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Metagenomics and transcriptomics 
data from human colorectal cancer
Tina Visnovska   1,2, Patrick J. Biggs   3, Sebastian Schmeier   1, Frank A. Frizelle4 & 
Rachel V. Purcell   4

Colorectal cancer is a heterogenous and mostly sporadic disease, the development of which is 
associated with microbial dysbiosis. Recent advances in subtype classification have successfully 
stratified the disease using molecular profiling. To understand potential relationships between 
molecular mechanisms differentiating the subtypes of colorectal cancer and composition of gut 
microbial community, we classified a set of 34 tumour samples into molecular subtypes using RNA-
sequencing gene expression profiles and determined relative abundances of bacterial taxonomic 
groups. To identify bacterial community composition, 16S rRNA amplicon metabarcoding was used as 
well as whole genome metagenomics of the non-human part of RNA-sequencing data. The generated 
data expands the collection of the data sources related to the disease and connects molecular aspects of 
the cancer with environmental impact of microbial community.

Background & Summary
Colorectal cancer (CRC) is one of the most common types of cancer worldwide, in terms of both incidence and 
mortality1. Most cases of CRC are sporadic with no known genetic link. Environmental factors are therefore 
likely to play a critical role in the development of the disease, and a key characteristic of the colon is that it houses 
the largest proportion of the human microbiome, suggesting that this might play a role in causing CRC. Recent 
data points to the importance of the microbial communities in the gut, the microbiome, and possible links to the 
development of CRC2–5. If this is the case, understanding the role of the microbiome in CRC will have profound 
effects on cancer rates, since it is potentially relatively easily to manipulate, using diet, pre- and probiotics and 
faecal transplants6–9. However, despite the intense interest in the field and increasing evidence pointing to a role 
for the microbiome in CRC, convincing connections with clinical parameters and outcome are rarely seen.

CRC is a highly heterogeneous disease, with varying clinical outcomes, response to therapy, and morpholog-
ical features, and molecular subtyping systems based on CpG-island methylation, microsatellite instability and 
gene mutations have shown strong associations with outcome and response to therapy in CRC10–13.

Contrary to other microbiome studies, where CRC is treated as a single disease entity, we focused on the 
association between Consensus Molecular Subtypes (CMS) of colorectal cancer and gut microbiome patterns in 
the accompanying primary publication14. We stratified a set of CRC tumour samples into CMS according to their 
gene expression profiles15 and assessed differences in bacterial communities among CMS. The gene expression 
profiles were generated using RNA sequencing, and 16S rRNA metabarcoding as well as metagenomic analysis 
of non-human portion of the RNA sequencing data were employed for bacterial taxa quantification. We analysed 
the enrichment/depletion of bacterial species in one subtype compared to the other subtypes and showed enrich-
ment of certain oral bacteria associated with CMS, which was validated using targeted quantitative PCR.

The data generated in this study combine various views of each sample as multiple different methods were 
used to obtain information about the samples. This allows us to study associations between the results of the 
particular methods. Making the raw sequencing data available together with the scripts used for data processing 
and analysis, we enable reuse of the data and extend the collection of the data sources related to CRC, for which 
the aetiology is not yet well understood.
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Fig. 1  Workflow of sample and data processing. Samples and data are shown in grey and processes highlighted 
in blue.

SampleID CMS Age Gender Site Side Stage

CRC_01 CMS2 73 M Colon Left 1

CRC_02 U/C 62 F Colon Left 3

CRC_03 U/C 76 F Colon Right 2

CRC_04 CMS1 88 F Colon Right 2

CRC_05 U/C 68 F Colon Right 3

CRC_06 CMS3 63 M Colon Right 1

CRC_07 CMS2 81 F Colon Left 2

CRC_08 CMS2 74 M Colon Right 3

CRC_09 CMS1 83 F Colon Right 2

CRC_10 CMS2 81 M Colon Left 1

CRC_11 CMS3 79 F Colon Left 3

CRC_12 CMS3 79 F Colon Right 1

CRC_13 CMS2 74 F Colon Right 2

CRC_14 U/C 83 M Colon Left 2

CRC_15 CMS3 77 F Colon Right 3

CRC_16 CMS3 84 F Colon Right 3

CRC_17 U/C 77 M Colon Left 3

CRC_18 CMS2 58 M Colon Right 3

CRC_19 CMS2 77 M Colon Left 2

CRC_20 CMS3 74 M Colon Right 2

CRC_21 CMS1 75 F Colon Right 2

CRC_22 CMS3 78 F Rectum N/A 3

CRC_23 CMS2 78 F Colon Left 2

CRC_24 CMS3 45 F Colon Right 1

CRC_25 CMS1 78 F Colon Right 2

CRC_26 U/C 67 M Colon Right 3

CRC_27 CMS1 75 F Colon Right 3

CRC_28 CMS3 78 M Colon Left 1

CRC_29 CMS2 67 M Colon Right 2

CRC_30 CMS2 80 M Colon Left 2

CRC_31 CMS2 74 F Colon Right 2

CRC_32 CMS2 68 F Colon Left 4

CRC_33 CMS2 80 F Colon Right 3

CRC_34 CMS1 81 M Colon Right 3

Table 1.  Patient metadata for Predict colorectal cancer cohort. Gender categories M for male and F for female 
are used; column stage is post-operative Tumour-Node-Metastasis staging; U/C in CMS column stands for 
unclassified; and N/A in the side column stands for data not available.
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Methods
Here, we present a more condensed version of the methods that led to data and analyses in the primary pub-
lication14. The workflow is shown in Fig. 1 and the names of the partial processes (depicted in blue in the fig-
ure) are used as titles in this section to structure the text. We make the raw sequencing data freely available in 
NCBI Sequence Read Archive16, and scripts together with more downstream analysis results are accessible as the 
Zenodo dataset17.

Sample collection & handling.  Tumour tissue was collected from 34 patients undergoing surgery for 
resection of colorectal tumours. None of the patients had received chemotherapy prior to surgery, and all patients 
provided written, informed consent. This study was carried out with approval from the University of Otago 
Human Ethics Committee (ethics approval number: H16/037). Table 1 shows patient metadata for the cohort. 
At the time of surgery, CRC tumour cores were taken and immediately frozen in liquid nitrogen and initially 
stored at −80 °C. They were subsequently transferred to RNAlater ICETM (Qiagen), and equilibrated for at least 
48 hours at −20 °C, prior to nucleic acid extraction. RNA and DNA were extracted from 15–20 mg each of tissue 
using RNEasy Plus Mini Kit (Qiagen) and DNeasy Blood and Tissue Mini Kit (Qiagen), respectively. Tissue dis-
ruption was carried out using a Retsch Mixer Mill. RNA extraction included a DNAse treatment step, and DNA 
extraction included overnight incubation with proteinase K, and treatment with RNAse A. Purified nucleic acids 
were quantified using the NanoDrop 2000c spectrophotometer (Thermo Scientific, Asheville, NC, USA), and 
stored at −80 °C. Nucleic acids were extracted from all tumour samples in a single batch by one operator, to avoid 
inter-batch variation.

RNA-seq.  Library preparation and ribosomal RNA depletion was carried out using Illumina TruSeq stranded 
total RNA library prep V1 and Ribo-Zero Gold. The ribosomal RNA depletion step has potentially removed a 
portion of bacterial ribosomal RNA alongside of the human one, hence losing some information on bacteria. 
However, the same method of depletion was used on all the samples thus the potential loss would effect all of 
them in a similar manner. RNA sequencing was carried out using the Illumina HiSeq. 2500 V4 platform, to pro-
duce 125 bp paired end reads. Each sample library was split equally to two HiSeq lanes and the sequences from 
the two lanes were merged for each sample during the data processing phase.

Read mapping, Gene expression quantification, and Profile classification.  Adapters and low qual-
ity segments were removed from the sequenced reads using fastq-mcf from EA Utils18 and SolexaQA++19. The 
cleaned reads were mapped to the GRCh38 reference human genome with STAR20 and the read count for each 
HAVANA annotated gene in every sample was calculated with htseq-count21. The read counts were transformed 
to gene expression profiles measured in transcripts-per-million (TPM) with DESeq222. The published CMS clas-
sifier15 was used to assign a molecular subtype of the disease to each sample based on the gene expression profiles 
(for more details see14). We identified six samples as CMS1, 13 samples as CMS2 and nine samples as CMS3. No 
samples were classified as CMS4, and six samples were unclassified.

Fig. 2  Per base quality of raw sequencing data, sample CRC_16. Output of FASTQC: (a) RNA sequencing, (b) 
16S rRNA amplicon sequencing.
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Assignment of reads to bacterial taxa.  A Kraken23 database was built containing all NCBI Refseq 
complete genomes or chromosome-level genomes (January 2017) and additional genomes of bacteria pro-
posed to play a role in CRC, disregarding their genome status. The used bacterial genomes are listed in 
the files Supplementary_table_K1.xlsx  (all complete and chromosome-level genomes) and 
Supplementary_table_K2.xlsx (of interest specifically for CRC) in the folder data/kraken of the 
accompanying repository. All RNA-seq reads that were not uniquely mapped to the human genome reference 
sequence were used as input to Kraken using this custom database for taxonomic classification per sample. 
Altogether, 2231 different bacterial species were detected in at least one sample and only 1.4% of the analysed 
reads were not assigned to any bacterial species. We visualised bacterial abundances per CRC subtype using 
Krona24 and the interactive plots are available at http://crc.sschmeier.com.

Differential analysis of bacterial species in CMS.  We analysed the enrichment/depletion of bacterial 
species in one subtype compared to the other subtypes employing a strategy similar to differential expression 
analysis. Using edgeR25, we identified bacterial taxa with considerable abundance differences among the subtypes. 
For each CRC sample we used the assigned CMS subtype, the list of identified bacterial species, and the read 
counts corresponding to the identified species as input data. We treated all samples of a certain CMS subtype as 
replicates belonging to the subtype and ran differential analysis of each CMS subtype against all the other classi-
fied samples. This analysis identified bacterial species that are enriched (or depleted) in a subtype as compared to 
all other subtypes. For further details regarding the analysis, please refer to the primary publication14.

sample 
ID

sequenced 
read pairs 
(count)

base 
quality ≥ 
30 (in %)

cleaned read 
pairs (count)

cleaned in 
sequenced 
(in %)

uniquely 
mapped read 
pairs (count)

uniquely 
mapped in 
cleaned (in %)

fragments counted 
in expression profiles 
(count)

counted in 
mapped 
(in %)

read pairs 
for meta- 
genomics(count)

used for meta- 
genomics in 
cleaned (in %)

CRC_01 10210344 92.99 8196630 80.28 7150347 87.24 5301615 74.14 1046283 12.76

CRC_02 18195379 91.86 14099943 77.49 8953303 63.50 6339931 70.81 5146640 36.50

CRC_03 17060748 92.86 13695754 80.28 11763192 85.89 8737708 74.28 1932562 14.11

CRC_04 16113563 92.83 12984204 80.58 7771335 59.85 5515093 70.97 5212869 40.15

CRC_05 12283116 92.70 9787847 79.69 8177368 83.55 6141780 75.11 1610479 16.45

CRC_06 11889536 92.52 9444276 79.43 7689706 81.42 5485409 71.33 1754570 18.58

CRC_07 16767600 92.77 13384614 79.82 11174494 83.49 8282768 74.12 2210120 16.51

CRC_08 11692023 92.05 9148488 78.25 7211636 78.83 5370987 74.48 1936852 21.17

CRC_09 12414326 91.96 9744352 78.49 4853350 49.81 3473194 71.56 4891002 50.19

CRC_10 14196953 92.41 11216809 79.01 9659114 86.11 7307815 75.66 1557695 13.89

CRC_11 11891786 92.48 9384672 78.92 5842764 62.26 4172474 71.41 3541908 37.74

CRC_12 18376957 92.45 14448449 78.62 10438073 72.24 7535458 72.19 4010376 27.76

CRC_13 16869568 92.16 13310571 78.90 11664960 87.64 8747487 74.99 1645611 12.36

CRC_14 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

CRC_15 13680558 90.83 10481777 76.62 5713010 54.50 4035523 70.64 4768767 45.50

CRC_16 13982612 91.80 11035288 78.92 8867413 80.36 6509816 73.41 2167875 19.64

CRC_17 16873883 92.10 13306336 78.86 9959970 74.85 7181815 72.11 3346366 25.15

CRC_18 16663445 92.17 13179807 79.09 10641271 80.74 7400042 69.54 2538536 19.26

CRC_19 3518434 91.50 2721238 77.34 1258917 46.26 727030 57.75 1462321 53.74

CRC_20 13430061 91.98 10490785 78.11 1701669 16.22 1087471 63.91 8789116 83.78

CRC_21 9845344 90.87 7491472 76.09 5741211 76.64 4272125 74.41 1750261 23.36

CRC_22 15083803 91.89 11865373 78.66 10376744 87.45 7763574 74.82 1488629 12.55

CRC_23 9427192 90.64 7169010 76.05 5663964 79.01 4216223 74.44 1505046 20.99

CRC_24 11670754 90.49 8824150 75.61 6151634 69.71 4486074 72.92 2672516 30.29

CRC_25 15947939 92.42 12533528 78.59 8487630 67.72 6353442 74.86 4045898 32.28

CRC_26 14590462 91.97 11341012 77.73 9150589 80.69 6714043 73.37 2190423 19.31

CRC_27 14302258 92.33 11333614 79.24 10074723 88.89 7531937 74.76 1258891 11.11

CRC_28 11519270 91.74 9008972 78.21 7911036 87.81 5724147 72.36 1097936 12.19

CRC_29 10106322 93.12 8158472 80.73 7401313 90.72 5458587 73.75 757159 9.28

CRC_30 9323022 87.74 6502374 69.75 2697353 41.48 1445243 53.58 3805021 58.52

CRC_31 16617530 92.22 13095067 78.80 11255164 85.95 8326092 73.98 1839903 14.05

CRC_32 12418690 89.24 8994119 72.42 7557147 84.02 5644425 74.69 1436972 15.98

CRC_33 15556518 92.15 12165032 78.20 10928495 89.84 8206798 75.10 1236537 10.16

CRC_34 18455738 92.85 14793088 80.15 13219887 89.37 9995411 75.61 1573201 10.63

Table 2.  RNAseq, read counts and their ratios in various data processing stages for each sample. N/A in the 
CRC_14 sample stands for data not available.
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16S rRNA metabarcoding.  Libraries containing 16S rRNA were prepared with 20 ng of DNA for each 
sample using primer pairs flanking the V3 and V4 hypervariable regions of the 16S rRNA gene and Illumina 
sequencing adaptors and barcodes were added using limited cycle PCR. Amplicon sequencing was carried out 
using the Illumina MiSeq platform, and paired end reads of length 250 bp were generated.

Metabarcoding data analysis.  Short overlapping forward and reverse reads coming from the same 
fragment were joined together with FLASh26 to form sequences of the V3-V4 hypervariable 16S rRNA region. 
Afterwards, low quality regions were removed from the resulting fragments with SolexaQA++19. Microbiome 
analysis was carried out with the QIIME bioinformatics pipeline27 using the Greengenes database28 for taxonomy 
assignment. No further normalisation of the data was performed.

Data Records
Sequenced genomic data from both RNA-seq and 16S rRNA metabarcoding experiments are stored in the 
Sequence Read Archive as the study SRP11776316. Data resulting from the analyses presented here are located in 
the folder data of the Zenodo repository17. The data are separated into several subfolders:

•	 The folder expr contains raw read counts in subfolder raw_counts, tpm-based expression profiles of 
all samples stored in file tpm.readyForClassifier.tsv and also file CMSclassifiedCRC.tpm.
havana.tsv containing the CMS subtype classification. These files are the main outcomes of gene expres-
sion profile classifications.

sampleID
sequenced read 
pairs (count)

base quality 
≥ 30 (in %)

cleaned fragments 
(count)

cleaned in 
sequenced (in %)

CRC_01 333335 89.75 176823 53.05

CRC_02 238221 92.15 126462 53.09

CRC_03 356650 91.98 187474 52.57

CRC_04 307676 92.35 165991 53.95

CRC_05 261798 93.33 148547 56.74

CRC_06 122630 92.36 67416 54.98

CRC_07 175589 94.39 104310 59.41

CRC_08 210849 93.22 119255 56.56

CRC_09 238258 94.06 133700 56.12

CRC_10 233536 92.30 129813 55.59

CRC_11 291890 87.52 148406 50.84

CRC_12 173621 93.14 96744 55.72

CRC_13 204471 92.43 113588 55.55

CRC_14 255851 92.52 141822 55.43

CRC_15 254700 93.37 145899 57.28

CRC_16 210014 94.06 126141 60.06

CRC_17 197765 92.96 110784 56.02

CRC_18 161324 92.88 90441 56.06

CRC_19 147498 93.66 82425 55.88

CRC_20 235318 92.33 127779 54.30

CRC_21 169421 93.64 96627 57.03

CRC_22 249364 93.55 144146 57.81

CRC_23 171152 91.54 91281 53.33

CRC_24 102066 91.90 54880 53.77

CRC_25 334496 93.67 195656 58.49

CRC_26 265504 93.22 150713 56.76

CRC_27 69391 93.02 40037 57.70

CRC_28 137873 91.43 74333 53.91

CRC_29 176936 94.06 107348 60.67

CRC_30 202971 94.46 118078 58.17

CRC_31 220216 93.44 126807 57.58

CRC_32 108880 93.34 61688 56.66

CRC_33 219198 94.42 128793 58.76

CRC_34 305438 93.88 178759 58.53

Table 3.  16S rRNA metabarcoding, read counts and their ratios in various data processing stages for each 
sample.
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•	 Results of the metagenomics analysis of the non-human genomic content of RNA-seq are located in folder 
kraken together with two tables (Supplementary_table_K*.xlsx) containing lists of bacterial spe-
cies used in this metagenomics analysis.

•	 The folder 16S contains the biom file otu_table.biom resulting from the 16S rRNA metabarcoding 
analysis with QIIME and two partial abundance tables otu_table_sorted_*.txt.gz. The abundance 
tables are derived from the biom file and were used further for data visualisation in the primary publication 
as well as for the metagenomics method comparison.

Technical Validation
RNA-seq raw data quality.  The quality of raw sequenced reads from RNA-seq experiments was assessed 
with FASTQC and was very good. A pair of representative per base quality plots of corresponding forward and 
reverse read pairs for one sample is shown in Fig. 2a). Regardless of the raw data quality, all the samples under-
went routine data cleaning to ensure that no base was called with a Phred quality below 20. In Table 2, we show 
number of reads passing various data processing stages together with relative proportion of the reads passing two 
different stages.

16S rRNA sequencing raw data quality.  In Fig. 2b), we show quality of the 16S rRNA sequencing raw 
data for sample CRC_16. The other samples’ 16S rRNA quality plots looked similar. It can be seen that per base 
quality varied a little bit more along the 16S rRNA reads when compared to the RNA-seq reads, but overall the 
quality was very good for the 16S rRNA sequencing as well. Please note that the read length for the 16S rRNA 
sequencing was twice the read length of the RNA-seq, which together with differences between the used sequenc-
ing instruments explains differences in the quality plots. All the 16S rRNA samples underwent routine data clean-
ing to ensure that no base was called with a Phred quality below 20. In Table 3, we show number of reads passing 
various data processing stages together with relative proportion of the reads passing two different stages.

Code Availability
All the code used to process the genomic data is freely available as a part of the provided Zenodo repository17 
and the code is located in the folder named scripts. The scripts folder also contains dependencies listed 
in the file used_packages_and_their_versions.tsv and the used parameter values listed in used_
parameters.tsv. Depending on the scripts’ functionality, they are separated into various folders:

•	 The folder rnaseq-subtype-classification contains scripts used for read mapping, gene 
expression quantification, and profile classification.

•	 The folder kraken/human-unmapped contains scripts to assign reads to bacterial taxa.
•	 The folder kraken/diff-expr-taxa contains scripts for differential analysis of bacterial species in 

CMS.
•	 The folder 16S-metabarcoding contains scripts for metabarcoding data analysis.
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