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Engineering entropy for the inverse design of colloidal
crystals from hard shapes
Yina Geng1*, Greg van Anders1,2*†‡, Paul M. Dodd2†,
Julia Dshemuchadse2†, Sharon C. Glotzer1,2,3,4†‡

Throughout the physical sciences, entropy stands out as a pivotal but enigmatic concept that, in materials de-
sign, typically takes a backseat to energy. Here, we demonstrate how to precisely engineer entropy to achieve
desired colloidal crystals via particle shapes that, importantly, can be made in the laboratory. We demonstrate
the inverse design of symmetric hard particles that assemble six different target colloidal crystals due solely to
entropy maximization. Our approach efficiently samples 108 particle shapes from 92- and 188-dimensional de-
sign spaces to discover thermodynamically optimal shapes. We design particle shapes that self-assemble into
known crystals with optimized symmetry and thermodynamic stability, as well as new crystal structures with no
known atomic or other equivalent.
INTRODUCTION
Our understanding of entropy has undergone three revolutions
since its association with lost heat by Clausius in the 1800s (1).
The first is the discovery by Boltzmann (2) and Gibbs (3) of entropy’s
central role in statistical mechanics and its colloquial association with
disorder. The second is the discovery by Shannon of entropy’s central
role in information theory as a quantifier of statistical ignorance (4).
The third is the discovery by Onsager (5) in the late 1940s and then
by Kirkwood and collaborators (6, 7) in the late 1950s of entropy’s
seemingly paradoxical implication in ordering hard particles. The sys-
tematic study via simulation of entropic ordering was pioneered by
Frenkel and collaborators in the 1980s [see, e.g., (8, 9)], leading to
recent discoveries of an unexpectedly large number of possible struc-
turally ordered phases from hard, anisotropically shaped particles
(10–13). In those works, simulation studies begin with a volume of
identical hard particles of fixed shape, and the entropy of the system
is maximized to find thermodynamic equilibrium phases. In 2015, van
Anders et al. (14) introduced a method to start not with a given par-
ticle shape, but instead with a target colloidal crystal structure, and, via
entropy maximization, find a shape within a limited family of shapes
that maximizes entropy for that structure at the selected density. That
inverse design approach—“digital alchemy”—flips the usual idea of
entropy optimization in hard particle systems on its head.

In this paper, we seek not only to optimize entropy starting from a
target structure but also to engineer it so as to inversely design shapes
that will self-assemble into the target structure and have a good chance
of being synthesizable. Engineering entropy is both conceptually and
technically difficult because entropy is a globally defined, purely sta-
tistical concept. This means that no direct, quantitative link exists be-
tween the macroscopic order that emerges from entropy maximization
and the microscopic, designable details of a system’s components.
Moreover, the range of designable attributes of component particle
shapes has exploded due to advances in colloidal synthesis, e.g., (15–25),
and now go well beyond what can be designed by trial and error. In
contrast to the design of particle shapes, pairwise interaction poten-
tials (force fields) between atoms or nanoparticles are now routinely
designed for simple target structures, and realized in experiment, in
cases where potential energy, rather than entropy, dominates (26–32).

Here, we generalize “digital alchemy” (14), an extended ensemble
approach that treats particle shape parameters as thermodynamic var-
iables, to sample hundreds of millions of different shapes with no re-
strictions other than convexity of the particle shape. Whereas an
extended ensemble approach was previously applied to ensembles that
were extended in one or two design dimensions (14, 33), here we add
hundreds of design dimensions, providing a general approach for
quantitatively engineering entropy for structure. We perform alchem-
ical Monte Carlo (Alch-MC) simulations and engineer optimal particle
shapes for the assembly of six target structures known to self-assemble
in simulations of hard particles. In each case, we then identify key
symmetry characteristics of the particle shape necessary for that
target structure, symmetrize the optimal particle shape, and, by rerun-
ning Alch-MC on the symmetrized particle with symmetry restric-
tions, find an even better (higher entropy) shape that, because of its
high symmetry, has the potential to actually be made in the laboratory.
Further, we propose an additional, as-yet-unknown structure and
engineer a symmetrized particle shape that forms that structure in
simulation. Our approach demonstrates a general quantitative
paradigm for engineering entropy in large design spaces that reflect
the diversity of colloids and nanoparticles that can be synthesized
using current techniques (15–25). Moreover, it opens the possibility
of quantitatively engineering entropy for other novel structures or
behaviors, allows for the discovery of important features determining
structural outcomes in self-assembly (34), and can be generalized to
systems with enthalpic interactions.
RESULTS
Our approach proceeds in two steps (see Fig. 1A). The first step begins
with randomly generated, arbitrarily shaped convex polyhedra com-
posed of either 32 or 64 vertices whose shape evolves during an MC
simulation by randomly moving vertices, thereby sampling from an
extended, “alchemical” (here, shape) ensemble (14). Unlike a tradi-
tional molecular MC simulation in which a system of fixed particle
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Fig. 1. Two-step inverse design process. (A) Schematic diagram illustrating the process. In step one, Alch-MC starts from a random convex shape and then finds an
unsymmetrized optimal shape for the target structure (here, diamond). Cosine of dihedral angle distribution and PMFT isosurface of the unsymmetrized optimal shape
reveals that it has tetrahedral characteristics. In the second step, fluctuating particle shape Alch-MC simulation starts from a tetrahedron and finds an optimal symmetrized
shape for the diamond structure. (B) Alch-MC for the inverse design of an unsymmetrized thermodynamically optimal hard particle shape to form a target structure (here,
b-Mn). The structure is imposed by an auxiliary design criterion, and detailed balance drives particles to take on shapes (selected shapes are displayed in light yellow) that
are favorable for the target structure (indicated by selected bond order diagrams). Directly computed free energy confirms that Alch-MC simulation over ≳105 distinct
shapes converges to shapes that have lower free energy (by ≈0.7 kBT per particle; numerical errors are smaller than markers) than shapes chosen by Voronoi construction.
Desired shape features can be inferred from the equilibrium particle shape distribution and used to create a symmetry-restricted ansatz, which yields a thermodynamically
optimal synthesizable shape (shown in dark yellow). (C) Direct free energy comparison of our entropic engineering strategy for seven target structures: b-Mn, BCC, FCC,
b-W, SC, diamond, and hP2-X. For each structure, we calculated the free energy of the target crystal for a shape formed from a geometric ansatz based on the Voronoi
decomposition of the structure (triangles). Compared with the Voronoi ansatz, we find that Alch-MC simulation over arbitrary convex polyhedra in step one produces
shapes (circles) that spontaneously self-assemble the target structures with higher entropy. Symmetry-restricted polyhedra (squares) (truncated polyhedra for b-Mn, BCC,
and FCC; truncated and vertex-augmented polyhedra for b-W, SC, diamond, and hP2-X) inferred from shapes in step one produce putatively thermodynamically optimal
particle shapes by maximizing entropy. (D) Two-step shape Alch-MC entropic particle shape optimization for six target structures: b-Mn, BCC, FCC, b-W, SC, and diamond.
For each target structure, an initial Alch-MC simulation over 92- or 188-dimensional spaces of convex polyhedra in step one converged to highly faceted modifications of
identifiable Platonic, Archimedean, or Catalan solids, obtained by calculation of the equilibrium distribution of the cosine of dihedral angles cosqd (left, light color, squares)
and facet areas (right, light color, squares) (Gaussian distributions are plotted with solid lines for comparison). We show the mean of the cosine of dihedral angle dis-
tributions in table S1. In step two, Alch-MC simulation over symmetry-restricted families of shapes determined a thermodynamically optimal and synthesizable shape
(shown in dark color). For each target structure, we calculate the equilibrium distribution of the cosine of dihedral angles cosqd (left, dark color, vertical line) and facet areas
for symmetrized optimal shapes (right, dark color points, with Gaussian distribution fitting). The distributions are in arbitrary units. In all cases, representative shapes
spontaneously self-assembled target structures in NVT simulations, with periodic boundary condition satisfied.
Geng et al., Sci. Adv. 2019;5 : eaaw0514 5 July 2019 2 of 6
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shapes samples configurational states in phase space, in an alchemical
MC (Alch-MC) simulation, particles sample not only positions and
orientations but also shapes consistent with the target structure,
finding thermodynamically optimal shapes. Alch-MC simulations
for polyhedra with n vertices explore a D = 3n − 4 dimensional pa-
rameter space accounting for fixed particle volume and rotational
invariance and produce mathematically irregular but well-defined
convex particle shapes that (i) maximize the entropy of the target
structure and (ii) successfully self-assemble the target structure in
an MC simulation starting from a disordered fluid. The second step
in our approach symmetrizes the designed particles to obtain shapes
that still easily assemble the target structure but, because of their
symmetry, can potentially be made today using existing synthesis
methods (16, 22, 25, 35). Depending on the target crystal structure,
we symmetrized particle shapes through truncation or vertex aug-
mentation; this choice tunes features that can be controlled experi-
mentally, e.g., via ligand attachment. Full simulation details and
mathematical descriptions of all optimal particle shapes are reported
in Materials and Methods and the Supplementary Materials.

We targeted six structures—simple cubic (SC), body-centered cu-
bic (BCC), face-centered cubic (FCC), diamond, b-W, and b-Mn. For
b-Mn, FCC, and BCC, symmetrized, truncated shapes in step two
produced lower free energy crystal structures than sampled unsymme-
trized polyhedra found in step one. We give detailed results here for
the most complex case, b-Mn. For b-Mn, the equilibrium distribution
of convex polyhedra shapes resulting from our Alch-MC simula-
tions at packing density h = 0.6 in step one yields a family of shapes
with characteristic dodecahedral facet angles [distribution peaks at
Geng et al., Sci. Adv. 2019;5 : eaaw0514 5 July 2019
≈−0.447 and 0.448, see Fig. 1D, (1), versus the perfect dodecahedron
≈ ± 0.447]. Consistent with particle faceting, the potential of mean
force and torque (PMFT) calculations (36) for a particle selected
from the peak of the shape distribution (Fig. 2A) produced isosur-
faces with dodecahedral entropic valence (37). Alch-MC simulation
of symmetrized shapes restricted to a one-parameter family of truncated
dodecahedra (see fig. S1B) in step two yielded an optimal truncated
shape with a facet area of 0.36 [Fig. 1D, (1)]; the peak in the facet area
differs by less than 3% from the peak observed for the unrestricted
shapes (0.37). We confirmed using regular MC that shapes generated
by Alch-MC simulation spontaneously self-assemble the target struc-
ture for both the arbitrary convex polyhedron case (depicted in movie
S1) and the symmetry-restricted case. To further validate that the par-
ticle shape with manifest dodecahedral symmetry is the putative opti-
mal shape, we directly compared the free energy of the target colloidal
crystal with the optimal truncated shape and a shape from the peak of
the angle distribution of arbitrary convex shapes (Fig. 1C) and found
that the symmetric-shape crystal has lower free energy. This result is
consistent with our expectation that the free energy landscape of the
high-dimensional parameter space of shapes is rough with nearly
degenerate minima. For comparison, we also computed the free energy
for a packing-based estimate, the Voronoi shape (38). There are two
Voronoi cells in b-Mn, one of which can self-assemble the structure
without enthalpic interactions (11). We computed the free energy for
the target structure with the Voronoi shape and found that our ap-
proach produced shapes with lower free energy than the Voronoi shape
(Fig. 1C). Figure 1B shows that Alch-MC converged rapidly to shapes
that have lower free energy than the Voronoi ansatz by ≈0.7kBT per
E SC

B BCC C FCC

F DiamondD β-W

A β-Mn

Fig. 2. Structure and PMFT isosurfaces for optimal shapes in six target structures: b-Mn, BCC, FCC, b-W, SC, and diamond. (A to F) Structural coordination
(global: BCC, FCC, SC, diamond; local: b-Mn, b-W) and PMFT isosurfaces at free energy values of 1.4 kBT (light gray) and 0.7 kBT (pink) above the minimum value for an
optimal but unsymmetrized convex polyhedron (top) and for an optimal symmetry-restricted polyhedron (bottom). PMFT isosurfaces indicate that the emergence of
particle faceting corresponds with entropic valence localized at particle facets that preferentially align along crystal lattice directions. PMFT isosurfaces for symmetry-
restricted polyhedra retain valence-lattice correspondence.
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particle and implies the existence of a large space of shapes that are all
better than the geometric ansatz. The simulation trajectory shown in
Fig. 1B explores ≳106 shapes that have lower free energy in the target
structure than the geometric ansatz. We follow standard conventions
and express all (free) energies in units of the thermal energy (kBT).
Consistent results were found for BCC [Fig. 1D, (2)] and FCC
[Fig. 1D, (3)] target structures (details in the Supplementary Ma-
terials). The connection between faceting and the emergence of entro-
pic valence with local structural order is robust (BCC, Fig. 2B; FCC,
Fig. 2C). In the second step, we repeat the procedure using symmetric
truncated shapes suggested by the shapes observed in the first step. In
all cases, we obtained lower free energy shapes than the geometric
ansatz (b-Mn, −0.753 ± 0.001 kBT; FCC, −0.907 ± 0.001 kBT; BCC,
−0.334 ± 0.001 kBT) (see Fig. 1C).

For b-W, SC, and diamond, we found that unsymmetrized poly-
hedra had lower free energy than symmetrized truncated polyhedra.
For these crystals, we implemented step two using symmetrized,
truncated, and vertex-augmented polyhedra. We give detailed results
here for the most complex case, b-W. For b-W, Alch-MC simulation
of unsymmetrized shapes in step one yielded an equilibrium
distribution of convex polyhedra with facet angle distribution peaks
at ±0.458 [Fig. 1D, (4)]. Like for b-Mn, this falls near the peaks for
dodecahedra, but for b-W, the facet area distribution is bimodal, in-
dicating, and confirmed by visual inspection, the existence of two large
parallel facets. Faceting is again consistent with emergent entropic va-
lence (Fig. 2D) evident in isosurfaces of PMFT measurements (36).
Free energy calculations (Fig. 1C) confirm that a geometric ansatz
shape has 0.433 ± 0.006 kBT more free energy per particle in the tar-
get crystal than a shape at the peak of the distribution of convex
Geng et al., Sci. Adv. 2019;5 : eaaw0514 5 July 2019
shapes. We also confirmed that peak shapes self-assemble the target
structure with regularMC (see fig. S2). In contrast to the case 1 structures,
Alch-MC of symmetrized shapes restricted to a two-parameter family
of truncated dodecahedra (see fig. S1E, top) in step two yielded shapes
with lower free energy in the target b-W structure than the geometric
ansatz but higher free energy than for shapes at the peak of the angle
distribution of arbitrary convex polyhedra. This finding indicates that
the restriction to truncation alone is too severe for b-W. Alch-MC
simulation of a refined truncated dodecahedronwith vertex-augmented
faces (see fig. S1E, bottom) converged to a shape with 0.620 ± 0.001 kBT
lower free energy per particle than the geometric ansatz. Truncated and
augmented free energy minimizing shapes were also found for SC and
diamond (SC, −0.704 ± 0.006 kBT; diamond, −0.54 ± 0.01 kBT)
(Fig. 1C), which again preserve the connection between faceting
and entropic valence (SC, Fig. 2E; diamond, Fig. 2F). Because this
facet–valence connection persists, the facet area distributions for
SC [Fig. 1D, (5)] and diamond structures [Fig. 1D, (6)] are unimodal
because of the simpler local structural motif in those structures com-
pared to b-W,where the facet area distribution is bimodal [Fig. 1D, (4)].

Last, we targeted the self-assembly of a hypothetical structure with
no known atomic or other equivalent. The structure is a modified ver-
sion of the hexagonally close packed (HCP) structure with distorted
lattice spacing (see Fig. 3A) so that particles have eight nearest
neighbors, whereas HCP has 12. We denote this structure as hP2-X.
Alch-MC simulations of convex polyhedra with 116 vertex parameters
in step one yielded the faceted shape shown in Fig. 3B (left). A symme-
trized free energyminimizing shapewas then found in step two (Fig. 3B,
right). We tested that both the unsymmetrized and symmetrized opti-
mal shapes spontaneously self-assembled the target structure from a
(001)

(010)

a

c

c/a = 0.639

E

C

A B D

Fig. 3. Alch-MC design and self-assembly of a previously unreported novel crystal structure with no known atomic equivalent. (A) The structure hP2-X is a
distorted version of HCP with 8 rather than 12 nearest neighbors. (B) Alch-MC simulation produces a particle that (C) spontaneously self-assembles the target structure
in simulation (inset, bond order diagram of the structure). (D) Particle organization relative to lattice directions. (E) PMFT isosurface for optimal shapes.
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disordered fluid, with the resulting structure shown in Fig. 3C. This de-
monstrates the inverse design of a colloidal particle shape to entropically
self-assemble a previously unknown target structure using only digital
alchemy (14).
DISCUSSION
Particle shape has, in principle, an infinite-dimensional parameter
space. Here, for tractability, and motivated by shapes that can be
realized using current nanoparticle synthesis techniques, we searched
for optimal particle shapes over 92- and 188-dimensional parameter
spaces of convex shapes, using a precisely defined entropic design cri-
terion. Our method yields not only thermodynamically optimal particle
shapes but also distributions of candidate shapes that provide insight
into the sensitivity of target structures to shape features (Fig. 1D). More
details of shape sensitivity will be reported elsewhere. Emergent entro-
pic valence that is commensurate with the emergence of faceting in an
ensemble of arbitrary convex polyhedra, both of which, in turn, com-
mensurate with local structural coordination, is a strong indication in
favor of the hypothesized connection between faceting, emergent direc-
tional entropic forces, and structural order (36, 37). By furthering the
connection between the emergence of faceting and entropic valence,
our results suggest that future work could assume this connection
and either skip our intermediate step of facet characterization by read-
ing particle faceting directly from PMFT measurements, and/or rather
than working agnostically, start the Alch-MC shape evolution from,
e.g., a Voronoi cell shape (38).
MATERIALS AND METHODS
Alchemical Monte Carlo
We used the entropic design strategy (summarized in Fig. 1A) that
begins with the extended partition function (14)

Z ¼ ∑
s
e
�bðH�∑

i
miNai�lLÞ

ð1Þ

where b is the inverse temperature, mi are so-called alchemical po-
tentials that are thermodynamically conjugate to the particle attri-
bute parameters ai that describe particle shape, N is the number of
particles in the system, L is the external field that forces the particles
to sit in an Einstein crystal with spring constant l, and the summation
is over particle coordinates and orientations and over the space of par-
ticle shapes, as in (14). The combination of lL serves as the design
term. When l is positive, the system is driven toward particle shape
parameters ai that favor increasing L, which allows one to design
toward a target structure encoded in L. To design purely entropic
systems, we modeled particles with purely hard interactions so that
the partition function is a sum over all non-overlapping particle con-
figurations, and the phase space part of the Hamiltonian reduces to
kinetic terms, which we can integrate analytically. Hereafter, and
following (14), we set mi = 0 to sample shapes without bias. Unbiased
shape sampling, coupled with detailed balance, drives randomly cho-
sen initial shapes to converge toward shapes that are thermodynami-
cally optimal (maximizing entropy) for the target structure at a given
temperature and density. Our method differs with the original version
of digital alchemy (14) in that here we extended the algorithm to hundreds
of design dimensions. We used the HPMC plugin (39) for HOOMD-
Geng et al., Sci. Adv. 2019;5 : eaaw0514 5 July 2019
blue (40) in an NVTm ensemble at m = 0. We placed no fewer than
100 particles in a periodic simulation box. The exact number was
chosen to be a multiple of the number of particles in the unit cell of
the target structure. Particle shapes were initialized randomly with
32 or 64 vertices (in the arbitrary convex polyhedron case) or with
each shape parameter taken as either 0 or 1 as convenient (in the
symmetry-restricted case). MC sweeps involve particle translations,
rotations, and collective shape moves for all particles in the system.
For each shape move, we (i) either moved a vertex (arbitrary convex
polyhedron case) or generated a trial change in shape parameters
(symmetry-restricted case), (ii) resized the trial shape to unit volume,
(iii) checked if the move induced any particle overlaps, and then (iv)
accepted the move based on the Boltzmann factor as described in (14).
Translation and rotation moves followed standard procedures [see,
e.g., (10–12, 36, 37, 41, 42)]. We compressed the system to packing
fraction h = 0.6, with the spring constant l fixed to 1000 (where en-
ergy is specified in units of kBT, and length units are given in terms of
the particle volume). After we reached the target packing fraction, we
logarithmically relaxed the spring constant to zero. We then relaxed
the system for 1 × 106 (BCC, FCC, SC, diamond) or 8 × 106 (b-W) or
3.6 × 107 (b-Mn) MC sweeps. For each target crystal structure and
each case, we performed 20 independent simulations and analyzed
the shapes in the final 1.5 × 105 sweeps. For validation, we directly
computed the free energy (43) of the thermally sampled particle
shapes as a function of Alch-MC time (Fig. 1B) (step one) and verified
that, after starting from random initial particle shapes, our simulations
converged to shapes comprising systems of lower free energy for a
given target structure (b-Mn is depicted) than for a geometric ansatz
that is a hard, space-filling particle in the shape of Voronoi cells of the
target structure and gives a possible candidate to assemble its target
structure (38). Movie S1 shows an example of Alch-MC shape opti-
mization, followed by melting upon decompression and subsequent
spontaneous self-assembly of a shape designed for b-Mn, a complex
structure with 20 particles in the unit cell.

Cosine of dihedral angles and facet areas
Unsymmetrized shapes have 32 or 64 vertices. Facets with area
af > af* (we used af* ¼ 0:03, but our results are not sensitive to changes
in af*) were clustered by their normal vector using the DBSCAN (44)
scikit-learn module (45) for Python. Clustered facets are represented
by area-weighted average normals. We computed aggregate facet
areas and the cosine of the angle between all average normals in a
polyhedron, which, for adjacent facets, is just the dihedral angle.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaaw0514/DC1
Symmetric shape constructions
Demonstration of successful self-assembly
Direct free energy computation
Table S1. Mean of cosine of dihedral angle distribution.
Table S2. Optimal geometric parameters.
Fig. S1. Symmetric shape families.
Fig. S2. Successful self-assembly from disordered fluid.
Movie S1. Alch-MC and regular MC for the b-Mn structure.
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