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Abstract

Seizures have variable effects on brain. Numerous studies have examined the consequences of 

seizures, in light of the way that these may alter the susceptibility of the brain to seizures, promote 

epileptogenesis, or functionally alter brain leading to seizure-related comorbidities. In many –but 

not all- situations, seizures shift brain function towards a more immature state, promoting the birth 

of newborn neurons, altering the dendritic structure and neuronal connectivity, or changing 

neurotransmitter signaling towards more immature patterns. These effects depend upon many 

factors, including the seizure type, age of seizure occurrence, sex, and brain region studied. Here 

we discuss some of these findings proposing that these seizure-induced immature features do not 

simply represent rejuvenation of the brain but rather a de-synchronization of the homeostatic 

mechanisms that were in place to maintain normal physiology, which may contribute to 

epileptogenesis or the cognitive comorbidities.
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16.1 Introduction

Epilepsies have multiple causes and phenotypes, leading to different seizure and epilepsy 

syndromes. A variety of genetic, toxic/metabolic, or structural abnormalities have been 

causally associated with epilepsies. Epilepsy may occur as a “system disorder”, attributed to 

dysfunction –but no overt structural pathology – of specific neuronal networks, as typically 

occurs in genetic generalized epilepsies, like absence epilepsy [4]. In other cases, specific 
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pathologies, e.g., cortical malformations or hippocampal sclerosis, may lead to the 

generation of an epileptogenic focus.

Seizures and epilepsies may disrupt brain development. Often, these maldevelopmental 

consequences of seizures may manifest as age- inappropriate reversal to immature functions 

and developmental processes. For example, seizures may trigger the aberrant re-emergence 

of immature features of GABAA receptor (GABAAR) signaling in neurons from adult 

animals or may cause morphological changes reminiscent of immature neurons. Immature 

features include the generation of new neuronal progenitor cells, functional alteration of 

selected signaling pathways or morphological changes. Many of these immature features 

have been documented in surgically resected epileptic tissues from individuals with drug-

resistant epilepsies, like temporal lobe epilepsy (TLE), hypothalamic hamartomas, cortical 

dysplasias, or peritumoral epileptic tissue. Comparisons with nonepileptic post-mortem or 

surgically resected tissues have indicated that some of these changes are specific for the 

epileptic tissue [46, 47]. Yet, the appearance of these changes after seizures in animal 

models often depends upon a variety of factors. Here we will discuss the animal studies that 

have supported these observations and have provided insights on the complex interactions 

between the immature features of the epileptic focus and epilepsies, their etiologies and 

treatments and how these can be modified by age, sex, region-specific or other factors.

16.2 Neurogenesis in TLE

Perhaps the most classic argument for a reversal of normal age-specific functions with a 

reemergence of patterns observed during development is the observation that there is an 

increased number of newborn cells in the dentate gyrus, in response to seizures or during the 

epileptic state [101]. Increased neurogenesis in the dentate gyrus of adult rats has been 

shown using post-SE models of epilepsy [48, 86, 100] or kindling [84, 105] or hyperthermic 

seizures [[61] and reviewed in [85, 101]] (Table 16.1). Newborn cells manifest many of the 

electrophysiological and morphological features of the granule cells, but also some 

distinctive characteristics. For example, they may be more dispersed [48, 100], have bipolar 

rather than polarized dendrites and they do not stain for Neuropeptide Y (NPY) or glutamic 

acid decarboxylase (GAD) immunoreactivity [100]. Furthermore, newborn cells may 

integrate abnormally into the hippocampus after seizures. Newborn neurons that migrate 

towards the CA3 pyramidal region may synchronize with CA3 neurons into epileptiform 

bursts [100]. Doublecortin-positive newborn neurons in the hilar dentate of epileptic rats 

exhibit long and recurrent basal dendrites directed towards the granule cell layer and also 

receive excitatory synaptic input which is unusual in seizure-naive rats [95]. These seizure-

induced changes may contribute to the excitability of the hippocampus. It has also been 

proposed that newborn neurons may not be capable to integrate normally in processes 

controlling cognitive processes, contributing therefore to cognitive deficits [30, 88].

The effects of seizures on neurogenesis at the dentate is age, sex, region, model specific and 

may depend on the number and type of seizures that the animal experiences (reviewed in 

Table 16.1). In brief, neonatal rats may respond instead with reduced or unaltered 

neurogenesis. Furthermore, aged rats may not respond as robustly with neurogenesis 

following seizures as younger adults do. Longitudinal studies may reveal time-dependent 
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changes in neurogenesis, which may be influenced also by the ability of these newborn cells 

to survive. For example, hyperthermic seizures caused the newborn neurons to survive 

longer in males than in females till adulthood, suggesting sex-specific factors controlling 

their function [61]. Few brief seizures may not be as sufficient to affect neurogenesis, as 

frequent or prolonged seizures do.

Investigations into whether aberrant neurogenesis may contribute to epileptogenesis have 

yielded variable results. Administration of anti-mitotics that prevent neurogenesis may 

decrease the frequency of spontaneous seizures in post-SE animals [51]. However, other 

treatments that reduce seizure-induced neurogenesis have resulted in either reduction [109] 

or no effect [88] on the frequency of spontaneous seizures. The developmental studies on the 

effects of SE in 2–3 week old rats which show increased SE-induced neurogenesis, even 

though neither cell loss nor epileptogenesis always ensue have also failed to associate the 

increase seizure-induced neurogenesis with either of these consequences of SE [98]. 

Seizure-induced neurogenesis appears therefore to contribute to the excitability of the 

epileptic hippocampus and possibly to the associated cognitive dysfunction, but there is no 

definite evidence that it is required for or mediates the ensuing epileptogenesis. Future 

research into deciphering the mechanisms leading to seizure-induced neurogenesis and how 

these are modified by age or sex or seizure-specific factors would be needed.

16.3 Evidence for Immaturity of GABAA Receptor (GABAAR) Signaling in 

Epilepsies

GABAAR signaling is well known to undergo structural and functional changes through 

development. The subunit composition of the GABAAR complexes changes to include 

subunits that will provide electrophysiologic and pharmacological properties more akin to 

mature neurons. A typical example is the developmental shift from alpha 2 or 3 (GABRA2 

or GABRA3) to alpha 1 (GABRA1) subunits, which attribute faster kinetics of the inhibitory 

post-synaptic currents (IPSCs) and higher sensitivity to benzodiazepines [17, 47, 60]. In 

addition, GABAAR signaling changes from depolarizing early in development to 

hyperpolarizing in more mature neurons, rendering GABAAR-mediated inhibition more 

effective in older animals [70]. This is thought to be due to the developmental shift in the 

balance of the activity of cation/Cl– cotransporters (CCCs) that control the intracellular Cl– 

concentration to favor cotransporters that maintain high intracellular Cl– (i.e., NKCC1) in 

immature neurons and low intracellular Cl– in mature neurons (i.e., KCC2) [6, 26, 33, 90, 

97]. The developmental increase in the expression and activity of KCC2, a Cl– exporting 

transporter, and the parallel decrease in NKCC1 eventually reduce intracellular Cl-, 

permitting the appearance of hyperpolarizing GABAAR signaling in more mature neurons.

The presence of depolarizing GABAAR signaling is critical for normal development, as it 

promotes neuronal growth, differentiation and synaptogenesis, by controlling calcium-

sensitive signaling processes. In parallel, KCC2 may also modify the development of 

glutamatergic synapses in dendritic spines via interactions with cytoskeletal proteins, like 

4.1 N, independently of any effects on GABAAR regulation [62]. The absence of 

depolarizing GABAAR signaling early in life can either be incompatible with life or disrupt 
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neuronal differentiation and communication [6, 16, 26, 33, 43, 118, 119]. Considering the 

neurotrophic effects of depolarizing GABAAR signaling, it is not entirely surprising that 

depolarizing GABAARs are also found in pathologic conditions that favor neuritic growth 

and differentiation so as to promote aberrant synaptogenesis, connectivity and re-wiring, as 

occurs in various forms of acquired, focal-onset epilepsies (Table 16.2). Indeed, depolarizing 

GABAAR signaling can be facilitated by neurotrophins, like brain-derived neurotrophic 

growth factor (BDNF), which are released after seizures [96].

Abnormal shifts in the CCC activity towards an NKCC1-dominant state or depolarizing 

GABAAR signaling have also been found in a number of pathological conditions 

predisposing to or leading to epilepsy, like trauma [11, 74], ischemia [45, 83], anoxia/

glucose deprivation [36] as well as after kindling [80, 96] or during the latent or epileptic 

state in post-status epilepticus (SE) rodent models of epilepsy [7, 12, 13, 22, 87] (Table 

16.2). Under such pathological conditions, the role of GABAAR signaling is not just to 

promote the healing and re-wiring of the brain but may acquire a pathogenic role, by 

promoting neuronal excitability, due to the impairment in inhibition. In further support, 

KCC2 deficient mice manifest early life epilepsy and histopathologic alterations reminiscent 

of hippocampal sclerosis [122]. Pharmacologic inhibition of depolarizing GABAAR 

signaling using the NKCC1 inhibitor bumetanide in combination with GABAAR agonists 

has shown antiseizure effects in certain seizure models [18, 25, 65, 68, 75, 94, 103], 

although model-, region-, age-, or time-dependent differences have been reported [65, 66, 

68, 117, 127]. Administration of bumetanide with phenobarbital prior to seizure onset in the 

kainic acid induced SE model significantly enhanced the antiseizure effect of phenobarbital, 

in an age-dependent manner, that was attributed to the developmental decrease in NKCC1 

expression [25]. Similarly, bumetanide inhibited rapid kindling of PN11 Wistar rats when it 

was administered prior to kindling stimuli [68] or hypoxic seizures when given prior to 

hypoxia in PN10 rats, even though the brain levels of bumetanide are significantly low [18]. 

On the other hand, in vitro studies demonstrated variable results of bumetanide when given 

after seizure onset that followed model, age, and region dependent patterns [54, 117]. In 

addition, NKCC1-knockout mice show greater susceptibility to 4-aminopyridine than wild 

type animals [127]. It is therefore possible that bumetanide administration prior to seizure 

onset and younger ages may facilitate its ability to enhance the antiseizure effects of 

GABAAR agonists. However it is also evident that model and region specific factors or other 

competing mechanisms may modify its effect.

Bumetanide has also been proposed to alleviate the febrile seizure-induced neurogenesis 

[56] and the post-SE epilepsy-associated behavioral deficits [14], but has not been shown to 

have antiepileptogenic effects in post-SE epilepsy or an in vitro model [14, 75]. 

Depolarizing GABAAR signaling also renders the injured neurons dependent upon 

neurotrophic factors, like BDNF, for survival, by augmenting the expression of the pan-

neurotrophin receptor p75NTR [108]. Neurons with depolarizing GABA signaling are 

therefore more amenable to dying in injured areas, which are deprived of BDNF.

Epilepsy and seizures have also been associated with disruption in the normal developmental 

patterns of expression of the subunits of GABAARs (see Table 16.3). In certain – but not all 

– cases these reflect a return to a more immature type of GABAAR subunit composition, as 
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in studies demonstrating a reduction in the α1 subunit, whereas in others they indicate 

disrupted development [47]. Changes in GABAAR subunits may contribute to either drug 

refractoriness [15] or epileptogenesis [93] or the development of comorbidities.

Most of the above studies have been done in either adult animals or are derived from 

individuals with drug-resistant epilepsy that underwent surgical resection of the 

epileptogenic focus at ages when the brain is relatively more mature. Age-specific patterns 

of regulation by seizures have been extensively shown for the seizure-induced changes in 

GABAAR subunits [126].

Similarly, the effects of neonatal seizures on GABAAR signaling and CCCs are not only age 

[32, 53] but sex-specific as well [32]. Kainic acid induced SE in PN4–6 rats accelerated the 

switch to hyperpolarizing GABAAR signaling in the CA1 pyramidal neurons of males, due 

to an increase in KCC2 expression and decrease in NKCC1 activity [32]. In contrast, kainic 

acid induced SE in PN4–6 female rats, in which GABAAR signaling is not depolarizing, 

causes a transient return to the depolarizing signaling mode due to an increase in NKCC1 

activity [32]. In this study, the sexually dimorphic response to neonatal seizures seemed to 

depend upon the earlier maturation of GABAAR signaling in the female hippocampus, 

attributed to a higher expression of KCC2 and lower NKCC1 activity in females [32]. Sex 

differences in the expression of KCC2 and NKCC1 or GABAAR signaling in the 

hippocampus have also been confirmed in other studies [73, 79]. In addition, brief kainic 

acid seizures augment the activity of KCC2 shortly after induction of seizures in neonatal 

male rats [53]. It should be noted however that these studies relate to the postictal – acute or 

subacute – stages of neonatal SE. During the acute ictal phase of the SE, there is plenty of 

evidence to support that GABAAR signaling becomes depolarizing [25, 52].

The consequences of these seizure effects on the direction of GABAAR signaling could 

impact upon the subsequent susceptibility of the animal to seizures, affect its ability to stop 

seizure propagation, or alter cognitive abilities. For example, activation of GABAAR 

signaling in the anterior substantia nigra pars reticulata (SNR) in rats has important age and 

sex specific role in controlling seizure propagation in the flurothyl model [114, 115]. 

Exposure of male and female PN4–6 rats to kainic acid induced SE, at the time when 

GABAAR signaling is depolarizing, causes a precocious appearance of hyperpolarizing 

GABAAR signaling due to increase in KCC2 expression [35] and disrupts the GABAAR-

sensitive anticonvulsant function of the anterior SNR in the flurothyl seizure model 

(unpublished data). It is possible that the early deprivation of the SNR of the neurotrophic 

effects of the depolarizing GABAAR signaling effects may impair its development, leading 

to these long-lasting deficits.

16.4 Other Immature or Dysmature Features Associated with Epilepsies

Seizures may cause long-lasting changes in other signaling pathways involved in 

neurodevelopmental plasticity. The mTOR pathway has attracted a lot of research interest 

recently because it is central to cellular differentiation and growth. The mTOR pathway may 

become dysregulated in several seizure and epilepsy models [34, 92, 111, 121, 125] even if 

not necessarily caused by genetic disruption of components of the mTOR pathway. The 
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ability of rapamycin, an mTOR inhibitor, to suppress epilepsy in these models as well as 

prevent or reverse certain of the histopathological or cognitive abnormalities has supported 

its role as a potential epileptostatic and potentially disease-modifying treatment. We use the 

term “epileptostatic” (i.e., epilepsy is on hold) to indicate that inhibition of the expression of 

epilepsy and associated histopathological abnormalities occur only in the presence of mTOR 

inhibition but re-appear after the mTOR inhibitor is withdrawn. Other neurodevelopmental 

processes may also be affected, such as excitatory signaling or myelination. A neonatal brief 

kainic acid seizure may reduce the surface expression of the NMDA receptor (NR) subunit 

that normally emerges through developmental maturation, NR2A [21]. Seizures during the 

period of myelination can halt or impair myelination in both animal and human studies [24, 

50, 91].

Loss of dendritic spines and less frequently shortening of dendritic length or abnormal 

dendritic branching patterns may be seen in patients with TLE or focal epilepsies [5, 10, 31, 

44, 71, 102, 116]. Whether dendritic pathologies cause epilepsy is a matter open for 

investigation. Certainly many known etiologies of epilepsies demonstrate similar dendritic 

pathologies, including Rett syndrome [2] and tuberous sclerosis (TSC) [112] implicating the 

affected pathways (MeCP2, mTOR) in their pathogenesis. However the evidence that 

dendritic pathology causes epilepsy is currently lacking. Animal studies of seizures or 

epilepsy, in models like kindling, iron-induced cortical epilepsy, tetanus toxin model, or 

post-SE models of epilepsy have demonstrated similar dendritic abnormalities suggesting 

that seizures may impair dendritic architecture and spine development [1, 39, 49, 57, 77, 

120, 125]. The lack of selectivity of the dendritic abnormalities for the epileptogenic focus, 

rather poses this feature as contributory to the overall neuronal dysfunction and seizure-

associated comorbidities and to a lesser degree as causative of epilepsy.

In addition, dysplastic lesions may be encountered in pathological specimens from patients 

with TLE [9]. These can be found as clusters of granular neurons in layer 2 of the neocortex, 

nodular heterotopias in the temporal lobe, or heterotopic isolated neurons in the gray-white 

matter junction or deep subcortical white matter. It is currently unclear whether these 

dysplastic lesions are causative of or secondary to TLE. However, the possibility that such 

lesions may predispose to the development of TLE is supported by studies that demonstrate 

epileptogenic potential of these dysplastic lesions [27] as well as the animal studies 

demonstrating the pro-epileptogenic potential of pre-existing dysplastic lesions in two-hit 

seizure models [37, 99].

16.5 Conclusions

Seizures and several pathologies predisposing to focal-onset epilepsies may trigger the 

reacquisition of immature features in mature neurons that are integrated in the epileptogenic 

focus. The appearance of these immature features is influenced by age and sex-specific 

factors, at least for certain of the events that precipitate epilepsies. We propose that this 

untimely re-acquisition of the immature features is not equivalent to rejuvenation of the 

brain but may rather represent a de-synchronization of the homeostatic mechanisms that 

were in place to maintain normal physiology. In other words the maladaptive interactions 

and integration of these immature components with otherwise appropriately functioning 
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brain regions may contribute to the increased excitability and underlying pathological 

changes seen in the epileptic focus. Furthermore, such effects may disrupt normal brain 

development, leading to long-lasting impairments in networks that are critical for either 

seizure control, like the SNR, or for information processing leading to cognitive dysfunction.

A number of important unresolved questions arise. Under which conditions does the 

untimely presence of immature features and functions in the seizure-exposed brain promote 

epileptogenesis or cognitive decline? Conversely, what are the factors that can compensate 

and prevent disease progression? Are these functional changes different in epileptogenic foci 

than in regions that are secondarily affected by propagated seizures and why? What are the 

mechanisms leading to seizure-induced neurogenesis and how are these modified by age or 

sex or seizure-specific factors? Under which conditions might aberrant neurogenesis or 

abnormal GABAAR signaling have a pathogenic role in epileptogenesis or cognitive 

processes? What is the key switch mechanism that shifts depolarizing GABAAR signaling 

from promoting neurotrophic and healing processes in seizure-exposed or injured brains to 

facilitating excitability, seizure maintenance, and potentially epileptogenesis? Does the 

altered expression of GABAAR subunits in post-seizure or epileptic brain impair inhibition 

or could it, in certain situations, protect from the potentially excitatory effects of 

depolarizing GABA? It is evident from the examples presented in Tables 16.1, 16.2 and 

16.3, that there is significant variability across studies, animal models, disease states, and 

regions suggesting that the answer may not be ubiquitous. Therefore, even if certain answers 

may be obtained in specific experimental paradigms, it is critical to be able to translate them 

into the human situation and, most specifically, to a specific individual in need of specific 

prognosis or treatment after a specific insult. Identifying markers that will enable us to 

detect and follow longitudinally, in vivo, the evolution of these changes and their functional 

alterations would be critical in both validating their significance and implementing 

individualized targeted treatments to prevent disease progression.
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