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Abstract

Our understanding of the plasma membrane has markedly increased since Singer and Nicolson 

proposed the fluid mosaic model in 1972. While their revolutionary theory of the lipid bilayer 

remains largely valid, it is now known that lipids and proteins are not randomly dispersed 

throughout the plasma membrane but instead may be organized within membrane microdomains, 

commonly referred to as lipid rafts. Lipid rafts are highly dynamic, detergent resistant, and 

enriched with both cholesterol and glycosphingolipids. The two main types are flotillin-rich planar 

lipid rafts and caveolin-rich caveolae. It is proposed that flotillin and caveolin proteins regulate 

cell communication by compartmentalizing and interacting with signal transduction proteins 

within their respective lipid microdomains. Consequently, membrane rafts play an important role 

in vital cellular functions including migration, invasion, and signaling; thus, alterations in their 

microenvironment can initiate signaling pathways that affect cellular function and behavior. 

Therefore, the identification of lipid rafts and their associated proteins is integral to the study of 

transmembrane signaling. Here, we review the current standard protocols and biochemical 

approaches used to isolate and define raft proteins from epithelial cells and tissues. Furthermore, 

in Section 3 of this chapter, detailed protocols are offered for isolating lipid rafts by subjection to 

detergent and sucrose density centrifugation, as well as an approach for selectively isolating 

caveolae. Methods to manipulate rafts with treatments such as methyl-β-cyclodextrin and flotillin 

III are also described.

Keywords

Lipid raft; Detergent resistant; Membrane microdomain; Caveolae; Caveolin; Methyl-β-
cyclodextrin

1 Introduction

In 1972, the fluid mosaic model of the cell membrane was proposed by Singer and Nicolson 

(1). They hypothesized that lipid and protein molecules are randomly distributed throughout 

the lipid bilayer; four decades later, a more dynamic model has evolved, revealing organized 

membrane microdomains, referred to as lipid rafts (2, 3). Lipid rafts contain a high 

concentration of both cholesterol and glycosphingolipids and are able to float freely within 

the plasma membrane, thus permitting aggregation and formation of larger, more stable 

platform domains (4). In addition, protein–protein and lipid–protein interactions, especially 

by those involving cyto-skeletal proteins, increase the stability and regulatory functions of 

membrane rafts (5). There are two types of lipid rafts, planar and caveolae (Fig. 1). Caveolae 

are distinguishable as flask-shaped invaginations (50–100 nm) of the membrane formed by 
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the integral membrane scaffolding protein, caveolin. In the absence of caveolins, planar lipid 

rafts are sustained by the integral membrane protein flotillin. Lipid rafts are emerging as key 

players in many biological functions including protein trafficking, endocytosis, 

neurotransmission, and cell communication by serving as organization centers for signaling 

molecules (6, 7).

Discerning the roles of lipid rafts and their constitutive proteins has proven to be a 

challenging task and is not without controversy with regards to both methods and results. An 

attractive approach for tackling this endeavor has been to investigate the effects of disrupting 

lipid rafts with methyl-β-cyclodextrin (MβCD), a cyclic oligosaccharide that forms soluble 

complexes with cholesterol and depletes them from the membrane. In keratinocytes, raft 

disruption results in upregulation of many signal transduction proteins such as IL8, MMPs, 

EGFR, ERK, Akt, p38 MAPK, and ERK1/2 (8–11). Interestingly, an increase in substrates 

cleaved by tumor necrosis factor-alpha (TNF-α) converting enzyme (ADAM17 or TACE) 

occurs with MβCD treatment, leading investigators to postulate that lipid rafts also regulate 

enzymatic activity by limiting substrate entry into rafts (12). Furthermore, lipid raft 

disruption by ultraviolet (UV) irradiation results in a decrease in raft cholesterol levels and 

activation of pro-apoptotic pathways by Fas-receptor protein and ceramide (13). Treatment 

with sterols, which lessen cholesterol loss, partly decreased this response (14). In summary, 

results from these studies suggest that lipid rafts are integral to homeostatic cell-to-cell 

interactions and that their alteration leads to activation of pathways, which affect vital 

cellular processes.

A point of fact, alterations in lipid rafts have been found to have pathological implications. 

For instance, an inverse relationship between caveolin expression and severity of the skin 

disease, psoriasis has been reported (15). Similarly, atopic dermatitis, an inflammatory skin 

disease, has changes in gene expression that are comparable to those resulting from lipid raft 

disruption in keratinocytes (9). In cancer, caveolin-1 has been found to have a dual role. 

Studies in keratinocytes showed that caveolins suppress growth factor signaling pathways 

(16). This finding is supported by findings in Cavl null mice, which lack caveolae, that 

showed increased epidermal proliferation and susceptibility to premalignant lesions in 

response to the chemical carcinogen DMBA/TPA (17). Conversely, in anchorage-

independent cancer cells, such as melanoma, caveolin expression is associated with 

increased malignancy and metastasis (18,19). It is postulated that the association of lipid raft 

proteins, such as caveolins, with cytoskeletal proteins and their role in cell adhesion 

processes may partially explain the mechanism for malignant invasion (20). Lipid rafts have 

been shown to be associated with a number of adhesion junction proteins (Table 1); however, 

more studies are needed to determine the implications of such interactions. Indeed, the 

Mahoney lab recently discovered that caveolin-1 associates with desmoglein-2, a 

desmosomal adhesion protein that modulates mitogenic signaling suspected to be involved 

in oncogenesis (21).

To date, most of our knowledge of lipid rafts is a result of the hypothesis that the high 

glycolipoprotein content of the lipid raft renders it insoluble in nonionic detergents; hence, 

lipid rafts are also known as detergent-resistant membrane domains (22). The method of 

lipid raft isolation by detergent is controversial in that results may differ depending on the 
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conditions, including temperature, detergent concentration, and type of detergent utilized 

(23). Also, biochemical methods are unable to isolate lipid rafts in their innate structure (24). 

In fact, for some time there was uncertainty regarding the existence of lipid rafts at all, as the 

nanometric size of lipid rafts is below the diffraction limit of standard confocal laser 

scanning microscopy, and, thus, rafts were not detectable in vivo. Any uncertainty has been 

disbanded by novel techniques, such as Forster resonance energy transfer, fluorescence 

polarization anisotropy, total internal reflection fluorescence microscopy, and single-

molecule spectroscopy (25). These techniques have provided confirmation of the existence 

of cholesterol and sphingolipid microdomains. Furthermore, diffusion of cholesterol-

dependent GPI-anchored proteins in the apical plasma membrane has been observed (25, 

26). Although promising, these innovative methods still have their own individual 

challenges, which may affect the intrinsic state of the cell (25).

Similarly, biochemical techniques for lipid raft isolation and pro-teomic analysis are not 

without criticism, but they do have the advantage of being well studied. The detergent Triton 

X-100 (TX-100) at 4 °C is most commonly used for lipid raft purification, but other 

detergents have been utilized with results perhaps reflecting the nature of the raft domain 

isolated (27). Other detergents studied include Brij 58, Brij 96, Brij 98, Lubrol WX, 

CHAPS, and Triton X-114 (28). Notably, Brij 98 may be used at physiologic temperature, 

37 °C, thus avoiding any effect temperature may have, as it has been suggested that lipid 

rafts aggregate upon treatment at 4 °C, therefore not allowing identification of proteins in 

distinct rafts (27). Ideally, the least amount of detergent that will dissolve the non-raft 

membrane proteins, such as transferrin receptor, should be used (27). The reproducible 

solubility of these proteins is the advantage of using TX-100. Inconsistent reports of whether 

Lubrol WX sufficiently dissolves non-raft membrane proteins have been published, and 

while Brij 96 and Brij 98 are efficient at solubilizing the non-raft membrane when compared 

to Lubrol WX, the detergent-resistant, light density fraction still contains non-raft proteins 

(28). Furthermore, Schuck et al. compared the lipid component of insoluble fractions from 

various detergents and found that the lipid component of TX-100 contained a lipid ratio 

comparable to that expected in lipid rafts. Conversely, Lubrol WX and Brij 98 contained a 

ratio more comparable to the total membrane, suggesting that these detergents are not as 

accurate in preferentially isolating lipid rafts. On the other hand, TX-100 solubilizes some 

lipid raft proteins including insulin receptors, which are known to interact with caveolins 

(29). Manipulation of lipid rafts can be performed biochemically as well. Removal of 

cholesterol may be achieved with MβCD, and inhibition of cholesterol synthesis may be 

accomplished with HMG-CoA reductase inhibitors (2). Additionally, rafts may be 

sequestered with antimicrobial agents such as nystatin A or filipin III (30). Cholera toxin, 

which targets gangliosides, can be used to stain for lipid rafts (31).

In summary, there is no single, ideal method for isolating lipid rafts, and thus, an integrated 

approach utilizing biochemical, imaging, and novel techniques needs to be established. As 

biochemical techniques for lipid raft isolation are currently the most widely used and cost-

effective methodology available, this chapter focuses on and provides validated biochemical 

methods as well as practical notes for the isolation and analysis of lipid rafts.
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2 Materials

2.1 Major Equipment

1. SW60 swing bucket rotor (Beckman Coulter, Brea, CA, USA); corresponding 

ultracentrifuge tubes (Cat# 326819; 5.0 mL thinwall, polyallomer tubes for 

SW60 rotor; Beckman Coulter).

2. SW41Ti swing bucket rotor (Cat# 333790, Beckman Coulter); corresponding 

ultracentrifuge tubes (Cat# 331372; 13.2 mL thinwall, polyallomer tubes for 

SW41 rotor; Beckman Coulter).

3. Ultracentrifuge (Beckman Coulter).

2.2 Reagents

Unless otherwise stated, most reagents are available from Sigma-Aldrich (St. Louis, MO). 

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and penicillin–

streptomycin (P/S) (Life Technologies, Grand Island, NY); CnT-57 medium and 

supplements (CELLnTEC, Bern, Switzerland); EpiLife medium supplemented with Human 

Keratinocyte Growth Supplement (Life Technologies); 5-cholestene-5-β-ol (Steraloids, 

Newport, RI); Caveolin-1 competing peptide-a fusion of the caveolin-1 scaffolding domain 

peptide (aa 82–101) with the cell permeable Antennapedia sequence (aa 43–58) (Cat# 

219482) and scrambled caveolin-1 negative control peptide (Cat# 219483) (Millipore, La 

Jolla, CA); Trypan Blue Exclusion Assay (Cat# 15250061, Life Technologies).

2.3 Buffers

1. Phosphate-buffered saline (PBS; Cat# BP665–1; Fisher Scientific, Pittsburgh, 

PA).

2. TNE buffer: 25 mM Tris–HCl (pH 7.5) (Cat# BP1757–500; Fisher Scientific), 

150 mM NaCl, and 5 mM EDTA.

3. Complete cell lysis TNE buffer: 25 mM Tris–HCl (pH 7.5), 150 mM NaCl, 5 

mM EDTA, 1 % (v/v) Triton X-100 (TX-100; Cat# BP151–500; Fisher 

Scientific), 1 mM phenylmethanesulfonylfluoride or phenylmethylsulfonyl 

fluoride (PMSF; Cat# 93482), complete protease inhibitor cocktail (Cat# 11697–

498-001, Roche Diagnostics, Indianapolis, IN), and phosphatase inhibitor 

cocktail 2 (Cat# P8340).

4. 90, 35, or 5 % (w/v) Sucrose (Cat# 84097) in TNE buffer: Dissolve 90, 35, or 5 g 

of sucrose with TNE buffer to bring the volume to 100 mL. Warm with stirring 

until sucrose is dissolved.

2.4 Antibodies

Antibodies to lipid raft proteins include anti-caveolin-1 (Cat#sc-894; Santa Cruz 

Biotechnology, Santa Cruz, CA); anti-caveolin-2 (Cat# 8522; Cell Signaling Technology, 

Danvers, MA); anti-caveolin-2 (Cat# ab2912; Abcam, Cambridge, MA); anti-flotillin-1 

McGuinn and Mahoney Page 4

Methods Mol Biol. Author manuscript; available in PMC 2019 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Cat# 610820; BD Transduction Labs, Franklin Lakes, NJ); and anti-flotillin-2 (Cat# 

610383; BD Transduction Labs).

2.5 Cells

1. HaCaT, a spontaneously immortalized, nontumorigenic cell line derived from 

human keratinocytes (32, 33).

2. A431, an epidermoid carcinoma cell line (Cat# CRL-1555; ATCC, Bethesda, 

MD).

3. Alternatively, primary human epidermal keratinocytes can be used and are 

available from several commercial sources: PHEK (CELLnTEC) and HEK (Life 

Technologies).

3 Methods

3.1 Cell Culture

HaCaT and A431 cells are maintained in DMEM supplemented with 10 % FBS, 2 mM 

glutamine, and 1 % P/S (33, 34). PHEK and HEK cultures are grown in complete CnT-57 or 

EpiLife supplemented with human keratinocyte growth supplement, respectively. All cells 

are maintained in a humidified incubator with 5 % CO2 at 37 °C. Cells are plated at a 

density of approximately 2 × 106 in 100 mm culture dishes to obtain approximately 9 × 106 

cells at confluence. If grown in FBS-containing medium, cells are serum-starved from 1 to 

24 h prior to experimentation. Cells should be approximately 70–80 % confluent when used.

3.2 Lipid Raft Disruption by Cholesterol Depletion

To disrupt lipid rafts by depleting or sequestering membrane cholesterol, cultured cells in 

serum-free medium are treated with MβCD (10 mM or 1 %) or filipin III (2 μg/mL) for 1 h. 

Alternatively, cells can be treated with 5-cholestene-5-β-ol (5 μM) for 2 h or simvastatin (5 

mg/mL) for 24 h. Repletion is performed by adding cholesterol (5 μM or 10 μg/mL) or 

cholesterol-loaded MβCD (5 μM or 10 μg/mL) (35–38). Trypan blue exclusion assay can be 

used to measure the level of cell death after drug treatment.

3.3 Disruption of Caveolin Association by Scaffolding Domain Peptide

To displace proteins from binding to caveolin-1, treat cells with a cell-permeable caveolin-1 

scaffolding domain peptide (3 μM) for up to 24 h (16). As negative control, treat cells with a 

scrambled peptide (3 μM) of the caveolin-1 scaffolding domain.

3.4 Preparation of Lipid Raft Fraction

The following ultracentrifugation method relies on two unique properties of lipid rafts: (1) 

cold detergent resistance and (2) low buoyant density.

1. Pre-chill all equipment and solutions on ice.

2. Wash cells three times with ice-cold PBS, and scrape cells in 2 mL complete 

TNE (see Note 1) buffer lysis buffer containing 1 % TX-100 (see Notes 2 and 3) 

using a cell scraper (Cat# 08–771-1A; Fisher Scientific) (21, 39).
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3. Disrupt cell by passing through a tight-fitting glass Dounce Homogenizer (Cat# 

NC0253759; Fisher Scientific) 20 times or by repeated aspiration through a 23-

gauge needle (Cat# 305120; BD Biosciences, Waltham, MA) using a 5 mL 

syringe (Cat# 309646; BD Biosciences) 20 times.

4. Vortex and transfer 2 mL into a 13-mL ultracentrifuge tube. Save the remaining 

sample for total cell lysate.

5. Add 2 mL of 90 % sucrose in TNE to bring the sucrose concentration to 45 %.

6. Carefully overlay with 4 mL each of 35 and 5 % sucrose in TNE by gently 

adding the solutions down the side of the tube (1 mL at a time; Fig. 2).

7. Centrifuge the gradients at 38,000–40,000 rpm (maximum force of 

approximately 273,865 × g) for 16–20 h in an SW41Ti rotor at 4 °C (see Notes 4 

and 5).

8. Collect twelve 1-mL fractions from the top while keeping all samples on ice 

(Fig. 2).

9. Boil aliquots (10–40 μL) of each fraction in Laemmli buffer in preparation for 

SDS-PAGE and immunoblotting. Store the remaining samples at –70 ° C.

3.5 Characterization of Lipid Raft-Associated Proteins

1. Western blotting: Equal amount of each fraction (Section 3.4) is resolved over 

SDS-PAGE (12.5 % acrylamide) and electro-transferred onto a nitrocellulose or 

a PVDF membrane for immunoblotting as previously described (21) for 

caveolin-1, caveolin-2, flotillin-1, and flotillin-2 (all antibodies at 1:1,000 

dilution).

2. Immunoprecipitation: Combine fractions 4 and 5 (Section 3.4) for 

immunoprecipitation using anti-caveolin-1 or -caveolin-2 antibodies as 

previously described (40).

4 Notes

1. Alternative to TNE, the following buffers can also be used:

(a) MBS buffer: 25 mM 2-(N-morpholino)ethanesulfonic acid (MES, pH 

6.6, Cat# M2933) and 150 mM NaCl.

(b) RIPA buffer: PBS, 1 % Nonidet P-40 (Cat# 98379), and 0.5 % sodium 

deoxycholate (Cat #30970).

2. Alternative to TX-100, other nonionic detergents can be used including Lubrol 

WX (1 %), CHAPS (1 %), Brij 98 (1 %), or 500 mM sodium carbonate (41, 42). 

Note that cholesterol resides in both lipid rafts and non-lipid rafts, and this may 

alter results from membrane extractions in the presence of detergents (43).
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3. Acute depletion of membrane cholesterol also disrupts other lipids including 

PI(4, 5)P2, and thus not all cellular changes result solely from disruption of lipid 

rafts (44).

4. Membrane preparations must be subjected to ultracentrifugation immediately 

and not frozen.

5. If using an SW60 rotor, mix 0.4 mL cell lysate in complete TNE with 1 % 

TX-100 with 0.4 mL of 90 % sucrose in TNE. Layer with 2.2 mL 30 % sucrose 

in TNE and then 1.2 mL of 5 % sucrose in TNE. Centrifuge at 49,000 rpm for 18 

h, and collect 0.4 mL fractions.
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Fig. 1. 
Planar and caveolae lipid rafts within the plasma membrane. Yellow-highlighted regions 

represent areas of high concentration of cholesterol and sphingolipids. Caveolin proteins, 

essential to caveolae formation, and flotillin proteins are able to bind and compartmentalize 

signaling molecules and regulate their activity. Lipid raft disruption by treatment with 

MβCD, filipin III, or shear stress results in dispersion of cholesterol molecules and leveling 

of caveolae. Subsequently, several signaling molecules are activated potentiating signal 

transduction events. Abbreviations: MβCD methyl-β-cyclodextrin, GPCR G-protein-coupled 

receptor, ADAM17 a disintegrin and metalloprotease domain 17 or TACE, Pro-EGF pro-

epidermal growth factor, EGFR epidermal growth factor receptor
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Fig. 2. 
Schematic diagram showing isolation of lipid rafts by discontinuous sucrose gradient 

centrifugation. Cell lysate is prepared in a lysis buffer containing 45 % sucrose and 

transferred to an ultracentrifuge tube. Two, 4 mL each, of 30 and 5 % sucrose are layered 

over the sample as shown. The gradient is subjected to centrifugation for 18 h at approx. 

247,000 × g allowing the buoyant lipid rafts to float to the 30 and 5 % interface. Twelve 1-

mL fractions are collected from the top and aliquots prepared for Western blotting showing 

the presence of caveolin-1 (Cav1) in the light density fractions (#4 and #5) (21)
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Table 1

Adhesion proteins and lipid rafts

Protein Junction type Lipid raft association Reference

Nectin-1 Adherens No (45)

Cadherin 13 Adherens Yes (46)

Afadin Adherens Minimal (45)

Filamin Adherens Yes (6)

Eplin Adherens TBD

Alpha-catenin Adherens Yes (47)

Beta-catenin Adherens Yes (37, 48,49)

Plekha7 Adherens TBD

Nezha Adherens TBD

E-cadherin Adherens Yes (37, 47)

Claudin 1–5 Tight Yes (50)

Claudin 14 Tight Yes (51)

Occludin Tight Yes (52)

Jam-1 Tight No (53)

Zo-1 Tight Yes (54)

Connexin 43, 32, 36, 46 Gap Yes (40, 55)

Connexin 26, 50 Gap No (55)

Desmoglein 2 Desmosome Yes (21, 46, 56)

Desmoglein 3 Desmosome Yes (57)

Desmocollin 2 Desmosome Yes (58)

Plakoglobin Desmosome Yes (46, 56)

Desmoplakin Desmosome Yes (58)

Actin Cytoskeletal Yes (46)

Integrin, beta 1 Focal adhesion Yes (46)

TBD to be determined

Major adhesion junction proteins of epithelial cells and their known association with lipid rafts are listed
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