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Long-range spatio-temporal correlations
in multimode fibers for pulse delivery
Wen Xiong1, Chia Wei Hsu 1 & Hui Cao 1

Long-range correlations play an essential role in wave transport through disordered media,

but have rarely been studied in other complex systems. Here we discover spatio-temporal

intensity correlations for an optical pulse propagating through a multimode fiber with strong

random mode coupling. Positive long-range correlation arises from multiple scattering in fiber

mode space and depends on the statistical distribution of arrival times. By optimizing the

incident wavefront of a pulse, we maximize the power transmitted at a selected time, and

such control is significantly enhanced by the long-range spatio-temporal correlation. We

provide an explicit relation between the correlation and the power enhancement, which

agrees with experimental results. Our work shows that multimode fibers provide a fertile

ground for studying complex wave phenomena. The strong spatio-temporal correlation can

be employed for efficient power delivery at a well-defined time.
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Coherent transport of classical and quantum waves in dis-
ordered media exhibits long-range correlations, which
exist in space, angle, frequency, time, and polarization1–15.

Such correlations, resulting from the crossing of wave paths, are
responsible for the formation of highly transmitting channels in
diffusive systems16–19. In the frequency domain, long-range
correlations enable broad-band enhancement of transmission
through disordered media by wavefront shaping20. Spatially,
long-range correlations significantly increase the efficiency of
wave focusing to a target of size much larger than the wavelength
in strongly scattering media21. However, long-range correlations
also increase the background when optimizing the energy deliv-
ered to a single speckle grain for continuous waves22,23 and
pulses24.

From the aspect of scattering, a multimode fiber (MMF) with
strong mode mixing shares similarities with a disordered medium.
Inherent imperfections and environmental perturbations introduce
random mode coupling in an MMF, and its effect grows with the
length of the fiber25,26. Such coupling can be regarded as scattering
in the fiber mode space, leading to energy transfer from the input
mode to the other transverse modes. An MMF has a significant
difference from the disordered medium: negligible reflection and
low propagation loss leading to near-unity transmission. For a
continuous wave input, energy conservation dictates that the
intensity increase in one mode must be accompanied by intensity
decreases in other modes, resulting in negative correlation among
the transmitted spatial modes, similar to those found in weak-
scattering (ballistic) systems and chaotic cavities8,27,28. If the MMF
has a large number of modes, such static correlations are very weak.
When the input is a short pulse, however, energy is no longer
conserved at any particular time, and correlation may be modified
and become time-dependent. Nevertheless, little is known about
such dynamic correlation in MMFs.

In this work, we discover long-range spatio-temporal correlations
in MMFs with strong random mode mixing. For a short pulse
input, the transmitted intensities in different spatial channels are
generally positively correlated at a given arrival time. The correla-
tion is enhanced at arrival times away from the center of the
transmitted pulse, which we attribute to the reduced number of
propagation paths at early or late arrival times. The transmitted
powers at different delay times are positively correlated for short
separation of the delays, and become negatively correlated for dis-
tant delays. Such dynamic correlations in an MMF are distinct from
those in diffusive or localized random media where the long-range
correlations in transmission are always positive9,24. The spatio-
temporal correlations play a crucial role in the coherent control of
short pulses transmitting through an MMF. The positive correlation
among spatial channels enables a global enhancement of trans-
mitted energy at a selected arrival time by shaping the incident
wavefront. Experimentally, we achieve a higher enhancement when
the target time is before or after the mean arrival time, as a result of
stronger long-range correlation. Theoretically, we provide a quan-
titative relation between spatio-temporal correlations and the time-
dependent enhancement of transmitted power, which agrees well
with our experimental data. Our results show that the maximal
power that can be delivered through an MMF at a well-defined time
is much higher than what is achievable without long-range corre-
lations. This discovery is important to MMF applications such as
telecommunication29, fluorescence endoscopy30–32, nonlinear
microscopy33, and fiber amplifiers34–36, in which ultrashort pulses
are deployed for energy delivery.

Result
Static and dynamic correlations. We start with the known static
correlations in disordered media. For a monochromatic wave

with any given input wavefront, the intensities I(r) at different
output positions r are correlated7,37,38

hIðrÞIðrþ ΔrÞi
hIðrÞihIðrþ ΔrÞi � 1 ¼ FðΔrÞ~C1 þ ~C2; ð1Þ

where 〈…〉 denotes the ensemble average. The constant ~C1 gives
the strength of short-range correlation, as the normalized func-
tion F(Δr) decays to zero at the distance |Δr| larger than the
speckle size39. The constant ~C2 represents the long-range corre-
lation that results from path crossings1,4 and is independent of
distance (see more details in Supplementary Note 1).

Even though Eq. (1) originates from wave transport in
disordered media, it has been derived mathematically on fully
general ground37,40, with the only assumption of isotropy,
namely, all channels are fully mixed and are statistically
equivalent (see Supplementary Note 1). An MMF with strong
and random mode mixing can also exhibit isotropy and therefore
follow Eq. (1). However, for continuous wave, the correlation
associated with intensity fluctuation in different spatial modes of
an MMF is somewhat trivial. Due to energy conservation, an
intensity fluctuation of ΔI in mode a results in an intensity
change of −ΔI/(N−1) in each of the other N− 1 modes on
average, where N is the number of fiber modes. For N≫ 1, ~C2 ��1=N is small.

Pulsed inputs introduce time dependences and non-trivial
magnifications to the correlations in MMFs. We consider
correlations of the transmitted intensity I(r, t) between different
output positions r and r+ Δr at arrival times t an t′,

CðΔr; t; t′Þ � hIðr; tÞIðrþ Δr; t′Þi
hIðr; tÞihIðrþ Δr; t′Þi � 1: ð2Þ

In the t= t′ case, when C(Δr, t, t) is positive, the transmitted
power at time t can be efficiently enhanced by wavefront shaping,
as enhancing the intensity at one position will simultaneously
enhance the intensities at other positions. If the time-dependent
transmission matrix at arrival time t is sufficiently isotropic, we
expect the same structure as Eq. (1). When t ≠ t′, the correlation
governs the transmitted intensities at time t when the transmis-
sion at time t′ is modified by changing the incident wavefront;
therefore it is related to the temporal shape of the output pulse
when the transmitted power is optimized at a given time.

Time-dependent transmission matrix. To characterize such
spatio-temporal correlation, we measure the transmission matrix
of an MMF with strong mode mixing. We use an off-axis holo-
graphic setup schematically shown in Fig. 1a. A spatial light
modulator (SLM; Hammamatsu X10468) scans the incident angle
of a laser beam (Aglient 81940A) onto the MMF, to excite dif-
ferent spatial modes with horizontal polarization. The plane wave
of the reference arm and the light transmitted through the fiber
interfere to form fringes on the camera, from which we extract
the horizontally polarized transmitted field. We use a one-meter-
long 0.22-NA graded-index fiber with a core radius of 50 μm and
84 guided modes per polarization. To introduce strong mode
mixing into such a short fiber, we use clamps to create micro-
bendings. The path lengths of the two arms are matched so the
mean arrival time of the pulse (relative to the reference) is zero.
The spectral correlation width of the fiber is 0.20 nm at the
wavelength of 1550 nm. We measure the field transmission
matrices over a wavelength range of 6.4 nm with the step of
0.04 nm. We then perform a Fourier transform to obtain the
time-dependent transmission matrices u(t) relating the incident
wavefront |ψin〉 to the transmitted wavefront jψoutðtÞi ¼ uðtÞjψini
at different arrival times t, considering a Gaussian transform-
limited input pulse centered at wavelength 1550 nm with a full
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width at half maximum (FWHM) of 2.0 nm (temporal FWHM=
2.6 ps). The input bandwidth is 10 times of the spectral correla-
tion width of the fiber. Thus for random input wavefronts the
transmitted pulse would be 10 times longer than the input pulse.

The total output intensity at time t is hψoutðtÞjψoutðtÞi=
hψinjuyðtÞuðtÞjψini. The mean eigenvalue of uyðtÞuðtÞ, shown in
Fig. 1b, represents the total transmitted power for random spatial
input wavefronts as a function of arrival time t. Comparing to the
input pulse width (Fig. 1b, black dotted line), the output pulse is
significantly stretched and distorted due to strong modal
dispersions that different modes propagate at different group
delays. The strong random mode coupling is evident from the
magnitude of the time-dependent transmission matrix, shown in
Fig. 1d for central arrival time; no matter which mode is launched
at the input, light is scattered to all spatial modes at the output.
The absence of a dominant diagonal reveals negligible ballistic
light at fiber output. Higher-order modes have slightly lower
magnitudes because they suffer stronger loss than the lower-order
modes. The transmission matrix at early (late) arrival time in
Fig. 1c (Fig. 1e) has larger contributions from lower-order
(higher-order) modes which have shorter (longer) group delay
(detailed discussion given in Supplementary Note 1).

Spatio-temporal correlations. We calculate the spatio-temporal
correlations C(Δr, t, t′) from the measured time-dependent
transmission matrices, replacing the ensemble average in Eq. (2)
with an average over random input spatial profiles. Figure 2a, b

plot CðΔr; tÞ � CðjΔrj; t; t′ ¼ tÞ and two cross sections of it
along Δr at t=−17.3 ps and t= 3.7 ps. We observe a short-range
correlation that starts from one and vanishes at the speckle size of
about 3 μm, beyond which we see a long-range correlation that is
approximately constant with respect to Δr. This indicates
CðΔr; tÞ ¼ FðΔrÞC1ðtÞ þ C2ðtÞ, consistent with Eq. (1). Figure 2c
shows the arrival-time dependence of the long-range correlation
C2(t); it is small at the central arrival time but increases toward
early or late arrival times.

The time dependence of C2(t) can be understood through the
optical path-length distribution in the multimode fiber. Due to
strong mode coupling, there are numerous paths that light can
take to travel through the fiber. By exciting the fiber with many
random incident wavefronts, all paths are explored and the
averaged temporal shape of transmitted pulse in Fig. 1b reflects
the number of propagation paths with varying lengths. For the
middle delay times, there are a large number of propagation
paths, thus C2(t) is very weak. The larger C2(t) at early and late
arrival times is consistent with the lower number of paths for
such times. Conceptually, if there is only one path of length
corresponding to the arrival time t, the output intensities I(r, t) at
different positions r must be fully correlated: varying the incident
wavefront can only change how much light is coupled into that
one path, which will increase or decrease I(r, t) at all positions in
the same way. Therefore, the fewer paths for the arrival time t, the
stronger C2(t).

Long-range correlation between far-away speckle grains exists not
only between speckle grains at the same arrival time, but also
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Fig. 1 Time-dependent transmission matrix of an MMF. a Schematics of experimental setup for both transmission matrix measurement and wavefront
shaping. A laser beam with tunable frequency is collimated, and its horizontal polarization is selected and split into two arms, with one being the reference
and the other propagating through the MMF after reflecting off a spatial light modulator (SLM). The SLM is demagnified and imaged onto the MMF facet.
Light transmitted through the MMF is recombined with the reference plane wave, and its horizontal polarization is imaged onto a CCD camera. The path
lengths of the two arms are matched by tuning the delay line formed by mirrors M1–M3. L, lens; BS, beam splitter; PBS, polarizing beam splitter. b Temporal
shapes of the input pulse (black dotted line, right axis) and the mean eigenvalue of uyðtÞuðtÞ (blue solid line, left axis) representing the transmitted
intensities of random spatial inputs. The two curves are normalized to have the same area. c–e Magnitudes of the measured time-dependent transmission
matrices at three arrival times (marked by red arrows in b), showing strong mode mixing in the fiber. The transmission matrices are measured in k space at
input and real space r at output, and subsequently converted to the fiber mode basis
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between speckle grains at different arrival times. This is quantified by
C(Δr, t, t′) as defined in Eq. (2). At large |Δr|, this quantity again
becomes independent of |Δr| and approaches the asymptotic value
C2(t, t′). In Fig. 2d, we show C2(t, t′) for t and t′ from −20 ps to
25 ps. The long-range correlation is positive close to the diagonal,
namely close to the C2(t) discussed earlier. When t and t′ are far
apart, however, the long-range correlation becomes negative.
Figure 2e show three cross-sections. Near the central arrival time
(t′= 3.7 ps), C2(t, t′) is close to zero at all t. Meanwhile, at t′=
−17.3 ps, C2(t, t′) peaks at t ≈ t′ and decays away from it, eventually
becoming negative. The trend, however, is opposite at t′= 16.1 ps.
The correlation is negative at early delay times and becomes positive
at late arrival time. Such a negative correlation is a result of
the conservation of transmitted pulse energy, which requires an
increase of spatially integrated intensity (power) at arrival time t= t′
to be compensated by a decrease of power at other arrival times.

Pulse delivery. The positive spatio-temporal correlation C2(t) at
early or late arrival times will lead to a higher achievable
enhancement at such times. Because the matrix uyðt0Þuðt0Þ is
Hermitian, the global optimum, which determines the maximum
power that can be delivered at time t0, is given by the largest
eigenvalue of uyðt0Þuðt0Þ, and the corresponding eigenvector is
the desired incident wavefront20. By shaping the incident wave-
front with the SLM41,42, we can enhance the total transmitted
power at a target arrival time and compensate for the strong
modal dispersion in the fiber. Experimentally, we determine such
optimal transmission channels from the measured time-
dependent transmission matrices, and then generate the desired
wavefront with the same setup, using computer-generated phase
holograms to simultaneously modulate the phase and amplitude
profiles43. By scanning the wavelength and Fourier transforming
the spectral measurements to the time domain, we obtain the
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Fig. 2 Spatio-temporal correlations in MMF with strong random mode mixing. a Intensity correlations CðΔr; tÞ � CðjΔrj; t; t′ ¼ tÞ, revealing a short-range
component C1(t)≈ 1 at spatial distance within one speckle (Δr≲3 μm) and a long-range component C2(t) that persists at large distance. b Two cross
sections of C(Δr, t) at arrival times t=−17.3 ps and t= 3.7 ps. c Time dependence of the long-range component C2(t), averaging over Δr for Δr > 5 μm. The
error bars represent the standard deviation among four measurements of the fiber in different bending configurations. d Long-range correlations C2(t, t′)
between spatio-temporal speckle grains at different arrival times t and t′. e Cross sections of C2(t, t′) at t′=−17.3 ps, 3.7 ps and 16.1 ps (marked by white
dashed lines in d)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10916-4

4 NATURE COMMUNICATIONS | (2019)10:2973 | https://doi.org/10.1038/s41467-019-10916-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


spatially integrated temporal pulse shapes of such optimal
transmission channels.

The pulses optimized for arrival times t0=−5 ps and t0= 16.1
ps are shown in Fig. 3a, b (red solid curve), in comparison to the
averaged pulse of random spatial inputs (black dash-dotted
curve). The sharp peak at the selected arrival time, as marked by
the vertical black dotted line, illustrates that the transmitted
power can be effectively enhanced at different target times, even
in the presence of strong modal dispersions in the fiber. The peak
width equals the input pulse width. The spatial intensity patterns
of the optimized pulse and the non-optimized one at the target
arrival times, shown in Fig. 3a, b, are obtained from the Fourier
transform of the frequency-resolved field patterns measured with
the optimized and random incident wavefronts. It is distinct from
spatio-temporal focusing24,44–48 where only one speckle is
enhanced. Figure 3b shows that the transmitted power after the
target time increases, but well before the target time it increases.
Such changes are determined by correlation C2(t, t′= 16.1 ps)
shown in Fig. 2e. The negative correlation at early arrival time
suppresses the background and the positive correlation at late
arrival time enhances the background. Figure 3c plots the pulse
shapes optimized for different arrival times from t0=−20 ps
to 25 ps. The peak follows the target time t0, and notably, the
background also shifts with the target time.

To evaluate the effectiveness of the transmitted power
optimization, we define an enhancement factor ηðt0Þ �
Ienhðt0Þ=Irandomðt0Þ, where Ienh(t0) and Irandom(t0) are the spatially
integrated intensities of the optimized pulse and the random
pulse at the target time t0. We plot the measured enhancement

factor η (blue square) in Fig. 3d. The standard deviation of the
enhancement between measurements on four different days is
shown by the error bars. The deviation is larger at early or late
arrival times as the weaker pulse intensities there lead to smaller
signal-to-noise ratio. The average enhancement is about four
times around the central arrival time, which is what one expects
through the quarter-circle law for the singular values of a square
random matrix with uncorrelated elements49. At early or late
arrival times, we achieve power enhancements much >4; such
increase is consistent with the large long-range correlation C2(t)
that we observed (Fig. 2c).

Power enhancement. Finally, we provide a quantitative connec-
tion between the long-range spatio-temporal correlation C2(t)
and the enhancement factor η(t0) of transmitted power at arrival
time t0. We use a heuristic model similar to that employed in
ref. 21, capturing the correlation between output channels at
arrival time t0 through a reduction in the effective number of
output channels. Specifically, we consider an effective random
matrix with N input channels and NðeffÞðt0Þ output channels, and
we consider all elements of this matrix to be identically inde-
pendently distributed. The enhancement η is determined by the
largest eigenvalue, which is related to the spread of the eigenva-
lues characterized by the eigenvalue variance. As detailed in the
Supplementary Note 1, the normalized eigenvalue variance
associated with the reduced matrix is given by the
Marčhenko–Pastur distribution49 to be N=NðeffÞðt0Þ, while that
associated with the actual time-resolved transmission matrix is
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Fig. 3 Enhancing transmitted power at selected time. a, b Temporal shapes of the output pulse when the spatially integrated intensity (power) is optimized
at arrival time (a) t0=−5 ps and (b) t0= 16.1 ps. Red solid lines are the measured pulse shapes with optimized input wavefronts, the blue dotted lines are
predicted from measured correlations C2(t, t′). They exhibit strong enhancement compared to the mean eigenvalues of uyðtÞuðtÞ, which represents the
mean output pulse shape for random input wavefronts (black dash-dotted lines). Transmitted powers are all normalized by the peak power of the
transmitted pulse with random input wavefronts. The insets are spatial intensity patterns at t0 for the optimized wavefront (upper panel) and a random
wavefront (lower panel). The speckle grains at t0=−5 ps are larger than those at t0= 16.1 ps, due to larger contributions from the lower-order modes at
earlier arrival time. c Temporal shapes of pulses optimized at different t0, ranging from −20 ps to 25 ps. The target time of a and b are marked by the white
dashed lines. d Enhancement factor η of the transmitted power at the target arrival time t0. Blue squares: measured enhancement. Black circles:
enhancement predicted from C2(t). Error bars represent the standard deviation among four measurements of the fiber in different bending configurations.
Red dashed line indicates four times enhancement if C2(t)= 0
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1+NC2(t0). Therefore, we choose

NðeffÞðt0Þ ¼
N

1þ NC2ðt0Þ
ð3Þ

to match the two corresponding eigenvalue variances. This rela-
tion quantifies how long-range correlation effectively reduces the
number of output channels. The enhancement is the normalized
maximal eigenvalue, which for an uncorrelated matrix is

τmax=�τ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=NðeffÞðt0Þ
p

� �2
(ref. 49). Inserting Eq. (3), we

obtain a simple equation

ηðt0Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ NC2ðt0Þ
p

� �2 ð4Þ

that relates the maximal enhancement to the long-range spatio-
temporal correlation.

In Fig. 3d, we compare the measured enhancement to the
enhancement predicted through the measured C2(t) via Eq. (4)
(black circles). Overall, the two curves agree well, especially
around the central arrival time. Some differences at early or late
arrival times may be due to the fact that the time-dependent
transmission matrix is not as isotropic as that at the central time
(as shown in Fig. 3c–e). We further generalize the relationship in
Eq. (4) to predict the whole output pulse (both the peak at the
target time and the background) via C2(t, t′) (see Supplementary
Note 1). In Fig. 3a, b, we plot the predicted temporal shapes (blue
dotted curves) of the optimized pulses with t0=−5 ps and t0=
16.1 ps on top of the measured pulse shapes. As C2(t, t0) changes
from positive correlation for the arrival time t close to the target
time t0 to negative correlation for t far from t0, the transmitted
power is enhanced near the peak at t0 and suppressed away from
the peak. Consequently, the background shifts toward the peak
due to long-range correlation.

Discussion
Local and nonlocal correlations have been studied extensively in
scattering media, but there are few observations in other complex
photonic systems. Short-range correlation introduces the rota-
tional memory effect that has been observed in a MMF with weak
mode coupling50,51. Here we observe long-range spatio-temporal
correlation in a multimode fiber with strong mode mixing when a
pulse propagates through the fiber. The correlation not only
determines the effectiveness of enhancing the transmitted power
at a target time, but also capture the temporal shape of the
resulting pulse. We provide a qualitative explanation for the long-
range spatio-temporal correlations using the optical path-length
distribution in the multimode fiber with random mode mixing.
This simple model reveals the possibility of physically turning the
spatio-temporal correlations by tailoring the path-length dis-
tribution in the fiber via a careful design of the fiber
configuration.

Enhancing the transmitted power in time can be utilized in
many fiber applications from communication to imaging. The
maximum eigenmode (EM) of the time-resolved transmission
matrix provides the incident wavefront for focusing the trans-
mitted pulse to a chosen delay time. This method is effective for
any input pulse with arbitrarily broad spectrum, and it guarantees
the maximal power delivery at any selected time. Especially when
the spectral width of an input pulse is much larger than the
spectral correlation width of the fiber, the EM outperforms
the principal mode52–54 and super-principal mode55 in achieving
the highest peak power of the transmitted pulse (see Supple-
mentary Note 2 for detailed discussion and direct comparison).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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