, the mouse was trained to get
accustomed to the head fixation on the recording setup. To fix
the head, the screw was tightly clamped by a custom-made
post holder. The head-fixed animal was able to run freely on a
rotatable flat plate mounted on an optical shaft encoder (US
Digital). For recording carried out in a sound-attenuation booth
(Acoustic Systems), the mouse was briefly anesthetized with
isoflurane as to perform a craniotomy over the A1. The animal
was then left to recover from isoflurane for at least 2 h.
Recording experiments were started after the animal exhibited
normal running. Each recording session lasted for ~4 h. The
animal was given drops of 5% sucrose (wt/vol) through a
pipette every hour. Between sessions, animals were returned to
the home cage for a break of at least 2 h.

For recording auditory responses, sound stimuli were deliv-
ered through a calibrated open field speaker (Denmark D2905/
97000) positioned 10 cm from mouse head and facing the left
ear. Multiunit recordings were first made with a tungsten elec-
trode (2MΩ, FHC, Inc.) to determine the best frequency for an
array of recording sites. The A1 was identified based on
response properties and the tonotopic gradient of best frequen-
cies, as described in previous studies (Zhang et al. 2001, 2002;
Chang and Merzenich 2003; Sun et al. 2010; Li et al. 2014, 2015;
Zhou et al. 2014). The animal head was tilted so that the elec-
trode could penetrate the A1 surface at an angle of 80°.

In Vivo Blind Loose-Patch and Whole-Cell Recordings

Loose-patch and cell-attached followed by whole-cell recordings
were made with an Axopatch 200B amplifier (Molecular Devices)
as previously described (Poo and Isaacson 2009; Xiong et al. 2013;
Zhou et al. 2014; Li et al. 2015). The patch pipette, controlled by a
micromanipulator (Siskiyou), was lowered into the A1 at the
same angle as in multiunit recordings. The cortical surface was
covered with 3.5% agar prepared in warm artificial cerebrospinal
fluid (ACSF; 124mM NaCl, 1.2mM NaH2PO4, 2.5mM KCl, 25mM
NaHCO3, 20mM glucose, 2mM CaCl2, 1mM MgCl2). Loose-patch
recording (with 100–500MΩ seal) was performed with a patch
pipette (impedance of 5–7MΩ) filled with ACSF. Pipette capaci-
tance was fully compensated. Signals were recorded in voltage-
clamp mode at 20 kHz, with a command voltage applied to
adjust the baseline current to be 0. If a cell did not exhibit spon-
taneous spikes within 10min, it was not further recorded.

For whole-cell voltage-clamp recordings, patch pipette
(impedance of 4–5MΩ) contained a cesium-based solution:
125mM cesium gluconate, 5mM TEA-Cl, 4mM MgATP, 0.3mM
GTP, 10mM phosphocreatine, 10mM HEPES, 10mM EGTA,
2mM CsCl, 1.5mM QX-314, 1% biocytin (wt/vol), or 0.25mM
fluorescent dextrans, pH = 7.3. Signals were low-pass filtered at
2 kHz and sampled at 10 kHz. Sequential cell-attached and
whole-cell recordings were applied as previously described (Poo
and Isaacson 2009; Sun et al. 2010). The sound-evoked and
spontaneous spikes of the patched neuron were first recorded
before breaking in the membrane to determine its spike
response properties. A cell was not further recorded if it did not
exhibit spontaneous spikes within 10min. After forming a
whole cell, whole-cell capacitance was fully compensated and
the initial series resistance (Rs, 15–50MΩ) was compensated for
40–50% to achieve an effective Rs of 10–30MΩ. A −10-mV junc-
tion potential was corrected. Excitatory and inhibitory synaptic
currents were recorded by clamping the cell at −70mV and
0mV, respectively. As demonstrated previously (Li et al. 2014;
Liu et al. 2010; Sun et al. 2010), the blind whole-cell recording
method with relatively large pipette openings resulted in
almost exclusive sampling from excitatory cortical neurons.

The recording sites in relation to the tonotopic gradient of
A1 were marked. The laminar locations of the recorded neu-
rons were determined based on the micromanipulator reading,
and in some cases confirmed by histology of the track of pipette
penetration and/or fluorescence-dextran or biocytin labeled cell
bodies. We found a relatively good correspondence between
the traveling depth of the recording pipette from the pia and
the reconstructed laminar location of the recorded neuron (Li
et al. 2014; Zhou et al. 2014). The L2/3 neurons were sampled at
a cortical depth of 175–325 μm from the pial surface, L4 neurons
at a depth of 350–500 μm, following previous studies (Li et al.
2014; Zhou et al. 2014).
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Optogenetically Guided Loose-Patch Recordings from PV
Neurons

We expressed ChR2 in PV neurons through delivery of viral vec-
tors (Li et al. 2013a, 2014). Adult PV-Cre (Jackson Laboratory) mice
were anesthetized with 1.5% isoflurane. A small cut was made
on the skin covering the right A1 and the muscles were removed.
Two ~0.2-mm craniotomies were made in the A1 region (tempo-
ral lobe, 2.7 and 3.2mm caudal to Bregma). Adeno-associated
viruses (AAVs) encoding Cre-dependent ChR2 were purchased
from the University of Pennsylvania Viral Vector Core: AAV2/9.
EF1α.DIO.hChR2(H134R)-EYFP.WPRE.hGH (Addgene 20298). The
virus was delivered using a beveled glass micropipette (tip diam-
eter, ~40 μm) attached to a microsyringe pump (World Precision
Instruments). Injections were performed at two locations and
two depths (300 and 600 μm), at a volume of 100 nl per injection
and at a rate of 20nlmin−1. Right after each injection, the pipette
was allowed to rest for 4min before withdrawal. We then
sutured the scalp, injected buprenorphine at 0.1mg per kg and
returned the mouse to its home cage. Mice were allowed to
recover for 3–4 weeks.

On the day of recording, loose-patch recordings using pipettes
of smaller tip openings (pipette impedance, ~10MΩ) (Li et al. 2013a;
Zhou et al. 2014) were performed. An optic fiber connecting to a
blue LED source (470nm, Thorlabs) was positioned close to the cor-
tical surface of the recording site. We actively searched for neurons
exhibiting LED-evoked spikes with the loose-patch recording para-
digm, which were identified as PV neurons. After each experiment,
that brain was sectioned and imaged to further confirm the expres-
sion of ChR2-EYFP.

Sound Generation

Software for sound stimulation was custom-developed in
LabVIEW (National Instruments). For determining the CF of
each cell, pure tones (2–64 kHz spaced at 0.1 octave, 50-ms
duration, 3-ms ramp, 10–70 dB sound pressure level (SPL), three
repetitions) were delivered in a pseudo-random sequence at
0.5-s inter-stimulus interval. For BPN stimulation, white noise
(100ms duration, 5ms rise/fall time, 200 kHz sampling rate)
was first generated by a Noise function in LabView. It was then
band-pass filtered with different cutoff frequencies, which
were determined by different center frequencies and band-
widths, to generate BPN bursts. All BPN bursts with different
center frequencies (2–32 kHz spaced at 0.1 octave) and band-
widths (0.1–1.9 octave spaced at 0.2 octave) were pre-calibrated
to 60 dB SPL, and the calibration indices for all bursts were
saved as a LabView array for further BPN sound level calcula-
tion. After the CF of the cell was determined, the BPN bursts
with the same CF were automatically calibrated based on the
calibration indices array and were then delivered in a random
sequence at 2-s inter-stimulus interval. Such calibration was
not performed for stimuli in which the spectral intensity was
kept the same. Since the CF of a cell was determined first
before applying BPN, our stimulation strategy might lead to
underrepresentation of neurons that did not respond robustly
to pure tones while still responding strongly to BPN bursts.

Data Analysis

We performed data analysis with custom-developed software
(MATLAB, MathWorks). Data from all the recorded neurons
were first pooled together for a randomized batch processing

without categorizing the neurons according to their specific
identity (e.g., age, condition, laminar location, etc.).

Spike Responses
In cell-attached recordings, spikes could be detected without
ambiguity because their amplitudes were normally higher than
50 pA, whereas the baseline fluctuation was <5 pA. BPN-evoked
spikes were counted within a 0–100-ms time window after the
onset of stimuli. Evoked firing rate (FR) was calculated after
subtracting the average baseline FR.

Synaptic Responses
Synaptic response traces evoked by the same stimulus were
averaged. Synaptic onset latency was determined at the time
point where the evoked current exceeded the average baseline
by two standard deviations. Peak amplitude was determined by
averaging within a 5-ms window centered at the response peak
after subtracting the baseline current. Excitatory and inhibitory
synaptic conductances were derived according to ΔI = Ge (V − Ee)
+ Gi (V − Ei) (Borg-Graham et al. 1998; Sun et al. 2010; Xiong et al.
2013; Li et al. 2013a, 2014; Zhou et al. 2014). ΔI is the amplitude of
the synaptic current at any time point after subtracting the aver-
age baseline current; Ge and Gi are the excitatory and inhibitory
synaptic conductance; V is the holding voltage, and Ee (0mV)
and Ei (−70mV) are the reversal potentials. The clamping volt-
age V was corrected from the applied holding voltage (Vh): V =
Vh – Rs ∗ I, where Rs is the effective series resistance. By hold-
ing the recorded cell at two different voltages (the reversal
potentials for excitatory and inhibitory current respectively), Ge
and Gi could be resolved from the equation. Resting conduc-
tance was calculated based on the average baseline currents
within a 50-ms window before the onset of evoked currents
recorded under two different voltages (−70mV and 0mV).

Modeling
The synaptic responses in layer 2/3 excitatory neurons were
simulated by the following function (Zhang et al. 2003; Zhou
et al. 2010, 2012):

( ) = ⋅ ( − ) ⋅ ( − ) ⋅τ τ−( − ) −( − )G t a H t t 1 e et t t t
0

/ /rise decay0 0

G(t) is the modeled synaptic conductance; a is the amplitude
factor; H(t) is the Heaviside step function; t0 is the onset delay
of excitatory or inhibitory input. τrise and τdecay define the shape
of the rising phase and the decay of the synaptic current. The
τrise (excitation: 2ms; inhibition: 2ms) and τdecay (excitation:
40ms; inhibition: 40ms) were chosen by fitting the average
shape of recorded synaptic responses with the above function.
The t0 (excitation: 0ms; inhibition: 2ms) and a were chosen
based on our experimental data. The actual conductance
amplitude was varied based on the simulation condition. The
baseline condition is shown in Fig. 5B: excitation peaks at
3.6 nS (at 0.3 octave) and then becomes reduced with band-
width increases (down to 2.3 nS at 1.9 octave), while inhibition
is fixed at 3.6 nS across different bandwidths.

Membrane potential responses were derived from the simu-
lated excitatory and inhibitory conductances based on an
integrate-and-fire neuron model (Sun et al. 2010; Zhou et al.
2010):
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where Vm(t) is the membrane potential at time t, C the whole-
cell capacitance (50 pF), Er the resting membrane potential
(−60mV), Ee the reversal potential for excitatory current (0mV),
Ei the reversal potential for inhibitory current (−70mV), Gr the
resting leaky conductance. Gr was calculated based on the
equation Gr = C ∗ Gm/Cm, where Gm, the specific membrane
conductance is 2 e−5 S/cm2 (Stuart and Spruston 1998), and Cm,
the specific membrane capacitance is 1 e−6 F/cm2 (Hines 1993;
Hauser 1996). To simulate spike responses, the peak FR was
derived from the peak membrane potential depolarization
using the power-law (Miller and Troyer 2002; Liu et al. 2010), as
FR = k ∗ (Vmax − Vr)

p. We used p = 3 based on our previous expe-
rience (varying p between 2 and 4 did not affect the main con-
clusions) (Liu et al. 2010) and obtained k by fitting the
experimental data for which both FR and membrane potential
were known (k = 2.1 ∗ 106mv−3). It should be noted that while
power-law has been widely applied because it is a good approx-
imation to the noisy membrane (Miller and Troyer 2002), other
accurate spike thresholding models should also lead to an
increase in neuronal selectivity (Priebe and Ferster 2008).

Statistical test
Shapiro–Wilk test were first applied to exam whether samples
had a normal distribution. In the case of a normal distribution,
t test or ANOVA test was applied. Otherwise, a nonparametric
test (Wilcoxon signed-rank test or Wilcoxon rank-sum test)

was applied. Data were presented as mean ± SD if not other-
wise specified.

Results
Bandwidth Tuning Properties of Excitatory Neurons in
Awake Mouse A1

We examined neuronal responses to BPN of different band-
widths with in vivo cell-attached loose-patch recording in
awake mouse A1 (see Materials and Methods). The selection of
patch pipette parameters biased our sampling strongly towards
excitatory neurons (see Materials and Methods). For each
recorded neuron, we first determined its center frequency (CF)
by applying pure tones of different frequencies and intensities
(Fig. 1A, bottom left color map). The CF was defined as the tone
frequency that evoked the maximum spike response at the
lowest intensity. We then applied BPN bursts centering on the
CF with varying bandwidths (0.1–1.9 octave, with the latter
encompassing the complete frequency response range of most
neurons, see Supplementary Fig. 1) at a selected intensity
(60 dB SPL) in a pseudo-randomized order. The CF itself could
be considered as BPN with the narrowest bandwidth. Based on
the way the spike responses to different BPN bandwidths were
modulated, we found that A1 neurons could be categorized into
three types. A representative type-one neuron is shown in
Fig. 1A. The CF of the cell was 10.56 kHz. Among different

Figure 1. Three types of bandwidth tuning in awake mouse A1. (A) An example, type-one neuron. Left most, illustration of awake recording setup and color map for

the tonal receptive field (characteristic frequency is 10.56 kHz). Top, color graphs depict time-dependent spectrograms for the applied band-passed noise (BPN) sounds

(100-ms duration), with the bandwidth marked on top. Arrow points to the center frequency (CF, 10.56 kHz for the cell). Middle, raster plot of spike responses (20

trials) to the corresponding stimulus. Bottom, post-stimulus spike time histogram (PSTH) for each testing bandwidth. FR, firing rate. (B) Average evoked firing rate (FR)

at each bandwidth for the same cell as shown in (A). Bar = SD. The first data point represents the response to the center frequency alone. (C, D) An example, type-two

neuron (CF = 14.93 kHz). Data are displayed in the same manner as in (A, B). (E, F) An example, type-three neuron (CF = 16.00 kHz).
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bandwidths, the strongest spike response was evoked by a rela-
tively narrow bandwidth (0.3 octave). At broader bandwidths,
the response was reduced progressively (Fig. 1B). This type of
bandwidth tuning was described as “nonmonotonic” or “tuned”
since a preferred bandwidth (0.3 octave for this cell) could be
identified. For type-two neurons, we observed a different trend:
the evoked spike rate was lowest at the narrowest bandwidth
and increased with increasing bandwidths before reaching a
plateau (Fig. 1C,D). This type of bandwidth tuning was
described as “monotonic” or “integrative”, since the cell mono-
tonically integrates information from increasing frequency
channels. For type-three neurons, the evoked spike rate was
not significantly changed across different testing bandwidths
(Fig. 1E,F). This type of bandwidth tuning was described as
“flat”. Both the type-two and type-three neurons were con-
sidered as non-tuned or unselective for bandwidth.

To quantify the shape of bandwidth tuning of A1 neurons, we
used a monotonicity index (MI), which was defined as (Rhigh –

Rlow)/(Rhigh + Rlow). Rhigh was the average spike rate evoked by the

two broadest bandwidths (1.7 and 1.9 octave), and Rlow was the
average spike rate evoked by the two narrowest bandwidths (0.1
and 0.3 octave). MI varies from −1 to 1, with negative and positive
values indicating a NM and M trend of tuning, respectively.
Figure 2A shows the distribution of MIs for a total of 117 neurons
we recorded from layers 2–4 of A1. Neurons with MI <−0.25 and
>0.25 were defined as those with NM and M tuning, respectively.
Neurons with 0.25 ≥ MI ≥ −0.25 were defined as those with flat
tuning (F). Notably, there were relatively more NM neurons in
layer 2/3 than layer 4 (Fig. 2B). In the layer 2/3 cell population, 39%
(28/72) were NM, 17% (12/72) were M and 44% were flat tuning
cells, while in the layer 4 population, 20% (9/45) were NM, 24% (11/
45) were M and 56% were flat tuning cells. The average normalized
bandwidth tuning curves are plotted for these three groups sepa-
rately (Fig. 2D–F). For the NM cells, the maximum response was
usually evoked at 0.1 or 0.3 octave bandwidth (Fig. 2D). For the M
neurons, the maximum response was usually evoked at 1.7 or 1.9
octave bandwidth (Fig. 2E). For the flat tuning cells, the response
was essentially unchanged across different bandwidths (Fig. 2F).

Figure 2. Layer 2/3 contains more bandwidth-selective neurons than layer 4. (A) Distribution of monotonicity indices (MI) in layer 2/3 (gray, n = 72 cells in total) and

layer 4 (white, n = 45 cells in total) populations. Two dotted lines mark MI = −0.25 and 0.25, respectively. (B) Percentage of nonmonotonic (NM) bandwidth tuning, flat

tuning (F), and monotonic (M) neurons, respectively. There is a significant difference between layer 2/3 and layer 4 (P < 0.01, Cochran–Armitage test). (C) Comparison

of bandwidth selectivity index (BSI) between three types of neurons in layer 2/3 (n = 28, 12, and 32, respectively). Solid symbol represents mean ± SD. ***P < 0.001, one-

way ANOVA and post hoc test. (D) Average normalized firing rates for layer 2/3 nonmonotonic bandwidth tuning cells (n = 28). Dash line marks normalized FR = 1.

Bar = SD. (E) Average normalized firing rates for layer 2/3 monotonic cells (n = 12). (F) Average normalized firing rates for layer 2/3 flat tuning cells (n = 32). (G)

Comparison of the total sound intensity (relative) for BPN stimuli which had the same intensity of the CF component. (H) Comparison of evoked firing rates by stimuli

of different designs in an example cell. (I) Comparison of BSI under two stimulation conditions in nonmonotonic (n = 14), flat (n = 17), and monotonic (n = 7) tuning

groups, respectively. EE, equal energy; EI, equal intensity.
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Overall, frequency tuning of NM cells was narrower than flat tun-
ing and M cells, as shown by the quantification of frequency tun-
ing bandwidth of tonal receptive fields (Supplementary Fig. 2A).
Additionally, in the population of NM cells, a negative correlation
between bandwidth selectivity and frequency tuning bandwidth
was observed (r = −0.55, P < 0.01, Supplementary Fig. 2B).

The NM neurons (Fig. 2D) are of particular interest in this
study since they may represent neurons with significant band-
width selectivity. We used a bandwidth selectivity index (BSI)
to quantify the tuning selectivity. BSI was defined as (Rmax –

Rhigh)/(Rmax + Rhigh). Rmax was the maximally evoked spike rate
(i.e., by the preferred bandwidth), and Rhigh was the spike rate
evoked by the broadest bandwidth tested (1.9 octave). BSI varies
from 0 to 1, with higher values indicating higher selectivity. As
summarized in Fig. 2C, the NM neurons had an average BSI of
0.49 ± 0.15, whereas M and flat tuning neurons had an average
BSI close to 0 (0.09 ± 0.06 and 0.04 ± 0.03, respectively). The
larger proportion of NM neurons in layer 2/3 than layer 4
(Fig. 2B) thus indicates an enhancement of bandwidth selectiv-
ity in layer 2/3 circuits. The bandwidth-selective neurons
appeared more or less uniformly distributed across different
frequency bands in A1 (Supplementary Fig. 3). The BSI for indi-
vidual bandwidth-tuned neurons was also comparable between
two different intensity levels tested (Supplementary Fig. 4).

In the above experiments, the total energy of different audi-
tory stimuli was kept the same as bandwidth was increased.
The reduced response at broader bandwidths in NM cells might
be attributed to the fact that the actual intensity of the CF com-
ponent was reduced with increasing bandwidths. To address
this issue, we examined how the total energy would change if
the intensity of the CF component was kept the same across
different bandwidths. Notably, the total energy increased only
by about 10 dB from the narrowest to broadest bandwidths
(Fig. 2G). We further compared responses in the same cell in
the condition of keeping the total energy of stimuli the same
(equal energy) or keeping the intensity of the CF component
the same (equal intensity) (Fig. 2H). We found that these two
stimulation conditions produced comparable tuning profiles
(Fig. 2I). Therefore, the responses of NM cells could not be sim-
ply explained by the reduced CF intensity with increasing band-
widths. In the following experiments, we thus used stimuli
with constant total energy.

Synaptic Mechanisms Underlying Bandwidth Tuning

We next examined synaptic input patterns underlying differen-
tial bandwidth tuning properties with sequential cell-attached
and voltage-clamp recordings. In the cell-attached mode, spike
responses of the cell to BPN bursts of different bandwidths
were first recorded. The seal was then broken, and excitatory
and inhibitory synaptic currents were recorded by clamping the
cell’s membrane potential at −70mV and 0mV, respectively
(Fig. 3A). Because layer 2/3 contains more NM (i.e., bandwidth-
tuned) neurons than layer 4, we focused our whole-cell record-
ings in layer 2/3. Figure 3B shows a representative NM cell. It
exhibited the strongest spike response at 0.3 octave bandwidth.
Figure 3C plots the cell’s average excitatory (E) and inhibitory (I)
responses to different bandwidths. We found that the excit-
atory input to the cell exhibited a similar trend of modulation
as its spike response: the strongest excitation was evoked at 0.3
octave bandwidth, and at broader bandwidths the peak ampli-
tude was progressively reduced (Fig. 3D). In contrast, the ampli-
tude of inhibition remained largely unchanged across different
bandwidths (Fig. 3E). As a result, the excitation/inhibition (E/I)

ratio showed a similar pattern of bandwidth tuning as excita-
tion and spike responses (Fig. 3F). We identified nine NM cells in
a similar manner. The average excitatory and inhibitory input
amplitudes as well as the E/I ratio are summarized in Fig. 3G–I.

For five identified M cells, we observed that their excitatory
inputs exhibited M bandwidth tuning, their inhibitory inputs
exhibited flat tuning, and thus the E/I ratio had M tuning
(Fig. 4A–H). For eight identified flat tuning cells, the excitation,
inhibition, and the E/I ratio all exhibited flat tuning (Fig. 4I–P).
As the inhibitory tuning in all recorded neurons was found to
be flat, the tuning property of the cell is essentially inherited
from the excitatory input it receives. In other words, excitation
dictates the bandwidth tuning property of the cell.

Consistent Enhancement of Bandwidth Selectivity by
Flat Inhibition

Although the bandwidth tuning property is inherited from exci-
tation, a comparison of BSI between spike responses and exci-
tation of the same NM cell indicated that the selectivity of
bandwidth tuning was greatly enhanced at the spike response
level (Fig. 5A). We postulated that the flat inhibition, in addition
to spike thresholding, might play a role in the enhancement of
selectivity. To test this possibility, we performed neural modeling
using parameters obtained from our experimental data. We simu-
lated BPN-evoked excitatory and inhibitory synaptic inputs (Fig. 5B,
top inset), and fed these inputs into a conductance-based neuron
model to derive the expected postsynaptic membrane potential
(PSP) response (see Materials and Methods). For simplicity, the tem-
poral patterns of these inputs were fixed (see Supplementary Fig. 5),
while the amplitudes were varied according to the bandwidth tun-
ing profiles we selected. We simulated a NM tuning profile for exci-
tation, with the maximum response (P0) assigned at 0.3 octave
bandwidth and BSI assigned at 0.22 (Fig. 5B), while the inhibitory
input tuning was flat (Fig. 5C). For this model neuron, the derived
PSP response exhibited NM tuning similar to excitation, but the
selectivity level was reduced as compared with excitation (BSI =
0.08, Fig. 5D). Such reduction of selectivity at the output level is con-
sistent with our previous report of nonlinearity of the input-output
transfer function of neurons (Liu et al. 2011). After applying a
power-law spike thresholding mechanism to derive the spike rate
(FR) response from the PSP (Miller and Troyer 2002; Priebe and
Ferster 2008; Liu et al. 2011), the selectivity level was greatly
enhanced (BSI = 0.56, Fig. 5E), indicating a powerful effect of spike
thresholding on enhancing neuronal selectivity (Priebe and Ferster
2008; Liu et al. 2011). We then varied the absolute amplitude of syn-
aptic inputs as well as the E/I ratio (as defined at P0), while keeping
the tuning shape for both excitation and inhibition unchanged. As
shown in Fig. 5F, the value of the E/I ratio could strongly affect
bandwidth selectivity. In general, the selectivity was higher at lower
E/I ratios, consistent with the notion that relatively stronger inhibi-
tion helps to improve selectivity (Liu et al. 2011; Zhou et al. 2012; Li
et al. 2014). On the other hand, the absolute amplitude had a minor
effect on BSI (Fig. 5F).

We next fixed flat inhibition and changed the tuning shape
of excitation (Fig. 5G). NM, flat, and M tuning curves were simu-
lated for excitation, with its mean amplitude across band-
widths kept the same (Fig. 5G). The PSP response essentially
preserved the corresponding tuning shape (Fig. 5H), while the
spike response enhanced the tuning selectivity in the case of
NM tuning, and the monotonicity in the case of M tuning
(Fig. 5I). These modeling results further demonstrate that with
flat inhibition, the tuning shape of output responses would be
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inherited from excitation, and that the tuning selectivity would
be enhanced at the spike response level.

Finally, we fixed the NM tuning of excitation, and varied the
tuning shape of inhibition within a small range while keeping
its mean amplitude the same (Fig. 5J). When inhibition had the
same trend of bandwidth-dependent variation as excitation
(Fig. 5J, dashed), the bandwidth selectivity of output responses
(Fig. 5K–L, dashed) was largely reduced as compared to when
inhibition was flat (Fig. 5K–L, solid). In contrast, when inhibition
had an opposite trend of bandwidth-dependent variation to
excitation (Fig. 5J, dotted), the tuning selectivity of output
responses was further increased as compared to when inhibi-
tion was flat (Fig. 5K–L, dotted). Considering that there could be
variations in synaptic amplitude, keeping inhibition more or
less constant (i.e., inhibitory tuning flat) would be beneficial for

maintaining relatively sharp bandwidth selectivity on a global
scale. In other words, flat inhibition plays a role in consistently
enhancing bandwidth selectivity in the cortical circuits.

Bandwidth Tuning of Parvalbumin Inhibitory Neurons

The flat tuning of inhibition might be explained by two scenar-
ios. First, spike responses of inhibitory neurons might have flat
tuning. Second, unselective pooling of inhibitory inputs with a
variety of tuning shapes could result in flat tuning of the
summed inhibition (Fino and Yuste 2011; Karnani et al. 2014).
To test these possibilities, we examined responses of parvalbu-
min (PV) inhibitory neurons by employing optogenetic techni-
ques. We expressed channelrhodopsin2 (ChR2) in PV neurons
by injecting AAV encoding Cre-dependent ChR2 into A1 of

Figure 3. Synaptic mechanisms for bandwidth selectivity. (A) Schematic illustration of sequential cell-attached and whole-cell voltage-clamp recordings from the

same neuron. Thick black bar marks sound presentation. AP, action potential; E, excitation; I, inhibition. (B) Firing rates of an example nonmonotonic cell in response

to BPN of different bandwidths. (C) Average excitatory (E) and inhibitory (I) synaptic currents of the same cell in response to BPN of different bandwidths. Scale:

100 pA, 100ms. (D) Peak amplitudes of excitation at different bandwidths plotted for the same cell. (E) Peak amplitudes of inhibition for the same cell. (F) Bandwidth

tuning of E/I ratio for the same cell. (G) Average peak amplitudes of excitation at different bandwidths for the group of nonmonotonic cells (n = 9). Bar = SD.

(H) Average peak amplitudes of inhibition for the same group. (I) Average E/I ratios for the same group.
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PV-Cre mice (Fig. 6A). In loose-patch recordings, we identified PV
neurons by their time-locked spike responses to pulses of blue
LED light (473 nm) applied to the A1 surface (Fig. 6B). Similar to
excitatory neurons, we identified the CF of the recorded PV cell
and applied the same set of BPN bursts centering on the CF
(Fig. 6C). Different from excitatory neurons, PV cells mostly
exhibited flat bandwidth tuning (Fig. 6D–E). The MIs of these neu-
rons were mostly distributed within a narrow range of −0.25 to
0.25 (Fig. 6F). The average BSI of these neurons was close to 0
(0.06 ± 0.05, Fig. 6G). Therefore, PV neurons do not exhibit band-
width selectivity. They are essentially flat tuning cells and in a
suitable position to provide flat inhibition to excitatory neurons.

Discussion
In this study, we have identified three types of neurons in
awake mouse A1 in terms of their tuning for bandwidth of BPN.
NM neurons are bandwidth-selective cells. They respond best
to narrow bandwidths, and thus act more like band-pass filters.
M neurons progressively increase their responses as they inte-
grate more and more frequency-specific inputs, and thus act
more like integrators. Flat tuning cells respond equally to all
bandwidths, and thus are insensitive to bandwidth variations.
These tuning profiles represent intrinsic properties of the neu-
rons, since they were not sensitive to the way auditory stimuli
were designed (keeping the overall sound level or the intensity
of the CF component constant). We found that the proportion

of NM neurons is larger in layer 2/3 than layer 4, suggesting
that as auditory information flows from the input to output
layers, cortical neurons gain better selectivity for bandwidth.
This is consistent with the idea that layer 2/3 is involved in
more advanced auditory processing than the thalamorecipient
layer 4 (Li et al. 2014).

Previously in anesthetized monkeys, bandwidth-selective
neurons have only been found in higher auditory cortical
regions such as lateral belt areas (Rauschecker et al. 1995;
Rauschecker and Tian 2004). It remains unknown how higher
cortical neurons gain the bandwidth selectivity as auditory
information flows from lower to higher cortical regions. It is
speculated that a neuron’s preference to certain bandwidths is
the result of complex excitatory or inhibitory interactions
(Rauschecker et al. 1995). However, the exact nature of these
interactions has yet to be explored. In this study, we found in
awake mice that even in the primary auditory cortical region
bandwidth-selective neurons are present. There is a small frac-
tion of bandwidth-selective neurons in the input layer, layer 4,
raising the possibility that a subset of neurons in the auditory
thalamus may already exhibit bandwidth selectivity. Therefore,
our data suggest that bandwidth selectivity emerges prior to
the stage of A1. At which stage along the ascending auditory
pathway does the selectivity for bandwidth first appear
remains to be investigated in the future. Nevertheless, since
there is a great enhancement of bandwidth selectivity from
layer 4 to layer 2/3, examining the excitatory and inhibitory

Figure 4. Synaptic mechanisms for monotonic and flat tuning. (A) Average firing rates of an example monotonic neuron. (B) Average excitatory and inhibitory currents

of the same cell at different bandwidths. Scale: 200 pA, 100ms. (C) Peak amplitudes of excitation for the same cell. (D) Peak amplitudes of inhibition for the same cell.

(E) Tuning of E/I ratio for the same cell. (F) Average peak amplitudes of excitation for the group of monotonic neurons (n = 5). Bar = SD. (G) Average peak amplitudes

of inhibition for the same group. (H) Average E/I ratios for the same group. (I–P) Bandwidth tuning of synaptic inputs for the group of flat tuning cells (n = 8). Data are

presented in the way as in (A–H). Scale: 100 pA, 100ms.
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interaction underlying bandwidth tuning in layer 2/3 may pro-
vide some important clues of how this selectivity feature
emerges in neural circuits.

We find in layer 2/3 excitatory neurons that the tuning pro-
file of excitatory input a cell receives determines the tuning
property of its output responses, since inhibition in all types of
neurons has flat tuning. The NM tuning of excitation in
bandwidth-selective neurons suggests that selectivity can be
inherited from layer 4 and thalamus to some extent, since tha-
lamic axons also directly innervate pyramidal neurons in
supragranular layers (Ji et al. 2016). The enhancement of selec-
tivity could be attributed, at least partially, to the amplification
of tuned excitatory input by intracortical circuits (Lien and
Scanziani 2013; Li et al. 2013a, 2013b). The bandwidth tuning
has been thought to be analogous to size tuning in the visual
cortex (Hubel and Wiesel 1965; Desimone and Schein 1987;

DeAngelis et al. 1994; Gilbert et al. 1996; Nolt et al. 2004;
Angelucci and Bressloff 2006). For size tuning, intracortical inhi-
bition, in particular that mediated by somatostatin-positive
(SOM) inhibitory neurons, plays an important role in suppres-
sing spike responses to large stimulus sizes (Adesnik et al.
2012). The SOM neurons exhibit M size tuning curves (Adesnik
et al. 2012), therefore inhibition is expected to increase with
increasing stimulus sizes (Adesnik 2017). In this study, we find
a different role of inhibition. Instead of increasing with increas-
ing bandwidths, inhibition stays constant. Nevertheless, the
flat inhibition helps to sharpen bandwidth selectivity inherited
from excitation alone. And by being flatly tuned in all cells,
inhibition reliably and consistently enhances bandwidth selec-
tivity in the entire population.

The flat inhibitory tuning can be explained, at least partially,
by the tuning property of PV inhibitory neurons themselves,

Figure 5. Impacts of different tuning shapes of synaptic inputs. (A) Comparison of BSI between spike response (FR) and excitatory input (Exc) of the same cell. Data

points for the same cell are connected with a line. ***P < 0.001, paired t-test, n = 9. (B) Tuning curve for the simulated excitation. P0 points to the maximum response. P1
points to the response at the broadest bandwidth. The BSI value is marked. Top inset, temporal profiles of simulated synaptic excitation (gex), inhibition (gin) evoked by

a stimulus. Scale: 100ms. (C) Tuning curve for the simulated inhibition. (D) Tuning of peak PSP response resulting from integrating the excitation and inhibition shown

in (B, C). (E) Tuning of firing rate derived from PSP using a power-law algorithm. (F) Dependence of BSI on the absolute amplitude of excitation (represented by different

types of lines) and E/I ratio (as measured at P0). (G–I) Varying the tuning shape of excitation while fixing the tuning of inhibition (inset), and derived tuning of resulting

PSP response (H) and tuning of resulting firing rate response (I). Corresponding BSI (or MI) values are marked. (J–L) Varying the tuning shape of inhibition while fixing

the tuning of excitation (inset), and derived tuning of resulting PSP response (K) and tuning of resulting firing rate response (L).
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which are insensitive to bandwidth variations. It is interesting
that all PV neurons exhibit flat tuning, which is reminiscent of
broad orientation and frequency tuning of these neurons
observed in the visual and auditory cortex, respectively (Kerlin
et al. 2010; Ma et al. 2010; Hofer et al. 2011; Li et al. 2015; Mesik
et al. 2015, but see Runyan et al. 2010; Moore and Wehr 2013).
Possibly, this is due to a similar circuit mechanism that contri-
butes to the broad orientation tuning in the visual cortex, that
is, unselective pooling of inputs from nearby excitatory neu-
rons no matter what their tuning properties are (Fino and
Yuste 2011; Harris and Mrsic-Flogel 2013). In the current study,
we only focused on PV cells to examine inhibitory neuron prop-
erties, based on our understanding of temporal properties of PV
cell versus pyramidal cell responses. In our previous reports of
tone-evoked responses (Li et al. 2014, 2015), we have shown
that PV neurons spike 1–3ms earlier than pyramidal cells while
SOM neurons spike much later (8–9ms later than pyramidal
cells). Due to their delayed responses, SOM neurons are not
thought to be able to impact the transient onset responses of
pyramidal cells as much as PV neurons (Li et al. 2014, 2015). In the

present study, we found that BPN stimuli also evoked mostly tran-
sient onset responses in excitatory neurons (Supplementary
Fig. 6A). In addition, the evoked spiking of PV neurons started ear-
lier than pyramidal cells, and their peak evoked FRs nearly coin-
cided with pyramidal cells (Supplementary Fig. 6A). Furthermore,
the evoked FR of NM cells was most strongly modulated by BPN
bandwidth within a ~10-ms time window following the response
onset (Supplementary Fig. 6B). All these observations suggest that
the feedforward inhibition (see Supplementary Fig. 5) that most
strongly modulates the onset responses of pyramidical cells to
BPN stimuli is likely from PV neurons. Our data do not exclude the
possibility of SOM neurons contributing to certain aspects of audi-
tory response properties (Seybold et al. 2015; Kato et al. 2017),
which awaits to be further studied extensively.

BPN bursts are essential elements of many natural sounds,
including those used for communication by many species
(Rauschecker and Tian 2000; Wang 2000; Wang and Kadia 2001;
Akimov et al. 2017). For processing these complex sounds,
bandwidth-selective neurons with different center frequencies
may play important roles at the first step of processing. It is

Figure 6. PV inhibitory neurons are essentially flat tuning cells. (A) Images of tdTomato-labeled PV cells (left), ChR2-EYFP expression (middle) in a slice of A1 and the

superimposed image (right). Scale bar: 100 μm. (B) Top, raster plot of spike responses of an example PV neuron to pulses of blue LED light stimulation (marked by blue

bars, 50ms for each pulse). Bottom, corresponding PSTH. (C) Spike responses of the PV cell to BPN of different bandwidths (CF = 18.34 kHz). (D) Bandwidth tuning

curve for the same cell as shown in (C). Data are presented as mean ± SD. (E) Average tuning curve for the group of PV cells recorded (n = 25). Light gray curves are for

individual cells. Bar = SD. (F) Distribution of MIs for the group of PV cells. (E) Distribution of BSIs for the PV cells.
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possible that by combining the outputs of bandwidth-selective
neurons, for example, through their simultaneous activation of
higher-order neurons acting as coincidence detectors
(Rauschecker 1998a), neural networks may be built to be
increasingly selective to increasingly more complex sounds.
Understanding the neural circuit mechanisms underlying
selectivity to bandwidth of BPN, the type of auditory stimuli
with intermediate complexity, will provide insights into how
brain circuits are constructed to gain capabilities to process
complex sensory stimuli. In the present study, we have only
tested a limited range of sound frequencies which are mostly
lower than those used for mouse vocal communications (Holy
and Guo 2005). It remains to be tested whether bandwidth
selectivity is exhibited by neurons preferring ultrasonic fre-
quencies (Linden et al. 2003). In short, our study has revealed
important excitatory and inhibitory interactions underlying
bandwidth selectivity in one output layer of A1. It will be of
great interest to apply similar analyses to the neural structure
where the selectivity first emerges in the ascending central
auditory pathway.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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