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Abstract

Seizures have variable effects on brain. Numerous studies have examined the consequences of
seizures, in light of the way that these may alter the susceptibility of the brain to seizures, promote
epileptogenesis, or functionally alter brain leading to seizure-related comorbidities. In many —but
not all- situations, seizures shift brain function towards a more immature state, promoting the birth
of newborn neurons, altering the dendritic structure and neuronal connectivity, or changing
neurotransmitter signaling towards more immature patterns. These effects depend upon many
factors, including the seizure type, age of seizure occurrence, sex, and brain region studied. Here
we discuss some of these findings proposing that these seizure-induced immature features do not
simply represent rejuvenation of the brain but rather a de-synchronization of the homeostatic
mechanisms that were in place to maintain normal physiology, which may contribute to
epileptogenesis or the cognitive comorbidities.
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16.1 Introduction

Epilepsies have multiple causes and phenotypes, leading to different seizure and epilepsy
syndromes. A variety of genetic, toxic/metabolic, or structural abnormalities have been
causally associated with epilepsies. Epilepsy may occur as a “system disorder”, attributed to
dysfunction —but no overt structural pathology — of specific neuronal networks, as typically
occurs in genetic generalized epilepsies, like absence epilepsy [4]. In other cases, specific
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pathologies, e.g., cortical malformations or hippocampal sclerosis, may lead to the
generation of an epileptogenic focus.

Seizures and epilepsies may disrupt brain development. Often, these maldevelopmental
consequences of seizures may manifest as age- inappropriate reversal to immature functions
and developmental processes. For example, seizures may trigger the aberrant re-emergence
of immature features of GABA receptor (GABAR) signaling in neurons from adult
animals or may cause morphological changes reminiscent of immature neurons. Immature
features include the generation of new neuronal progenitor cells, functional alteration of
selected signaling pathways or morphological changes. Many of these immature features
have been documented in surgically resected epileptic tissues from individuals with drug-
resistant epilepsies, like temporal lobe epilepsy (TLE), hypothalamic hamartomas, cortical
dysplasias, or peritumoral epileptic tissue. Comparisons with nonepileptic post-mortem or
surgically resected tissues have indicated that some of these changes are specific for the
epileptic tissue [46, 47]. Yet, the appearance of these changes after seizures in animal
models often depends upon a variety of factors. Here we will discuss the animal studies that
have supported these observations and have provided insights on the complex interactions
between the immature features of the epileptic focus and epilepsies, their etiologies and
treatments and how these can be modified by age, sex, region-specific or other factors.

16.2 Neurogenesis in TLE

Perhaps the most classic argument for a reversal of normal age-specific functions with a
reemergence of patterns observed during development is the observation that there is an
increased number of newborn cells in the dentate gyrus, in response to seizures or during the
epileptic state [101]. Increased neurogenesis in the dentate gyrus of adult rats has been
shown using post-SE models of epilepsy [48, 86, 100] or kindling [84, 105] or hyperthermic
seizures [[61] and reviewed in [85, 101]] (Table 16.1). Newborn cells manifest many of the
electrophysiological and morphological features of the granule cells, but also some
distinctive characteristics. For example, they may be more dispersed [48, 100], have bipolar
rather than polarized dendrites and they do not stain for Neuropeptide Y (NPY) or glutamic
acid decarboxylase (GAD) immunoreactivity [100]. Furthermore, newborn cells may
integrate abnormally into the hippocampus after seizures. Newborn neurons that migrate
towards the CA3 pyramidal region may synchronize with CA3 neurons into epileptiform
bursts [100]. Doublecortin-positive newborn neurons in the hilar dentate of epileptic rats
exhibit long and recurrent basal dendrites directed towards the granule cell layer and also
receive excitatory synaptic input which is unusual in seizure-naive rats [95]. These seizure-
induced changes may contribute to the excitability of the hippocampus. It has also been
proposed that newborn neurons may not be capable to integrate normally in processes
controlling cognitive processes, contributing therefore to cognitive deficits [30, 88].

The effects of seizures on neurogenesis at the dentate is age, sex, region, model specific and
may depend on the number and type of seizures that the animal experiences (reviewed in
Table 16.1). In brief, neonatal rats may respond instead with reduced or unaltered
neurogenesis. Furthermore, aged rats may not respond as robustly with neurogenesis
following seizures as younger adults do. Longitudinal studies may reveal time-dependent
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changes in neurogenesis, which may be influenced also by the ability of these newborn cells
to survive. For example, hyperthermic seizures caused the newborn neurons to survive
longer in males than in females till adulthood, suggesting sex-specific factors controlling
their function [61]. Few brief seizures may not be as sufficient to affect neurogenesis, as
frequent or prolonged seizures do.

Investigations into whether aberrant neurogenesis may contribute to epileptogenesis have
yielded variable results. Administration of anti-mitotics that prevent neurogenesis may
decrease the frequency of spontaneous seizures in post-SE animals [51]. However, other
treatments that reduce seizure-induced neurogenesis have resulted in either reduction [109]
or no effect [88] on the frequency of spontaneous seizures. The developmental studies on the
effects of SE in 2-3 week old rats which show increased SE-induced neurogenesis, even
though neither cell loss nor epileptogenesis always ensue have also failed to associate the
increase seizure-induced neurogenesis with either of these consequences of SE [98].
Seizure-induced neurogenesis appears therefore to contribute to the excitability of the
epileptic hippocampus and possibly to the associated cognitive dysfunction, but there is no
definite evidence that it is required for or mediates the ensuing epileptogenesis. Future
research into deciphering the mechanisms leading to seizure-induced neurogenesis and how
these are modified by age or sex or seizure-specific factors would be needed.

16.3 Evidence for Immaturity of GABAA Receptor (GABAAR) Signaling in
Epilepsies

GABAAR signaling is well known to undergo structural and functional changes through
development. The subunit composition of the GABAAR complexes changes to include
subunits that will provide electrophysiologic and pharmacological properties more akin to
mature neurons. A typical example is the developmental shift from alpha 2 or 3 (GABRA2
or GABRAJ) to alpha 1 (GABRAL) subunits, which attribute faster kinetics of the inhibitory
post-synaptic currents (IPSCs) and higher sensitivity to benzodiazepines [17, 47, 60]. In
addition, GABAAR signaling changes from depolarizing early in development to
hyperpolarizing in more mature neurons, rendering GABAaR-mediated inhibition more
effective in older animals [70]. This is thought to be due to the developmental shift in the
balance of the activity of cation/CI~ cotransporters (CCCs) that control the intracellular CI-
concentration to favor cotransporters that maintain high intracellular CI~ (i.e., NKCC1) in
immature neurons and low intracellular CI~ in mature neurons (i.e., KCC2) [6, 26, 33, 90,
97]. The developmental increase in the expression and activity of KCC2, a CI~ exporting
transporter, and the parallel decrease in NKCC1 eventually reduce intracellular Cl-,
permitting the appearance of hyperpolarizing GABAAR signaling in more mature neurons.

The presence of depolarizing GABAAR signaling is critical for normal development, as it
promotes neuronal growth, differentiation and synaptogenesis, by controlling calcium-
sensitive signaling processes. In parallel, KCC2 may also modify the development of
glutamatergic synapses in dendritic spines via interactions with cytoskeletal proteins, like
4.1 N, independently of any effects on GABAAR regulation [62]. The absence of
depolarizing GABAAR signaling early in life can either be incompatible with life or disrupt
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neuronal differentiation and communication [6, 16, 26, 33, 43, 118, 119]. Considering the
neurotrophic effects of depolarizing GABAAR signaling, it is not entirely surprising that
depolarizing GABAARS are also found in pathologic conditions that favor neuritic growth
and differentiation so as to promote aberrant synaptogenesis, connectivity and re-wiring, as
occurs in various forms of acquired, focal-onset epilepsies (Table 16.2). Indeed, depolarizing
GABAAR signaling can be facilitated by neurotrophins, like brain-derived neurotrophic
growth factor (BDNF), which are released after seizures [96].

Abnormal shifts in the CCC activity towards an NKCC1-dominant state or depolarizing
GABAARR signaling have also been found in a number of pathological conditions
predisposing to or leading to epilepsy, like trauma [11, 74], ischemia [45, 83], anoxia/
glucose deprivation [36] as well as after kindling [80, 96] or during the latent or epileptic
state in post-status epilepticus (SE) rodent models of epilepsy [7, 12, 13, 22, 87] (Table
16.2). Under such pathological conditions, the role of GABAAR signaling is not just to
promote the healing and re-wiring of the brain but may acquire a pathogenic role, by
promoting neuronal excitability, due to the impairment in inhibition. In further support,
KCC2 deficient mice manifest early life epilepsy and histopathologic alterations reminiscent
of hippocampal sclerosis [122]. Pharmacologic inhibition of depolarizing GABAAR
signaling using the NKCC1 inhibitor bumetanide in combination with GABAAR agonists
has shown antiseizure effects in certain seizure models [18, 25, 65, 68, 75, 94, 103],
although model-, region-, age-, or time-dependent differences have been reported [65, 66,
68, 117, 127]. Administration of bumetanide with phenobarbital prior to seizure onset in the
kainic acid induced SE model significantly enhanced the antiseizure effect of phenobarbital,
in an age-dependent manner, that was attributed to the developmental decrease in NKCC1
expression [25]. Similarly, bumetanide inhibited rapid kindling of PN11 Wistar rats when it
was administered prior to kindling stimuli [68] or hypoxic seizures when given prior to
hypoxia in PN10 rats, even though the brain levels of bumetanide are significantly low [18].
On the other hand, in vitro studies demonstrated variable results of bumetanide when given
after seizure onset that followed model, age, and region dependent patterns [54, 117]. In
addition, NKCC1-knockout mice show greater susceptibility to 4-aminopyridine than wild
type animals [127]. It is therefore possible that bumetanide administration prior to seizure
onset and younger ages may facilitate its ability to enhance the antiseizure effects of
GABAAR agonists. However it is also evident that model and region specific factors or other
competing mechanisms may modify its effect.

Bumetanide has also been proposed to alleviate the febrile seizure-induced neurogenesis
[56] and the post-SE epilepsy-associated behavioral deficits [14], but has not been shown to
have antiepileptogenic effects in post-SE epilepsy or an in vitro model [14, 75].
Depolarizing GABAAR signaling also renders the injured neurons dependent upon
neurotrophic factors, like BDNF, for survival, by augmenting the expression of the pan-
neurotrophin receptor p75NTR [108]. Neurons with depolarizing GABA signaling are
therefore more amenable to dying in injured areas, which are deprived of BDNF.

Epilepsy and seizures have also been associated with disruption in the normal developmental
patterns of expression of the subunits of GABAARS (see Table 16.3). In certain — but not all
— cases these reflect a return to a more immature type of GABAAR subunit composition, as
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in studies demonstrating a reduction in the a1 subunit, whereas in others they indicate
disrupted development [47]. Changes in GABAAR subunits may contribute to either drug
refractoriness [15] or epileptogenesis [93] or the development of comorbidities.

Most of the above studies have been done in either adult animals or are derived from
individuals with drug-resistant epilepsy that underwent surgical resection of the
epileptogenic focus at ages when the brain is relatively more mature. Age-specific patterns
of regulation by seizures have been extensively shown for the seizure-induced changes in
GABAAR subunits [126].

Similarly, the effects of neonatal seizures on GABAAR signaling and CCCs are not only age
[32, 53] but sex-specific as well [32]. Kainic acid induced SE in PN4-6 rats accelerated the
switch to hyperpolarizing GABAR signaling in the CA1 pyramidal neurons of males, due
to an increase in KCC2 expression and decrease in NKCC1 activity [32]. In contrast, kainic
acid induced SE in PN4-6 female rats, in which GABAAR signaling is not depolarizing,
causes a transient return to the depolarizing signaling mode due to an increase in NKCC1
activity [32]. In this study, the sexually dimorphic response to neonatal seizures seemed to
depend upon the earlier maturation of GABAAR signaling in the female hippocampus,
attributed to a higher expression of KCC2 and lower NKCC1 activity in females [32]. Sex
differences in the expression of KCC2 and NKCC1 or GABAAR signaling in the
hippocampus have also been confirmed in other studies [73, 79]. In addition, brief kainic
acid seizures augment the activity of KCC2 shortly after induction of seizures in neonatal
male rats [53]. It should be noted however that these studies relate to the postictal — acute or
subacute — stages of neonatal SE. During the acute ictal phase of the SE, there is plenty of
evidence to support that GABAAR signaling becomes depolarizing [25, 52].

The consequences of these seizure effects on the direction of GABAAR signaling could
impact upon the subsequent susceptibility of the animal to seizures, affect its ability to stop
seizure propagation, or alter cognitive abilities. For example, activation of GABAAR
signaling in the anterior substantia nigra pars reticulata (SNR) in rats has important age and
sex specific role in controlling seizure propagation in the flurothyl model [114, 115].
Exposure of male and female PN4-6 rats to kainic acid induced SE, at the time when
GABAAR signaling is depolarizing, causes a precocious appearance of hyperpolarizing
GABAAR signaling due to increase in KCC2 expression [35] and disrupts the GABAAR-
sensitive anticonvulsant function of the anterior SNR in the flurothyl seizure model
(unpublished data). It is possible that the early deprivation of the SNR of the neurotrophic
effects of the depolarizing GABAAR signaling effects may impair its development, leading
to these long-lasting deficits.

16.4 Other Immature or Dysmature Features Associated with Epilepsies

Seizures may cause long-lasting changes in other signaling pathways involved in
neurodevelopmental plasticity. The mTOR pathway has attracted a lot of research interest
recently because it is central to cellular differentiation and growth. The mTOR pathway may
become dysregulated in several seizure and epilepsy models [34, 92, 111, 121, 125] even if
not necessarily caused by genetic disruption of components of the mTOR pathway. The
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ability of rapamycin, an mTOR inhibitor, to suppress epilepsy in these models as well as
prevent or reverse certain of the histopathological or cognitive abnormalities has supported
its role as a potential epileptostatic and potentially disease-modifying treatment. We use the
term “epileptostatic” (i.e., epilepsy is on hold) to indicate that inhibition of the expression of
epilepsy and associated histopathological abnormalities occur only in the presence of mMTOR
inhibition but re-appear after the mTOR inhibitor is withdrawn. Other neurodevelopmental
processes may also be affected, such as excitatory signaling or myelination. A neonatal brief
kainic acid seizure may reduce the surface expression of the NMDA receptor (NR) subunit
that normally emerges through developmental maturation, NR2A [21]. Seizures during the
period of myelination can halt or impair myelination in both animal and human studies [24,
50, 91].

Loss of dendritic spines and less frequently shortening of dendritic length or abnormal
dendritic branching patterns may be seen in patients with TLE or focal epilepsies [5, 10, 31,
44,71, 102, 116]. Whether dendritic pathologies cause epilepsy is a matter open for
investigation. Certainly many known etiologies of epilepsies demonstrate similar dendritic
pathologies, including Rett syndrome [2] and tuberous sclerosis (TSC) [112] implicating the
affected pathways (MeCP2, mTOR) in their pathogenesis. However the evidence that
dendritic pathology causes epilepsy is currently lacking. Animal studies of seizures or
epilepsy, in models like kindling, iron-induced cortical epilepsy, tetanus toxin model, or
post-SE models of epilepsy have demonstrated similar dendritic abnormalities suggesting
that seizures may impair dendritic architecture and spine development [1, 39, 49, 57, 77,
120, 125]. The lack of selectivity of the dendritic abnormalities for the epileptogenic focus,
rather poses this feature as contributory to the overall neuronal dysfunction and seizure-
associated comorbidities and to a lesser degree as causative of epilepsy.

In addition, dysplastic lesions may be encountered in pathological specimens from patients
with TLE [9]. These can be found as clusters of granular neurons in layer 2 of the neocortex,
nodular heterotopias in the temporal lobe, or heterotopic isolated neurons in the gray-white
matter junction or deep subcortical white matter. It is currently unclear whether these
dysplastic lesions are causative of or secondary to TLE. However, the possibility that such
lesions may predispose to the development of TLE is supported by studies that demonstrate
epileptogenic potential of these dysplastic lesions [27] as well as the animal studies
demonstrating the pro-epileptogenic potential of pre-existing dysplastic lesions in two-hit
seizure models [37, 99].

16.5 Conclusions

Seizures and several pathologies predisposing to focal-onset epilepsies may trigger the
reacquisition of immature features in mature neurons that are integrated in the epileptogenic
focus. The appearance of these immature features is influenced by age and sex-specific
factors, at least for certain of the events that precipitate epilepsies. We propose that this
untimely re-acquisition of the immature features is not equivalent to rejuvenation of the
brain but may rather represent a de-synchronization of the homeostatic mechanisms that
were in place to maintain normal physiology. In other words the maladaptive interactions
and integration of these immature components with otherwise appropriately functioning
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brain regions may contribute to the increased excitability and underlying pathological
changes seen in the epileptic focus. Furthermore, such effects may disrupt normal brain
development, leading to long-lasting impairments in networks that are critical for either
seizure control, like the SNR, or for information processing leading to cognitive dysfunction.

A number of important unresolved questions arise. Under which conditions does the
untimely presence of immature features and functions in the seizure-exposed brain promote
epileptogenesis or cognitive decline? Conversely, what are the factors that can compensate
and prevent disease progression? Are these functional changes different in epileptogenic foci
than in regions that are secondarily affected by propagated seizures and why? What are the
mechanisms leading to seizure-induced neurogenesis and how are these modified by age or
sex or seizure-specific factors? Under which conditions might aberrant neurogenesis or
abnormal GABAAR signaling have a pathogenic role in epileptogenesis or cognitive
processes? What is the key switch mechanism that shifts depolarizing GABAAR signaling
from promoting neurotrophic and healing processes in seizure-exposed or injured brains to
facilitating excitability, seizure maintenance, and potentially epileptogenesis? Does the
altered expression of GABAAR subunits in post-seizure or epileptic brain impair inhibition
or could it, in certain situations, protect from the potentially excitatory effects of
depolarizing GABA? It is evident from the examples presented in Tables 16.1, 16.2 and
16.3, that there is significant variability across studies, animal models, disease states, and
regions suggesting that the answer may not be ubiquitous. Therefore, even if certain answers
may be obtained in specific experimental paradigms, it is critical to be able to translate them
into the human situation and, most specifically, to a specific individual in need of specific
prognosis or treatment after a specific insult. Identifying markers that will enable us to
detect and follow longitudinally, in vivo, the evolution of these changes and their functional
alterations would be critical in both validating their significance and implementing
individualized targeted treatments to prevent disease progression.
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