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A practical guide for mutational signature analysis
in hematological malignancies
Francesco Maura1,2,3, Andrea Degasperi 3,4,5, Ferran Nadeu 6,7, Daniel Leongamornlert3, Helen Davies3,4,5,

Luiza Moore 3, Romina Royo8, Bachisio Ziccheddu9, Xose S. Puente 10,11, Herve Avet-Loiseau12,

Peter J. Campbell3, Serena Nik-Zainal3,4,5, Elias Campo6,7,8, Nikhil Munshi13,14 & Niccolò Bolli2,9

Analysis of mutational signatures is becoming routine in cancer genomics, with implications

for pathogenesis, classification, prognosis, and even treatment decisions. However, the field

lacks a consensus on analysis and result interpretation. Using whole-genome sequencing of

multiple myeloma (MM), chronic lymphocytic leukemia (CLL) and acute myeloid leukemia,

we compare the performance of public signature analysis tools. We describe caveats and

pitfalls of de novo signature extraction and fitting approaches, reporting on common inac-

curacies: erroneous signature assignment, identification of localized hyper-mutational pro-

cesses, overcalling of signatures. We provide reproducible solutions to solve these issues and

use orthogonal approaches to validate our results. We show how a comprehensive muta-

tional signature analysis may provide relevant biological insights, reporting evidence of c-AID

activity among unmutated CLL cases or the absence of BRCA1/BRCA2-mediated homologous

recombination deficiency in a MM cohort. Finally, we propose a general analysis framework

to ensure production of accurate and reproducible mutational signature data.
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The advent of next generation sequencing has profoundly
changed both the research and clinical approach to cancer
in the last 10 years1. While the cancer genome landscape

may be composed of thousands of events, only a minimal fraction
of them can be considered as drivers2–5. Despite the majority of
tumor mutations do not have a functional role, the entire coding
and non-coding mutational catalog can be extremely informative
for the identification of the mutational processes operative in
different cancer types during initiation and progression4,6–10.

Historically, a simple analysis of single-nucleotide variants
(SNVs) as a six-class mutational spectrum (C∙G→A∙T, C∙G→
G∙C, C∙G→ T∙A, T∙A→A∙T, T∙A→ C∙G, and T∙A→G∙C) has
highlighted how different cancer types are characterized by dif-
ferent contributions from each class, some of which strongly
associated with distinct exogenous carcinogens exposure11,12. For
example, the C∙G→A∙T transversion is related to smoking in
lung cancer samples13, and the C∙G→ T∙A transition is sig-
nificantly over-represented in skin cancers related to UV light
exposure11,12,14. Following on from these preliminary observa-
tions, different approaches have been suggested to gain resolution
in the analysis of these so called mutational signatures. Com-
bining the six possible SNV classes together with their trinu-
cleotide contexts (i.e., the bases 5ʹ and 3ʹ of the mutated
nucleotide) all SNVs have been classified into 96 possible
combinations6,7,15. This classification has then been used to
extract >30 different mutational signatures with a non-negative
matrix factorization (NNMF) approach from a large series of
whole-genome (WGS) and exome (WES) sequencing data6,16,17.
Some of these signatures are specifically associated with defects of
DNA repair mechanisms, exposure to exogenous carcinogens, or
different patterns of structural variants (SVs), suggesting they
truly reflect known and unknown mutational processes shaping
the genome of each cancer type10,15,17–20. Further to corrobor-
ating their biological relevance, some mutational signatures are
also associated with a distinct clinical outcome and emerged as
potential biomarkers for novel target therapies18,19,21,22.

Since this initial effort, several alternative approaches to NNMF
have been proposed to improve the mathematical efficacy and
biological accuracy of mutational signatures extraction from the
96-class profile of each cancer6,7,10,23–29. However, the field of
mutational signature extraction still lacks a unanimous consensus
and standardization of analysis, often resulting in discrepancies
between results from similar datasets obtained using different
methodological approaches4,9,10,21,22,30–33. As WGS and WES are
becoming common practice, with implications for both basic and
translational research, we believe that more should be done to
improve the performance and the reproducibility of mutational
signature analysis.

In this study, we use different publicly available bioinformatics
tools to analyze public datasets from multiple myeloma (MM)
and chronic lymphocytic leukemia (CLL) samples, and validate
our findings in additional published and unpublished sequencing
data from acute myeloid leukemia (AML) samples, to summarize
the main factors that should be considered in a high-confidence
mutational signature analysis. We discuss sources of bias and
pitfalls, and provide a rational and practical approach that could
be validated in other independent studies.

Results
Common issues of mutational signature analysis. All different
mutational signature analysis algorithms produce a decomposi-
tion matrix C ≈ SE, where C is the catalog matrix, with mutation
types as rows and samples as columns, S is the signature matrix,
with mutation types as rows and signatures as columns, and E is
the exposure matrix, with signatures as rows and samples as

columns (Supplementary Fig. 1). Nevertheless, different approa-
ches can be divided in two main groups: (i) the ones that allow de
novo signature extraction (e.g., the NNMF framework from
Alexandrov et al.)6, where given a matrix C the algorithm finds
matrices S and E such that C ≈ SE, and (ii) the ones that fit the 96-
mutational catalog to a pre-selected list of signatures (e.g., the 30
COSMIC signatures), where given C and S the algorithm finds E
such that C ≈ SE. An example of algorithm of the second group is
deconstructSigs24. Both approaches can be extremely informative
in different settings, though it is not always easy to determine
when and how to use one or the other. Working with mutational
signatures analysis with either group of algorithms, we identified
three main issues. The first is the ambiguous signature assign-
ment that occurs when different combinations of signatures can
explain equally well the same mutational catalog. This issue may
arise when multiple so called flat mutational signatures are
potentially present in the same data set (e.g., COSMIC signatures
3, 5, and 8) (Supplementary Fig. 2)6,31,34. The second usually
occurrs when localized mutational processes are not investigated.
In fact, when a signature extraction is performed using all the
mutations found in a genome (or exome), only mutational sig-
natures induced by mutational processes that act across the entire
genome are usually identified. Localized mutational processes are
often responsible for a small proportion of the total number of
genome-wide mutations, and thus are generally missed9,10,35,36.
The third common issue is the bleeding of signatures. It is bio-
logically sound to assume that each cancer sample presents the
activity of a limited number of mutational processes. If an
extraction is performed on a heterogeneous set of samples, it is
possible that signatures present in only part of the set are also
erroneously assigned to the entire set. This is mostly due to the
algorithms’ assumption that all analyzed samples share a similar
mutational signature landscape and to the fact that some sig-
natures are similar to each other.

Mutational signature extraction vs. fitting. As mentioned above,
a signature analysis can be performed using either a de novo
extraction or a fitting approach based on a pre-selected reference
list of known signatures (e.g., the 30 COSMIC signatures).

The first approach extracts recurrent patterns of variants in
their trinucleotide context from the input data allowing the
unbiased identification of both known and novel mutational
processes. However, the weakness of this approach is that
extracted signatures often do not appear identical to the reference
ones. Common problems are: (i) union of co-occurrent multiple
signatures into one; (ii) over splitting of one mutational signature
into two or more. All these factors can significantly impact the
assignment of extracted signatures to the reference ones6,31, and
this may introduce bias in the estimation of each signature’s
activity in the samples.

The second approach fits the input data to a suitable reference
list of mutational signatures, allowing a better estimation of each
signature’s relative and absolute contribution for each sample.
However, a fitting approach is not able to discover any novel
signature and thus needs a priori knowledge of which mutational
processes may be operative in that sample cohort. Furthermore,
these approaches may be prone to overfitting leading to signature
bleeding, i.e., they may assign all signatures from the reference list
to all samples. Therefore, before running any fitting algorithm, it
is crucial to have at least some knowledge about which mutational
processes are operative in the samples to avoid both false positives
(overfitting of signatures) and false negatives (missing novel
mutational process).

To provide an example of the problems that a fitting algorithm
can pose to the interpretation of data if analyzed without any a
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priori knowledge, we used a cohort of 30 MM cases (Supple-
mentary Table 1), which have been extensively characterized from
a genomic point of view. Here, we first applied NNMF-based, de
novo extraction algorithms, i.e., the framework from Alexandrov
et al.6,7. (Fig. 1a, b) and the NNMF approach of the
mutationalPatterns R package37 (Supplementary Sofware 1). Both
NNMF approaches extracted five signatures: the clock-like
signatures (Signature 1 and 5 merged together), APOBEC
(Signature 2), Signature 8, Signature 9, and a new signature
named MM1, again highlighting the impact that NNMF
approaches can have in new signature discovery (Supplementary
Data 1)6,9,16,23. Then, using the same input data we then ran two
fitting approaches (deconstructSigs and the fitting approach of
mutationalPatterns) without a priori knowledge of the active
mutational processes in MM and therefore including all 30
COSMIC signatures. DeconstructSigs forced the extraction of a
large number of signatures, including ones not previously
extracted by NNMF, and some of which clearly representing
false positives (Fig. 1c and Supplementary Sofware 1). For
example, the contribution of tobacco-smoking (COSMIC Signa-
ture 4) to MM development can most likely be ruled out, as can
the contribution of the liver-specific Signature 16 (Fig. 1c)17,31,38.
Furthermore, the new signature MM1 was not identified, simply
because it was not included in the COSMIC catalog. To reduce
false positives, some corrections can be applied to the fitting
approach. For example, deconstructSigs uses forward selection to
estimate a minimal number of signatures, and removes a
signature’s contribution to a sample if it accounts for <6% of
the sample’s mutations. In contrast, mutationalPatterns fitting
approach does not introduce any correction while attempting to
fit all 30 COSMIC signatures. In this case, a false-positive

minimal contribution of unlikely signatures was detected in all
patients (mismatch repair, UV light, tobacco-smoking etc.)
(Supplementary Sofware 1). Altogether, this shows that fitting
approaches may crucially alter the inferred mutational signature
landscape in MM. Conversely, when we ran deconstructSigs and
mutationalPatterns imputing the shortlist of COSMIC signatures
previously identified by the extraction approaches (i.e., NNMF),
this led to a more biologically sound assignment and quantifica-
tion of the absolute and relative contribution of each process
(including the new signature MM1) for each sample, significantly
reducing the false-positive signatures (Fig. 1d and Supplementary
Sofware 1).

Absence of BRCA-mediated Homologous Recombination
Deficiency in MM. The genomic profile of MM is characterized
by several recurrent and private cytogenetic aberrations, making
it one of the most complex hematological malignancies from this
point of view3,21,39–44. Recently, using a fitting approach like
deconstructSigs with default parameters24, a potential activity
from Signature 3 has been proposed in a significant fraction of
MMs32. This mutational signature is well-known to correlate with
BRCA1 and BRCA2 bi-allelic loss and homologous repair defi-
ciency (HRD) in different solid cancers6,18,20,45. Signature 3 was
indeed observed in our MMs when either mutationalPatterns or
deconstructSig fitting approaches were run using all 30 COMISC
signatures (Fig. 1c and Supplementary Sofware 1), but not
observed in our signature extraction.

To positively confirm whether or not signature 3 is present in
our samples, we used two validation strategies: (1) determine
whether the pattern of Signature 3 is necessary to explain the
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Fig. 1Mutational signature de novo extraction vs. fitting. a, b The Alexandrov et al. NNMF framework6,7. From the 96-mutational classes, NNMF extracted
the signatures’ relative (a) and absolute (b) contribution among 30 MMs. c Running deconstructSig including all 30 COSMIC signatures several mutational
processes were forced to be extracted (i.e., Signature 4). Furthermore, the new mutational process MM1 was not detected, being not included in the 30
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mutational patterns observed in the samples; (2) analyze
additional genomic features to determine the presence of HRD.

First, to establish whether Signature 3 is required to explain the
catalog of mutational signatures in our samples, we determined
whether including or not Signature 3 in our analysis would affect
the reconstruction error, i.e., the difference between the original
catalogs and the fitted linear combination of signatures for each
sample (see Methods). The inclusion of Signature 3 produced a
statistically significant lower reconstruction error (measured as
KL divergence, root mean squared error (RMSE) or cosine
similarities), which can be attributed to the inclusion of an
additional signature in the linear combination. However, the
reconstruction error is not qualitatively different in the absence of
Signature 3 (Supplementary Fig. 3a–c, g–i). In contrast, when
Signature 3 is used in place of either Signature 8 or Signature 5,
we have a qualitative increase in the reconstruction error
(Supplementary Fig. 3d–f, j–l). Interestingly, when Signature 3
is excluded, the mutations that were assigned to Signature 3 seem
to be reassigned mostly to the other flat Signatures 8 and 5
(Supplementary Fig. 4). This evidence indicates that Signature 3 is
not necessary to explain the patterns of SNV mutations in the
samples. Conversely, Signature 8 and Signature 5 emerged as the
most significant processes, and the ones that are likely active.

Next, we used an orthogonal approach to detect the presence of
BRCA1/BRCA2-like HRD in our MM samples (Fig. 2): to this end,
we applied the recently published HRDetect tool18, a highly
accurate classifier that estimates the presence of BRCA1/BRCA2-
like HRD in solid cancers, trained on multiple mutational patterns,
including COSMIC Signature 3, COSMIC Signature 8,
microhomology-mediated deletions, Rearrangement Signatures 3
and 5 (unclustered short tandem duplications and deletions,
respectively)20 and the HRD index46. If we exclude Signature 3
from our analysis, none of the 30 MM samples would be classified
as HRD, as they do not appear to be enriched with the patterns that
are typical of the BRCA1/BRCA2-type of HRD: there is a low
proportion of microhomology-mediated type of small deletions, the
HRD-LOH index46 is low, and there is a limited number of 1–100
Kb deletions (Rearrangement Signature 5) and 1–100Kb tandem
duplications (Rearrangement Signature 3) (Fig. 2a, Supplementary
Figs. 5 and 6). After including both Signature 3 and Signature 8,
only one sample (PD26419a) would show an elevated HRDetect
score (Fig. 2b). This sample, characterized by multiple complex
events and chromothripsis47, is likely to be a false positive generated
by the erroneous inclusion of Signature 3 in our analysis. In fact, it
lacked the characteristic unclustered genome-wide rearrangements
and predominance of microhomology-mediated type of small
deletions (Fig. 3a, b and Supplementary Figs. 5 and 6). Finally, if we
included Signature 3, we would expect some correlation between
the HRDetect score and the assignment of Signature 3, since they
both correlate with HRD. However, such correlation is absent in
our analysis (Fig. 2b, c).

In conclusion, fitting approaches like deconstructSigs (or
mutational pattern) tend to force the assignment of flat
signatures, such as Signature 3, to samples when all 30 COSMIC
signatures are used as input (Fig. 1c, Fig. 3a, and Supplementary
Sofware 1). However, we demonstrated that Signature 3 is not
necessary to explain the mutational patterns of MM samples,
which furthermore do not show a genomic landscape consistent
with BRCA1/BRCA2 loss and its related HRD in terms of 96-class
profiles, number of microhomology-mediated deletions and
internal tandem duplications as compared to breast cancer
(Fig. 3b, c and Supplementary Figs. 5 and 6). We therefore
suggest that Signature 3 (and consequently BRCA1/2-mediated
HRD) is not biologically active in our MM samples, and it likely
represents a false-positive call. Rather, we believe that the right
signatures to be annotated in these samples are Signature 8,

widely involved in solid and hematological cancers with an
unknown etiology6, and Signature 5, a flat clock-like process
present in normal and cancer tissues16. This of course does not
exclude the possibility that a larger cohort of MM samples may
show cases of BRCA1/2-like HRD, though again, we have no
evidence that this is the case in our cohort.

Localized hypermutation. When a naive B-cell passes through
the germinal center (GC), it is usually exposed to the activity of
activation-induced cytidine deaminase (AID), which is respon-
sible for a very unique genetic process called somatic hyper-
mutation (SHM) of the B-cell receptor (BCR) variable region
(VDJ)48. This mutational process plays a critical role in the
antibody diversification promoting mutations and aminoacidic
changes on immunoglobulin heavy and light chain (IGH/IGK/
IGL) genes in order to increase the B-cell receptor (BCR) affinity
to distinct antigens48. Chronic lymphocytic leukemia (CLL) is
well-known to be characterized by two main biological sub-
groups: one dependent on GC exposure and one independent
(Supplementary Data 2). These are differentially diagnosed by
recognizing patterns of AID-driven somatic hypermutation in
one group (mutated CLL, M-CLL) and not in the other (unmu-
tated CLL, U-CLL)5,49–53. MM and M-CLL are post-GC lym-
phoproliferative malignancies, and their (pre)malignant cells are
exposed to AID activity9,32. This mutational process, named
canonical-AID (c-AID), has been known for years and is speci-
fically active on IGH/IGK/IGL loci48,54,55; however, thanks to
mutational signatures analysis, an alternative AID-driven muta-
tional process has been recently observed genome-wide in all
post-GC lymphoproliferative disorders6,10,52,53. This process was
named non-canonical AID (nc-AID; COSMIC Signature 9) and
differs from the above-mentioned c-AID in terms of preferential
trinucleotide context, genomic distribution and associated cell
cycle phase (Supplementary Fig. 7)55. In contrast to nc-AID, the
c-AID signature is generally not identified by de novo signature
extraction algorithms because it is localized and its limited
activity is diluted below the threshold of detection by the larger
number of genome-wide mutations generated by other processes
(see the lack of its detection in all MM and CLL samples in Fig. 1,
Supplementary Data 1, and Supplementary Sofware 1 and 2)
9,10,52. However, identification of the mutational burden of c-AID
and its aberrant targets (e.g., BCL654) can be extremely infor-
mative to compare the genomic landscape of different lympho-
proliferative disorders and their different biological origins. The
characterization of this localized mutational process can be per-
formed in two ways, with either extraction or fitting algorithms
after inclusion of the c-AID 96-class profile (Supplementary
Fig. 7), currently not part of the COSMIC panel: (1) Considering
only hypermutated regions, i.e., those with >5 mutations with a
median inter-mutational distance of < 1 Kb;6,9,15,47 (2) Con-
sidering only mutations that occur within known c-AID targets,
in particular the IGH/IGK/IGL loci52. Both approaches can
identify c-AID in both MMs and CLLs (Fig. 4), i.e., two neo-
plasms where activity of this enzyme is expected. Interestingly,
and confirming other previous preliminary data10, c-AID activity
was also detected in a fraction of U-CLL patients despite the GC-
independent pathogenesis. Specifically, in MM and to a greater
extent in M-CLL, >10% of these mutations were observed within
coding genes, in particular across the VDJ region of the IGH
locus; conversely, among U-CLL this activity involved mostly the
non-coding part of the IGH locus, in particular within the class
switch recombination loci (Supplementary Fig. 8a–d). These data
are in line with the ability of WES to identify c-AID signature
within the IG loci only among M-CLL cases52, and strengthen
the need for WGS for a comprehensive signature analysis.
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Fig. 2 HRDetect BRCA1/BRCA2 deficiency scores in MM. HRDetect was used to analyze the BRCA1/BRCA2 deficiency scores in MM samples a including
only signature 8, b including both signatures 3 and 8, and c including only signature 3. In d, the same analysis was performed in 15 BRCA null and 15 BRCA
wt breast cancers18. Scores are ordered from highest to lowest and a classification threshold of 0.7 is used to classify samples as HRD-positive (see Davies
et al.18). Below each score, the contribution of the six features that are used by HRDetect is shown. Each contribution is given by the amount of a feature in
a sample, log-transformed and standardized according to mean and standard deviation of the features in Davies et al.18 and finally multiplied by the
corresponding HRDetect logistic regression coefficient. Thus, a positive contribution indicates a feature value higher than the average of the HRDetect
original training set, and feature contributions are directly comparable. Sig.= signature
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Furthermore, in contrast to MM and M-CLL cases, nc-AID was
not active in IGH regions from U-CLL cases (Fig. 4). Confirming
previous reports on a potential ongoing AID activity in U-CLLs10,
a significant higher fraction of subclonal c-AID mutations (i.e.,
late mutations) was observed among this group of CLLs (Sup-
plementary Fig. 8e). Conversely, c-AID mutations were mostly
detected at clonal level (i.e., early mutations) in M-CLL and MM,
confirming the recently reported decreased AID activity in late
stages of these diseases9,10. Overall, these data suggest a possible
non-VDJ and GC-independent role of c-AID among U-CLLs
(Fig. 4)10,56.

To better characterize the c-AID activity on known loci, we
usually prefer to focus on mutations within known c-AID targets
rather than to identify hypermutated regions. In fact, most of c-
AID mutations occurred close to different VDJ breakpoints, where
distant genomic regions are joined by the RAG/AID complex
during early stage of B-cell development before the GC exposure48.

This means that inter-mutational genomic distance does not reflect
the true position of these mutations and should be corrected for
the VDJ structure to identify mutations caused by c-AID activity
(Supplementary Fig. 9). This also applies to localized hypermuta-
tion events (i.e., kataegis) around complex structural variants (i.e.,
chromothripsis), where the cancer chromosomal structure sig-
nificantly differs from the reference15,47.

As mentioned above, this kind of analysis can be also directed
on known c-AID aberrant targets, such as BCL6, allowing the
characterization of clustered mutational processes active around
these critical oncogenes and key GC regulators (Supplementary
Fig. 10)54. In our series, BCL6 was involved in localized
mutational processes in M-CLL and MM reflecting their GC
exposure, as expected; conversely, U-CLLs did not show any
evidence of this process, confirming the GC-independent
pathogenesis and suggesting the existence of a GC-unrelated
AID activity in this group of patients.
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Fig. 3 Absence of BRCA-driven HRD in MM. a Pie charts showing the relative signature composition according to DeconstructSig in three MM cases,
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SHM is only present in post-GC B-cells, however it is not the
only example of localized hypermutation in cancer. An instance
of localized hypermutation termed kataegis has been found across
many cancer types and is often promoted by aberrant activity of
the APOBEC family of DNA deaminases47,57. We have previously
reported widespread and localized activity of APOBEC in MM
(Fig. 5a–c)9 where it is recurrently associated with complex
rearrangements such as chromothripsis, similarly to what has
been reported in several other solid cancers47. Furthermore, here
we report the first case of APOBEC-mediated kataegis in a
therapy-related AML case, again associated with a complex
rearrangement (Fig. 5d–f). Previously, APOBEC was never
reported as active in AML6,31. Overall, our findings stress the
importance of performing ad-hoc signature analysis in localized
mutational events, since this can highlight specific pathogenetic
mechanisms across different cancer types.

Inter-sample bleeding. Both WGS and WES data have clearly
shown that M-CLL samples are characterized by a very distinct
mutational process (COSMIC Signature 9), reflective of the
genome-wide nc-AID activity within the GC6,10,52. Conversely,
we would expect the absence of nc-AID signature in U-CLL, as
these cases do not develop through the GC. To validate this
assumption, we performed a de novo signature extraction on all
CLLs, using either the Alexandrov et al.6 framework or the
mutationalPatterns37 NNMF function (Supplementary Data 1). A
nc-AID signature was assigned to all samples, with high activity
in M-CLL samples and a much lower contribution in U-CLLs
(Fig. 6 and Supplementary Sofware 2). This represents a typical
example of inter-sample bleeding effect caused by the assumption
that all these samples shared a similar mutational landscape. This
incorrect assignment would not be readily highlighted if the
biology underlying CLL pathogenesis was not thoroughly known.
To obviate this problem, we propose two approaches. In the first,

we re-fit the extracted signatures. Here, signatures are first
extracted with a de novo approach. Then, a fitting algorithm such
as deconstructSigs is applied using only the signatures extracted
by NNMF to clean up low-contribution signatures, mostly
representing false positives (Fig. 6b, c). The second approach
involves performing separate extractions. NNMF is run inde-
pendently on two sets of samples, split using prior knowledge of
the IGHV mutational status evaluated, for example, by Sanger
sequencing (Fig. 6d, e and Supplementary Data 2). Either
approach successfully removed the nc-AID signature from U-
CLL samples, in accordance with the pathogenesis of this CLL
subgroup known not to be exposed to GC activity (Fig. 6d, e)58.

This kind of a priori biological and clinical knowledge is not
available for all cancer types. However, a simple clustering
analysis based on the relative contribution of NNMF-extracted
mutational signatures may also highlight the heterogeneity in
signature activity and therefore help in the identification of
distinct groups of patients, based on exposure to different
mutational processes (Supplementary Fig. 11). Next, either a
second NNMF run or a fitting approach using the NNMF
shortlist can be performed on each single subgroup, as explained
above21.

This inter-sample bleeding of signatures is of course a universal
phenomenon and as such can be also observed in non-B-cell
hematological malignancies. To extend the validity of our
findings we therefore focused on acute myeloid leukemia
(AML), where we (i) performed WGS on two cases of therapy-
related AMLs (t-AML) arisen after platinum-based chemotherapy
for ovarian carcinoma and (ii) analyzed publicly available WGS
data from the TCGA repository of primary AML cases (n= 50)59.
In this setting, we extracted four main mutational processes:
Signature 1, Signature 5 and two signatures currently not
included in COSMIC. Of these, one was recently associated with
platinum exposure (platinum signature) and the second to the
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hemopoietic stem cell nature (HSPC Signature) (Fig. 7a, b and
Supplementary Data 1)31,38,60–62. The platinum signature con-
tributed for >30% of the mutational burden of t-AMLs, but its
activity was also found among primary AML from TCGA
(Fig. 7c). This is inconsistent with the prior knowledge of these
samples being treatment-naive. Confirming that platinum
signature in primary AML samples represents a further example
of inter-sample bleeding, analysis of TCGA primary AMLs
without the two t-AML cases led to disappearance of the
Platinum Signature (Fig. 7d and Supplementary Sofware 3).
Furthermore, our analysis confirmed the added benefit of
performing a de novo signature extraction as a first approach,
as two out of four mutational signatures extracted in this cohort
of 52 AMLs are not currently included in COSMIC.

Discussion
In this study, we explored caveats and pitfalls of mutational sig-
nature analysis using whole-genome sequencing data from three
common hematological neoplasms, focusing on the sample set
preparation and post-algorithm interpretation processes. Fur-
thermore, we showed how a comprehensive and detailed muta-
tional signature analysis can provide relevant biological insights
within different and well characterized cancer types, such as the
c-AID activity among UM-IGHV, the absence of BRCA1/
BRCA2-mediated HRD in a MM cohort and two mutational
processes in AML, one related to platinum and one less char-
acterized related to stem and progenitor bone marrow
cells31,38,60–62.

With the rapid increase in the number of tumor genomes
sequenced, novel mutational signatures can be identified using
several approaches discussed in this work. However, blind trust

on out-of-the-box results from public tools can produce an
incomplete representation of signatures, or the inclusion of false
positives. Our results contain useful practical considerations that
can resolve some of the uncertainty in the use of different algo-
rithms, and in the interpretation of the results.

Important caveats and pitfalls a scientist can face in mutational
signature analysis can usually be recognized and corrected by a
priori knowledge of the biology of the tumor and by deep
understanding of the way each algorithm works. For example, in
CLL it is known that nc-AID exposure within the germinal center
is only present among M-CLL cases. Therefore, the finding of
Signature 9 activity in U-CLL must be regarded to as artefactual,
related to the bleeding phenomenon that is common among de
novo NNMF-based approaches. Knowing weaknesses and
strengths of each approach, we proposed solutions to improve the
accuracy of signature identification, with results that are biolo-
gically plausible. The main point of this study is in fact to
highlight how the statistical and mathematical methods are
important, but they must be used with expertize and combined
with a good knowledge of the cancer type being studied. This is
especially true when it comes to assignment of flat signatures: our
original analysis demonstrates that the previously identified
presence of BRCA1/BRCA2-like HRD in an MM cohort is likely
to be a false-positive call of fitting algorithms32, but this can only
be demonstrated knowing the actual genomic consequences of
BRCA deficiency in cancers and comparing them to what is seen
in MM. Of course, our results only argue against the presence of
BRCA1/BRCA2-type of HRD in our MM cohort, as we and
others have convincingly demonstrated that a subset of MM
patients are characterized by a significant grade of genomic
instability3,21,22,44,63–65.
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PD26424c – chromosome 6 Kataegis PD34280c – chromosome 19 Kataegis

PD24624- chromosome 6 PD34280c - chromosome 19a

b

c

d

e

f

Fig. 5 Kataegis in hematological malignancies. a Example of a MM patient with a chromothripsis on chromosome 6 associated with APOBEC-mediated
kataegis. The solid and dashed lines reflect the total ploidy and the copy number status of the minor allele, respectively. In these plots, the red arch
represents a deletion, the green arch represents a tandem duplication and the blue arch represents an inversion. b Inter-mutational distance of all
mutations in chromosome 6, color-coded by mutational class. c Ninety-six-mutational classes of all kataegis events on chromosome 6. d Chromothripsis
event on chromosome 19 in a therapy-related AML. e Inter-mutational distance of all mutations across chromosome 19. f Ninety-six-mutational classes of
all mutations involved in the chromosome 19 kataegis: APOBEC emerged as the dominant mutational process, despite its activity was not detectable across
the genome (Supplementary Software File 3)
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Fig. 7 Bleeding of signatures in AMLs. Example of inter-sample bleeding among 52 AML WGSs. a, b Running NNMF on the entire cohort, we extracted two
mutational signatures not currently included in COSMIC: one recently associated with platinum exposure and the second recently reported as a process
specific to the hemopoietic stem cell (HPSC). c, d The inclusion of two t-AMLs (PD34280 and PD37515) affects the global signature extraction, with
Platinum Signature extracted also in the primary AMLs. Removing the t-AMLs the inter-sample bleeding was corrected, and no Platinum Signature was
extracted in primary AMLs. Sig.= signature
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Fig. 6 Bleeding of signatures in CLLs. Summary of mutational signature analysis on 146 CLL cases. From the 96-mutational catalog (a) the Alexandrov
et al.6,7 framework (NNMF) extracted different mutational processes. Signature 9 (nc-AID) was extracted also among U-CLL in contrast with their known
pathogenesis (b). This is a typical example of inter-sample bleeding and it can be solved either running a fitting approach after the initial NNMF analysis
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In general, our preferred approach to investigate mutational
signatures in hematological malignancies follows three different
steps: (1) signature discovery with a de novo extraction process;
(2) assignment of extracted signatures to a reference catalog (i.e.,
COSMIC) and possibly identification of novel ones; (3) a fitting
approach including only the subset of COSMIC signatures
identified from the extraction process (Fig. 8). This multi-step
approach allows the identification of known and novel signatures
and their correct quantification, avoiding artefactual calls related
to bleeding and overfitting. Based on a similar approach, two
novel robust and stringent tools have recently been developed
allowing the identification of >30 new mutational signatures and
the redefinition of the previous 30-COSMIC signatures, creating a
catalog to be used as reference for future studies31. These
improved knowledge banks and bio-informatic tools will further
refine our ability to investigate mutational signatures in hema-
tological malignancies. However, we are convinced that prior
knowledge of cancer biology and genomics will always be indis-
pensable for a correct data interpretation.

Methods
Sample selection and processing of genomic data. In this study, we analyzed the
single-nucleotide variant (SNV) catalog from four WGS cohorts: 143 CLLs
(EGAS00000000092)52,53, 30 MMs (EGAD00001003309)3,9, 50 AMLs (phs000178.
v1.p1)59, and two unpublished t-AML (EGAD00001005028). These last two cases
were sequenced after written informed consent was obtained at the Wellcome
Sanger Institute using the X10 Illumina platform. FASTQ files were aligned to the
reference genome using BWAmem, and deduplicated aligned BAM files were
analyzed using the following tools: ASCAT for copy number changes, BRASS for
structural variations (large inversions and deletions, translocations, internal tan-
dem duplication), Caveman and Pindel for Single-Nucleotide Variants (SNVs) and
small insertion-deletions20,66–68, respectively. The characterization of the main
clinical and genomic features of MM and CLL series is summarized in Supple-
mentary Table 1 and Supplementary Data 2, respectively. Kataegis was defined as a
cluster of 6 or more consecutive mutations with an average intermutation distance
of less than or equal to 1 Kb20.

The study involved the use of human samples, which were collected after
written informed consent was obtained (Wellcome Trust Sanger Institute protocol

number 15/046 for the myeloma samples, Fondazione IRCCS Istituto Nazionale dei
Tumori code 127/16 for the t-AML samples).

Mutational signature workflow. Mutational signatures were investigated using
three published and available algorithms: the Alexandrov et al.6 NNMF framework,
deconstructSigs24 and mutationalPatterns37 R packages. The full mutatio-
nalPatterns analysis was written in R and the code is provided in Supplementary
Sofware Files 1–3 for MM, CLL, and AML respectively. Each of the above methods
produces a matrix decomposition C ≈ SE, where C is the catalog matrix, with
mutation types as rows and samples as columns, S is the signature matrix, with
mutation types as rows and signatures as columns, and E is the exposure matrix,
with signatures as rows and samples as columns (Supplementary Fig. 1). The
reconstruction error indicates how similar the mutational profiles of samples in C
are to those in the product SE, and can be computed using different metrics, such
as cosine similarity, Kullback-Leibler divergence (KLD) or RMSE.

Each of the signatures extracted with either mutationalPatterns or the method
from Alexandrov et al.6,7,37 were assigned to one or a combination of two COSMIC
signatures. To do so, cosine similarities between the extracted signatures and each
COSMIC signature, or a linear combination of two COSMIC signatures (using
non-negative least squares R package NNLS), were computed. These results are
available in Supplementary Data 1.

HRDetect in multiple myeloma. Analysis of homologous recombination defi-
ciency (HRD) from BRCA1/BRCA2 deficiency as a possible source of genomic
instability was performed using the recently published HRDetect algorithm18. The
structural variant and indel catalog in MM were generated using BRASS and
Pindel, respectively20,67.

Single-nucleotide variants on IGH. The mutation cancer cell fraction for c-AID
SNVs was estimated using the Dirichlet process for both CLLs and MMs4,9.
Considering the well-known complexity and low-quality mappping of IGH region,
we ran three additional SNV callers (mutect269, caveman66, and muse70) to reduce
the rate of false positives and we combined the results with the published catalog of
SNVs generated with Sidron52. Seventy-nine percent of the previously published
mutations on IGH was confirmed by at least one additional caller (Supplementary
Fig. 12). Furthermore 512 additional SNVs were called by at least two out of the
three new callers. Only mutations called by at least 2 out of 4 callers were included
in the final analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Code availability
All R codes used to generate signature data using mutationalPatterns in the paper are
provided as Supplementary Software Files 1–3. All codes have been generated using R
software v. 3.4.2.

Data availability
The sequencing data pertaining to MM are available from the European Genome-
phenome archive (EGA) database under the accession code EGAD00001003309. The
sequencing data pertaining to CLL are available from EGA under the accession code
EGAS00000000092. The published and unpublished AML sequencing data are available
from dbGAP under the accession code phs000178 and from EGA dbGAP under the
accession code EGAD00001005028, respectively. The breast cancer WGSs are available
from the EGA under the accession code EGAS0000100117820. All the other data
supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon reasonable
request. A reporting summary for this article is available as a Supplementary
Information file.
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