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Abstract
Study Objectives:  Sleep spindles are abnormal in several neuropsychiatric conditions and have been implicated in associated cognitive symptoms. Accordingly, there 

is growing interest in elucidating the pathophysiology behind spindle abnormalities using rodent models of such disorders. However, whether sleep spindles can 

reliably be detected in mouse electroencephalography (EEG) is controversial necessitating careful validation of spindle detection and analysis techniques.

Methods:  Manual spindle detection procedures were developed and optimized to generate an algorithm for automated detection of events from mouse cortical 

EEG. Accuracy and external validity of this algorithm were then assayed via comparison to sigma band (10–15 Hz) power analysis, a proxy for sleep spindles, and 

pharmacological manipulations.

Results:  We found manual spindle identification in raw mouse EEG unreliable, leading to low agreement between human scorers as determined by F1-score (0.26 ± 

0.07). Thus, we concluded it is not possible to reliably score mouse spindles manually using unprocessed EEG data. Manual scoring from processed EEG data (filtered, 

cubed root-mean-squared), enabled reliable detection between human scorers, and between human scorers and algorithm (F1-score > 0.95). Algorithmically detected 

spindles correlated with changes in sigma-power and were altered by the following conditions: sleep–wake state changes, transitions between NREM and REM sleep, 

and application of the hypnotic drug zolpidem (10 mg/kg, intraperitoneal).

Conclusions:  Here we describe and validate an automated paradigm for rapid and reliable detection of spindles from mouse EEG recordings. This technique provides 

a powerful tool to facilitate investigations of the mechanisms of spindle generation, as well as spindle alterations evident in mouse models of neuropsychiatric 

disorders.
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Statement of Significance

Sleep spindles, an electroencephalogram (EEG) hallmark of NREM sleep, increase following learning and are important for memory 
consolidation. Sleep spindle abnormalities are emerging as a biomarker and potential therapeutic target of the cognitive deficits of several 
neuropsychiatric illnesses. However, detecting spindles in a disease model species (the mouse) is difficult and controversial. This is the 
first article to validate an automated spindle detection method for use with mouse EEG, modified from a clinically validated method used 
previously with human EEG. Automated spindle detection in mice will facilitate an understanding of the mechanisms of spindle regulation, 
the functional importance of sleep spindles, and, in turn, potentially inform the development of therapeutic strategies for neuropsychiatric 
disorders characterized by spindle abnormalities.
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Introduction

In humans, sleep spindles are identified in electroencephalographic 
(EEG) records as transient waxing/waning rhythmic oscillatory 
events between 8 and 15 Hz. Generated via corticothalamic 
network activity, these events represent a physiological hallmark 
of non-rapid eye movement (NREM) sleep [1–5]. Recent studies in 
humans and rodents show that sleep spindle density or ampli-
tude is increased following learning, and is correlated with the 
consolidation of memory [6–11]. Spindle abnormalities have been 
reported across a number of severe neurological and psychiatric 
disorders, including autism [12], dementia [13], stroke [14], and 
schizophrenia [15–17], and have been implicated in the associ-
ated cognitive deficits characteristic of these disorders. Such 
findings suggest that spindle abnormalities represent an 
important endophenotype of neuropsychiatric disorders, and 
potentially provide a novel target for therapeutic intervention 
[18]. Accordingly, there is a growing interest in the development 
of techniques to detect spindles reliably and accurately.

Efforts to elucidate the mechanisms behind the generation 
of sleep spindles, and disease-related abnormalities, 
necessitates the use of mouse models, which provide better 
genetic tractability. While, numerous studies have described 
the development and optimization of sleep spindle detection 
techniques of human EEG [19, 20], it remains controversial 
whether sleep spindles can be reliably detected in mice.

Recent rodent studies have employed a varied array of 
approaches for detection of spindles [19, 21–28]. However, lacking 
in these studies is a clear and thorough verification of whether 
these detection methods reliably assay sleep spindles. This 
makes reconciliation of the results from different publications 
difficult and replication of previously published methods 
challenging. Thus, here we performed a careful comparison 
of manual and automated spindle detection methods. The 
overall aim in this study was the development of an automated 
paradigm for reliable and reproducible detection of spindles 
from mouse EEG, the first step of which was the systematic 
investigation of manual and automatic spindle detection 
techniques. Next, we performed analysis and experiments to 
confirm that automatically detected mouse spindles responded 
to experimental conditions as expected based on the literature 
[29–31]. The frequency and location of spindles were compared 
to sigma-power across sleep-wakefulness states and at the 
transitions between wake, NREM and REM sleep. Correlation 
of detected spindles with sigma-power EEG activity was also 
evaluated across the vigilance states (wake, NREM, and REM 
sleep). A  final validation verified previously reported sigma-
power alterations due to the hypnotic drug zolpidem.

Methods

Animals

Adult male (7) and female (2) C57/BL6J background mice 
(3–6  months at the time of surgery) from Jackson Laboratory 
(Bar Harbor, ME, United States) were used in this study. Mice 
were housed at room temperature with 12-hour light/dark 
cycle (lights-on at 07:00 am). Food and water were available 
ad libitum. All procedures were performed in accordance with 
the National Institutes of Health guidelines and in compliance 
with the animal protocol approved by the VA Boston Healthcare 

System Institutional Animal Care and Use Committee (IACUC). 
Six males were used for unmanipulated EEG recordings; two 
males and two females were used in the pharmacology work.

Drugs

Zolpidem was obtained from Sigma Aldrich (St. Louis, MO). 
1 mg/ml Zolpidem was dissolved in an equimolar tartaric acid 
solution in 0.9% NaCl (physiological saline) and administered 
intraperitoneally (IP) at a dosage of 10  mg/kg, as previous 
reports have shown that this dose reliably promotes NREM sleep 
[31]. Moreover, zolpidem attenuates sigma-power at this dose 
and lower [31–33]. A  within-subjects approach was used with 
each animal receiving saline and a single (10  mg/kg, IP) dose 
of zolpidem at 48-hour intervals to allow recovery from drug 
administration.

Surgery and EEG recording

EEG screw electrodes were implanted as previously described 
[34], above the frontal cortex (Anterior-Posterior [AP] Bregma 
+ 1.9  mm, Medial-Lateral [ML] Bregma ± 1.0–1.5  mm) with a 
reference electrode above the midline cerebellum (AP Lambda 
−1.0  mm, ML 0.0  mm) and a ground electrode above a dis-
tal parietal region (AP Bregma −2.5  mm, ML Bregma −3  mm). 
Electromyogram (EMG) electrodes were implanted into mice 
nuchal muscle. Electrodes were connected to EEG/EMG 
headmounts (Pinnacle Technology Inc., part # 8402-SS, Lawrence, 
KS), and secured with dental cement. After recovering from 
surgery for at least one full week, mice were tethered to EEG 
recording systems (Pinnacle Technology Inc., part # 8200-K1-SL) 
for >48 hours for habituation in recording chambers. EEG/EMG 
signals were sampled at 1 KHz, amplified 100× and low-pass 
filtered at 200 Hz using a two EEG channel, one EMG channel 
mouse pre-amplifier (Pinnacle Technology Inc., part # 8202-SL).

Sleep scoring

Sleep scoring was performed manually using 4-second epochs as 
previously described [35] using Sirenia Sleep software (Pinnacle 
Technology Inc.). Briefly, epochs with desynchronized low amp-
litude EEG were scored as waking. Epochs with large amplitude 
slow EEG waves were scored as NREM, and epochs with rhythmic 
theta waves, paired with low muscle tone were scored as REM. 
Records with minimal movement artifacts were chosen for the 
analysis, and data from hours Zeitgeber Time (ZT) 3 hours to ZT 
7 hours was analyzed (during the light phase when the animals 
tend to sleep more). In separate pharmacologic experiments, 
zolpidem or saline was administered IP at the mid-point of the 
light phase (ZT 6 hours to ZT 12 hours).

Automated spindle detection

We developed a custom MATLAB (Mathworks, Natick, MA) script 
which is roughly based on the method used for clinical spindle 
analysis in Ferrarelli et al. [20]. Briefly, the raw EEG record was 
first band-pass filtered between 10 and 15 Hz; we focused on 
this range because it encompasses the peak mouse spindle 
of ~11 Hz [27] and previous reports implicate 10–15 Hz as the 
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sigma/spindle frequency in mice [28, 29, 36]. In our analysis 
we observed a separate accumulation of power in the 7–8 Hz 
range as the NREM period ends; this signal intensified with the 
transition to REM and continued throughout REM, indicating 
this separate peak was REM-related theta activity. Additionally, 
we examined wake–NREM transitions, and observed an increase 
in power specifically within the 10 Hz to 15 Hz range. Here we 
employed a Butterworth filter with the following parameters 
using the MATLAB designfilt function: First stopband 
frequency = 3 Hz, First passband frequency = 10 Hz [27], Second 
passband frequency 15 Hz, Second stopband frequency = 22 Hz, 
with stopband attenuation levels of 24 dB. Next, the root-mean-
square (RMS) of the filtered EEG data was computed using a 
750 ms window to smooth the trace and generate a signal enve-
lope. After a careful manual inspection of automated detection 
results using various window sizes, the 750 ms window size was 
chosen to minimize the erroneous detection of short, spike-like 
artifactual signals as spindles, as a 500 ms RMS window yielded 
10.8 ± 0.6 spindles/minute with average durations of 1.08 ± 0.005 
seconds, 250 ms yielded 20.9 ± 1.2 spindles/minute with average 
durations of 0.53 ± 0.007 seconds and 100 ms yielded 62.04 ± 2.4 
spindles/minute with average durations of 0.168 ± 0.003 seconds. 
RMS values were then cubed, to enhance the separation between 
noise and signal on the y-axis and facilitate the placement of 
thresholds. Finally, we used a two-threshold approach to estab-
lish inclusion criteria for spindle detection, which employed 
several user-defined parameters. These threshold values were 
derived from the mean cubed RMS transform value of the entire 
trace (all behavioral states) and included both a lower threshold 
(1.2× mean cubed RMS; default) and upper threshold (3.5× 
mean cubed RMS; default). Our algorithm also has the option 
to base threshold settings on SD values. However, we found no 
significant differences between detections from mean-based 
or SD-based threshold settings. Our detection algorithm first 
utilized the upper threshold value to identify putative spindle 
peaks in the cubed RMS (envelope) record. Next, the lower 
threshold was used to determine the start and end of each event, 
to determine if these putative spindles met our temporal criteria 
(>0.5 seconds and <10 seconds; default) for inclusion in detec-
tion [10, 19, 20, 28, 37]. Basis of these thresholds on the mean of 
the cubed RMS signal, allowed the calculated thresholds to scale 
appropriately to account for changes in signal variability/amp-
litude between animals. The above multipliers used to define 
these thresholds were determined via systematic modification 
to optimize spindle detection agreement with human scorers 
in preliminary work. Additionally, we explored various inter-
spindle intervals (ISI; range: 0.001–0.5 seconds evaluated here; 
0.01–0.2 seconds recommended; see Results). Manual scoring 
was performed on raw EEG followed by step-wise levels of data 
processing, as described in the results section, to optimize 
reliable scoring by humans.

Comparison of manual scoring versus automated 
scoring

As a quality control step we first compared our automated 
spindle detection results to manual human scoring of detected 
spindles using the same processed data. Manual scoring was 
ultimately performed after processing of raw EEG data using the 
following three steps: (1) bandpass-filter (10–15 Hz), (2) cubed 

RMS-transform, (3) plot thresholds. Scorers were instructed to 
record a time-point representing the center of the spindle that 
they had detected.

For the purposes of manual scoring, the threshold used need 
not have any physiological relevance, as its primary purpose 
was to provide the scorer with a stable landmark allowing 
determination of the relevance of peaks in the cubed RMS. 
Without such a landmark, the amplitude of peaks deemed 
relevant appears to drift for manual scorers depending on the 
baseline/variance of the RMS trace. Regarding the physiological 
relevance of these peaks, scorers can refer to the band-filtered, 
and ultimately the raw trace, to ensure that the cubed RMS 
peak was resultant from an event that could conceivably be 
considered to be a spindle, and not noise/artifacts.

This procedure resulted in high agreement of spindle 
identification between the algorithm and human scorers. 
The time points of spindles, as determined by algorithmic 
detection and manual scoring, were plotted side-by-side to 
visually assess agreement between methods. An agreement 
matrix was generated whereby every time-point bearing a 
spindle in the human-scored record was compared to the same 
pair-wise time-point in the algorithm-scored record “human-
vs-algorithm agreement”. Thus, this process answered the 
question: if the human has scored a spindle, then has the algo-
rithm also done so? Adopting the human scores as the point of 
reference, this comparison revealed false negatives. The reverse 
comparison was made whereby we assessed whether there was 
a spindle detected by the human at the time-point at which 
the algorithm had made a detection, to determine “algorithm-
vs-human agreement” (if the algorithm has scored a spindle, 
then has the human also done so?). This reverse comparison 
revealed false positives. False positives and false negatives were 
used to determine recall and precision, which in turn were 
used to determine F1-scores which we have used to avoid the 
misleadingly high measure of “true negatives” (Warby et al [19].). 
We have identified an additional source of algorithmic detection 
error which we term unresolved clustered spindles. To accom-
modate this, we report percentage agreement and percentages 
of three types of error: False positives, false negatives and 
unresolved clustered spindles.

Comparison of EEG power analysis and spindle 
detection

Power spectral density (PSD) analysis was determined for NREM, 
REM, and wakefulness using the MATLAB pwelch function. We 
did not remove hybrid epochs, where one epoch overlapped 
two sleep-wake states, to minimize loss of data from state 
transitions. A Hanning (2048) window function with 50% overlap 
was employed to bin frequency transformed data. Power 
within defined frequency bands, delta (1–4 Hz), sigma (10–15 
Hz) or gamma (30–80 Hz), was determined as the sum of all 
the values across the relevant frequency bins. Behavioral state 
transition spectrograms were produced by selecting 1 minute of 
NREM (or wake) followed by 1 minute of REM (or NREM). Each 
frequency bin was then normalized to the average power from 
its corresponding bin in wakefulness. Spectra were computed 
using the multi-taper approach (tapers were 5 and 9, 10-second 
window, 100 ms steps) with the MATLAB mtspecgramc function. 
Spectra were first calculated for each transition and averaged 
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for each mouse, then the resulting average spectra were aver-
aged between mice for a grand average spectrogram and plotted. 
Behavioral state transition power analysis was performed on 
band-filtered data in four steps as previously described [30]. 
(1) We extracted the transitions, (2) separated the data into 
12-second epoch, (3) computed the PSD for each epoch, (4) 
normalized the result as a percentage of the total band power. 
We then counted the number of spindles in each epoch for 
comparison with the power analysis.

Statistics

Pearson’s correlation was used uniformly and computed in 
MATLAB. For pharmacological experiments, a two-tailed paired 
t-test was used to establish significant difference between 
treatment groups saline versus zolpidem. All averaged data 
and error bars represented as mean ± standard error of mean. 
Recall was defined as the fraction of true spindle events that 
were detected, precision was the fraction of detections that are 
correct. The F1-score is the harmonic mean of precision and 
recall scaled from 0 to 1, as previously described [19].

Results

Quality control and refinement of automated spindle 
detection method

In order to confirm the reliability of our spindle detection method, 
we performed a comparison of automated spindle detection 
results with the results of manual scoring which allowed us to 
rule out the possibility that the algorithm was detecting artifacts 
as spindles. Before validating the automated spindle detection 
results with the manual spindle detection results, we first 
developed a way of reliably scoring spindles by human scorers. 
Manual spindle detection of mouse EEG recordings was performed 
by three individuals who were proficient at scoring EEG data for 
the behavioral vigilance states (wake, NREM, and REM sleep). Thus, 
each scorer was familiar with the appearance of mouse EEG data. 
To manually count spindles, a period of 30 minutes was selected 
from the light phase, when mice were more likely to be in NREM 
sleep. The initial set of manual scoring was performed on raw 
EEG data. Three human scorers visually assessed a half hour per 
mouse of raw EEG (n = 4), identifying waxing and waning transient 
events that had an appearance discernible from the flanking 
regions of EEG signal and were ~10–15 Hz (peak power of mouse 
spindles) and at least 0.5 seconds long (Figure 1A, red). To facilitate 
identification of spindle frequency events, half-second tick-marks 
were plotted along raw EEG traces and scorers counted 5–7 peaks 
between tick-marks. Signals were visualized on a 25-second time-
scale which allowed space to be seen between waves at sigma 
frequencies (Figure 1A). Although this scoring protocol has been 
used in human EEG [19], we found this method unreliable for 
accurate and reliable identification of sleep spindles in mouse EEG 
(Figure 1, B and C, “raw EEG”), leading to low agreement between 
scorers as determined by F1-scores of 0.26 (±0.07) (Table  1; 
Figure 1C). Thus, we concluded it is not possible to reliably score 
mouse spindles manually when using unprocessed EEG data.

Guided by our work with the automated spindle detection 
paradigms, we next aimed to determine a minimal set of data 
processing steps that would provide consistent manual spindle 
detection results; allowing human scorers to agree on spindle 

locations with F1-scores above 0.9. Manual scoring was repeated 
on the same periods of mouse EEG as above, with incremental 
levels of data processing, to optimize between-scorer agreement. 
First, EEG data was band-pass filtered across a frequency range 
corresponding to the peak frequency of rodent spindles (sigma; 
10–15 Hz). Plotting the filtered data aligned with raw EEG for 
scoring improved human agreement, but only to 0.42(±0.08) 
(Figure 1, B and C, “sigma band-filtered”). We next included the 
cubed RMS of the band-pass filtered data. This further aided 
visual detection of transient events, reflecting the amplitude 
of sigma filtered data, and leading to interscorer agreement of 
0.67(±0.04) (Figure 1, B and C, “cubed RMS transformed”).

We speculated that remaining disagreement was largely 
due to inconsistency in determining which cubed RMS peaks 
were sufficient to be counted as spindles, across the duration 
of the signal, and between scorers. Thus, we additionally 
plotted a threshold line to provide scorers with stable landmark 
for consistent determination of the relevance of peaks in the 
transformed data. At this level of data processing, three scorers 
could agree above 0.95 in all cases (n = 4; 0.95 ± 0.003; Figure 1, 
B and C, “threshold plotted”). Finally, we determined F1 scores 
between human scorers across the levels of processing to 
determine levels of inter-rater agreement (Table 1).

Next, we refined our algorithmic detection criteria by 
comparing the automated spindle detection results with a large 
set of manual scoring by six human scorers evaluating EEG 
records from six mice, 4 hours per mouse. Specifically, informed 
by one of the detection algorithm (a5) described in Warby et  al. 
[19], our method takes into account the time between successive 
events which we have termed the ISI [38, 39]. We found in our first 
comparison between human scores and automatic scores using 
an ISI of 0.5 seconds, agreement was 84.4 ± 0.8% (F1-score = 0.92 ± 
0.005) (Figure 2B). We determined that false negatives and false 
positives were uncommon (<2.1% each, Figure 2B). However, we 
found our largest source of error originated from unresolved 
clustered spindles (11.8%; Figure 2A, red), where a human scorer 
could discern multiple spindles close together, but the algorithm 
counted only one. We attributed this to the length of the ISI and 
found that setting the ISI to 0.5 seconds, based on previous work 
in human EEG, resulted in poor resolution of closely positioned 
spindles (Figure  2, A and B). We thus tested various ISI values 
starting from 0.4 second and continuously reduced the value until 
we reached the shortest possible time point, determined by our 
sampling rate. We found agreement continued to improve up to 
an ISI of 0.01 second at which point agreement was 95.9 ± 0.5% 
(F1-score = 0.98 ± 0.003) (Figure 2B). An ISI of 0.2 second yielded 
agreement above 90% (F1-score = 0.96 ± 0.003). Additionally, a one-
way ANOVA with Bonferroni’s post-hoc comparison was used 
to determine significant differences between the ISI lengths. 0.1 
second was the longest ISI not significantly different from the 
shortest ISI of 0.001. Therefore, we used an ISI of 0.1 second for all 
subsequent analysis.

Comparing algorithmically detected spindles to 
putative proxies of spindle activity: percentage 
sigma-power at transitions from NREM to REM

Previous studies in mice, have employed measures of sigma-
power as a proxy of spindle activity [29, 30, 40]. In particular, 
the percentage of baseline sigma-power occurring at transitions 
from NREM into REM or from wake into NREM, when spindle 
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Figure 1.  Manual sleep spindle detection becomes more reliable with progressive levels of data processing. Agreement between human scorers on the identification 

of sleep spindles is greater than F-score of 0.95 only when the EEG data is processed using the algorithm’s procedures. (A) Representative example of mouse cortical 

EEG data illustrates the difficulty in identifying sleep spindle activity (red horizontal line) in raw data. (B) Representative example of comparison of manual detection 

of sleep spindles between two experienced scorers. Agreement between detected events between scorers was very low using only the raw EEG trace but was greatly 

improved with availability of additional data processing, including (1) band-pass filter, (2) cubed RMS transform, and (3) thresholds plotted. (C) Interscorer agreement 

improved across each level of additional data processing. Agreement between human scorers on the identification of sleep spindles is greater than 0.95 only after 

providing scorers with all three levels of data processing to confirm detected events. *p < 0.05, ***p < 0.001.

Table 1.  F1-scores show reliability of spindle detections between three human scorers increase as mouse EEG data is processed using the 
algorithm’s procedures

Number of detected spindles 159.4 (±3.2) 230 (±41.8) 183.9 (±7.5) 184.5 (±70.4)

Level of processing

Thresholds 
plotted

Cubed RMS 
transformed Sigma band-filtered Raw EEG

Scorer ID 1 2 3 1 2 3 1 2 3 1 2 3 F1 score >

Thresholds plotted 1 1 0.96 0.97 0.73 0.89 0.57 0.59 0.7 0.43 0.295 0.46 0.31 0.9
2 1 0.96 0.76 0.9 0.59 0.61 0.73 0.44 0.28 0.498 0.38 0.8
3 1 0.74 0.9 0.57 0.59 0.76 0.44 0.31 0.46 0.36 0.7

Cubed RMS transformed 1 1 0.74 0.68 0.63 0.76 0.498 0.29 0.53 0.44 0.6
2 1 0.59 0.61 0.74 0.43 0.31 0.49 0.37 0.5
3 1 0.57 0.66 0.62 0.22 0.5 0.52 0.4

Sigma band-filtered 1 1 0.64 0.43 0.32 0.5 0.37 0.3
2 1 0.49 0.31 0.57 0.44 0.2
3 1 0.26 0.38 0.39

Raw EEG 1 1 0.3 0.55
2 1 0.4
3 1

F1-scores were computed for each scorer pair at all levels of data processing.
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activity would be expected to be high. We replicated this 
measure in our mice and compared findings to automated 
spindle detection results. A  spectrogram of NREM–REM 
transitions revealed that power in the sigma range accumulated 
when NREM was close to transitioning into REM; this sigma 
surge decayed rapidly with the onset of REM sleep (Figure 3A). 
This surge in power was between 10 and 15 Hz, consistent with 
previous reports [28, 29, 36]. Detected spindles were observed 
to surge prior to NREM–REM transition, similar to sigma-power 
(Figure  3, B and C). Further, the number of spindles that we 
detected were highly correlated with the sigma-power around 
NREM–REM transitions (Figure 3D; Pearson’s correlation, r = 0.93, 
p = 1.1 × 10−4). This result is perhaps unsurprising as it is likely 

to be state dependent. That is, when the animal is in NREM, 
both spindles and sigma-power are high, but when the animal 
is in REM, both spindles and sigma-power are low. However, the 
correlation between percent sigma-power and spindle number 
in the NREM period alone was also significantly correlated 
(Pearson’s correlation, r  =  0.89, p  =  0.04), removing behavioral 
state dependence from this effect. A  similar relationship was 
seen with the wake–NREM sigma-power surge (Figure 3, F and 
G) and spindles (Figure  3H). Both spindles and sigma-power 
were highly correlated (Figure 3I; Pearson’s correlation, r = 0.98, 
p = 3.7 × 10−7). These results increased our confidence that the 
events algorithmically detected as spindles were indeed a 
product of the same underlying physiology previously reported 
as a measure of mouse spindle activity. However, with our 
spindle detection method, we now have the advantage of being 
able to examine spindles across the whole record rather than 
just at behavioral state transitions (Figure 3, E and J).

Comparing algorithmically detected spindles 
to a broad measure of spindle rhythmogenesis: 
spontaneously fluctuating sigma-power

Total sigma-power over long periods of time (e.g. periods 30 
minutes or longer) did not correlate with spindles (Table  2). 
To overcome the problem of between-animal sigma-power 
variability, we used a within-animal comparison of spindles 
and sigma-power. Figure  4A depicts a representative sleep-
wake profile, comparing the fluctuation of the number of NREM 
spindles (Figure 4B) to the fluctuation of sigma-power (Figure 4C, 
left). These parameters were closely correlated (Figure  4C, 
middle; Pearson’s correlation, r = 0.76, p = 1.61 × 10−181). However, 
we considered the possibility that this relationship might be 
behavioral vigilance state dependent as opposed to spindles 
and sigma-power correlating per se. To test this, we analyzed the 
relationship between NREM spindles and other sleep-wakefulness 
state associated oscillations. When spindles occur during NREM 
sleep, with accompanying high delta-power, the relationship 
between spindles and delta-power (Figure  4D, left) was closely 
correlated (Figure 4D, middle; r = 0.63, p = 1.3 × 10−105). Gamma-
power is associated with waking and is diminished during NREM 
sleep. Thus, we predicted a sleep-wakefulness state dependent 
negative association between spindles and gamma-power 
(Figure 4E, left), which was evident (Figure 4E, middle; r = −0.51, 
p = 1.0026 × 10−64). These results raised the question of whether 
there was a true association between sigma-power and spindles, 
or if it was secondary to a sleep-wakefulness state relationship. 
That is, sigma-power is high in NREM as are spindles, and vice 
versa. Thus, we extracted all the NREM data and performed a time 
course correlation between spindles and sigma-power. In the 
absence of states other than NREM, spindles and sigma-power 
correlated significantly (Figure 4C, right; r = 0.21, p = 3.13 × 10−5). 
The r value is lower than those observed in the correlations in 
which sleep-wake state had not been controlled, possibly due 
to removal of a major source of variance in sigma-power by 
removing wake and REM sleep. NREM spindle density (spindles/
minute), on the other hand, was less sensitive to this, for only 
NREM spindles were used for both all-states and NREM-only ana-
lysis, and thus, the impact of removing wake and REM here was 
negligible. The positive association between delta-power and 
spindles, and the negative association between gamma-power 
and spindles were both lost when only NREM data were analyzed 

Figure  2.  Spindle detection errors can be reduced by shortening the ISI. (A) 

A  representative stretch of EEG data comparing manual versus automated 

spindle scoring demonstrates that unresolved spindle clusters are a major 

source of spindle detection disagreements between the algorithm and human 

scorers, including: (1) false positives (orange), which were events not scored by 

human scorer but scored by automated detection, such discrepancies are typical 

when the algorithm determines the trace to reach the upper threshold but the 

human cannot; (2) unresolved spindle clusters (red), which were events scored as 

multiple events by human scorer but as a single event by automated detection. 

These discrepancies arise from long ISI settings. Minimal error was observed 

due to false negatives (gray). (B) Bar graph shows percent agreement between 

manual and algorithmic spindle detections and denotes error type contributing 

to inconsistency. Reducing the minimum time interval used for the ISI criteria in 

automated detection reduced human-algorithm error from unresolved spindle 

clusters (4-hour data, six mice).
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Figure 3.  Automated spindle detection correlates with sigma-power (10–15 Hz) at sleep-wake transitions. (A) Sigma-power (10–15 Hz) surges can be observed prior 

to NREM–REM state transitions. Theta band (5–9 Hz) power increases prior to NREM–REM transitions and continues on into REM sleep. Spectrogram at NREM–REM 

transition. (B) Sigma-power surges can be observed at NREM–REM state transitions, calculated as previously described [29]. (C) Spindle numbers aligned at the same 

periods as shown in (A) followed a similar trajectory. (D) Spindle number correlated with the sigma-power surge. (E) Example stretch of EEG data showing that many 

detected spindles occur outside of the state-transition window. (F–J) The same comparisons are depicted for wake–NREM transitions showing that spindle number 

correlates highly with sigma-power.
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(Figure 4D, right and Figure 4E, right; r = 0.037, p = 0.48 & r = 0.08, 
p = 0.13, respectively).

Upon realizing that controlling for sleep–wake state revealed 
sigma, but not delta or gamma, correlated with spindles, we 
revisited the behavioral state transitional power surge analysis 
for evaluation of delta- and gamma-power. Analysis revealed 
a state-dependent positive correlation between spindles and 
delta-power at NREM to REM (Pearson’s correlation, r  =  0.88, 
p = 7.3 × 10−4) and wake to NREM transitions (Pearson’s correlation, 
r = 0.92, p = 1.8 × 10−4). Furthermore, a state-dependent negative 
correlation between spindles and gamma-power was observed 
at the NREM to REM (Pearson’s correlation, r = −0.79, p = 0.007) 
and wake to NREM transitions (Pearson’s correlation, r = −0.92, 
p  =  1.9  × 10−4). However, these relationships were not appar-
ent within the NREM-only period of the transition. Only sigma 
remained significantly correlated with spindles in the NREM 
period of the transition (Pearson’s correlation, r = 0.91, p = 0.03), 
further confirming that sigma alone bears a state-independent 
relationship with NREM spindles.

Finally, we found that the vast majority (Table 3) of detected 
events fell clearly within NREM, suggesting that spindles are 
indeed a physiological aspect of NREM. 75.9 ± 9.8% of the spindle 
events detected during wakefulness occurred during periods 
when muscle tone, as measured by EMG, was in the NREM range 
(lack of overt activity, decreased muscle tone compared to wake), 
suggesting either short transient moments of NREM emerge 
within epochs scored as wake or that the spindle occurred 
during quiet wakefulness (Table  3). Further, more than 40% of 
“wake spindles” occurred at transitions between NREM and wake 
(Table 3), as NREM from the neighboring epoch contaminated the 
wake-scored epoch. Except for one event in one mouse, all wake 
spindles found at sleep–wake state transitions were paired with 
NREM-like EMG amplitude. Thus, detected spindles are less likely 
to occur in wake epochs. An additional possibility to explain 
spindles that occur in wake epochs could be that the spindle has 
come from a region of the brain exhibiting local sleep patterns. 
Thus, it has been reported that EEG derived measures of sleep in 
the cortex of rats and humans can be regionalized, a phenomenon 
referred to as “local sleep”. Indeed, localized spindles have been 
reported in humans [41, 42] and this phenomenon could underlie 
sleep spindles that occur in epochs containing drowsiness that 
were identified as wake.

Experimental manipulation of spindles and sigma-
power: analysis of z-drug induced changes in EEG

Having described the relationship between sigma-power and 
sleep spindles in spontaneous EEG records, we considered this 
sigma correlation as a secondary measure and wanted to add 
rigor to the association by establishing a causal relationship 
between these two measures. For this, we used the hypnotic 

drug zolpidem, which has been shown to decrease sigma-
power in rodents [31–33]. The drug was administered to animals 
(10 mg/kg; IP), and EEG measures of spindle and sigma-power 
were compared to saline control injections. Figure 5 depicts the 
time spent in NREM, NREM spindle density and sigma-power, 
following drug injection in 20-minute intervals. As predicted, 
zolpidem induced a short latency onset of NREM sleep (1.5  ± 
0.5 minutes) with significantly more NREM in the first 2 hours 
(paired t-test; t (3) = 10.3, p = 0.002). Compared to vehicle injection, 
zolpidem (Figure 5, B and C) treated mice presented with fewer 
sleep spindles (paired t-test; t (3)  =  5.6, p  =  0.01) and lower 
sigma-power (paired t-test; t (3) = 3.4, p = 0.04). Comparing drug 
versus saline power profiles over 4 hours (Figure  5D) revealed 
that the strongest spindle and sigma-power suppressing effects 
occurred within the first hour of drug treatment (Figure 5D, bold 
lines) consistent with previous findings, showing that receptor 
occupancy in the brain is maximal (75%) at 5–10 minutes 
following an IP injection of zolpidem in mice [43], and falls 
below 10% after 1 hour [43]. The effect of zolpidem on sigma-
power was also analyzed only in NREM periods. This analysis 
revealed a suppression of sigma-power lasted at least 4 hours 
(data not shown), which is consistent with the literature [33].

Discussion
As far as we are aware, this is the first article to systematically 
validate an automated spindle detection method for use with 
mouse EEG. Our results suggest that this automated method 
provides a valid representation of sleep spindle activity for 
the following reasons: (1) Spindle density correlated well with 
sigma-power, a measure which itself is sensitive to alterations in 
spindle activity [37, 44]; (2) detected spindles occurred primarily 
in NREM sleep; (3) spindles increased during transitions into or 
out of NREM sleep; (4) Within the state of NREM sleep, spindle 
density correlated with sigma-power but not delta or gamma-
power (right column Figure 4); (5) the hypnotic drug zolpidem 
caused parallel changes in spindle density and sigma-power. 
Overall, our automated detection method provides more 
information about the properties of the spindles than the use 
of sigma-power alone, such as spindle frequency and duration, 
allowing assessment of coupling with other EEG signals. Thus, 
we believe our automated method will be extremely useful for 
researchers in the field.

One of the major findings of this work is that manual 
detection of sleep spindles in unprocessed mouse EEG is not 
possible. This is consistent with the anecdotal observations of 
many other researchers in the field who have questioned the 
ability to measure sleep spindles in mice. While it is possible 
to score sleep spindles in raw EEG from human subjects, 
several steps of EEG data processing were required in mouse 
EEG before high agreement between human scorers was 

Table 2.  Spindle density only correlated with sigma-power when data were analyzed in time bins of 15 minutes duration or shorter

Bin width 1 minute 15 minutes 30 minutes 4 hours

Pearson’s correlation coefficient (r) 0.21 0.60 0.57 −0.57
p-value 3.13 × 10−5 0.01 0.14 0.43

Pearson’s correlation coefficient and p-values were given for comparisons of spindle density and sigma-power in 15-minute bins and 30-minute bins. Both cases 

reflect the full 4-hour period used throughout the rest of the study.
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Figure 4.  During NREM sleep, spindle density correlates with sigma-power, but not with delta or gamma-power (right column of C–E). (A) Representative spectrogram 

with temporally aligned hypnogram shows the gross mouse sleep-wake patterns across the 4-hour recording period. (B) The number of NREM-spindles (blue) in each 

1-minute block from the same representative case across the 4-hour recording is depicted; spindles occurring in REM or wakefulness are omitted. (C, D, E Left) Absolute 

sigma-power (C), delta-power (D), and gamma-power (E) in 1-minute blocks from a representative case are depicted. (C Middle) Spindle density (3.4 ± 0.1 spindles/

minute) and sigma-power correlated in four animals. (C Right) Spindle density (6.3 ± 0.1 spindles/minute) and sigma-power correlated when only NREM was considered 

in four animals. (D Middle) Spindle numbers and delta-power were correlated in four animals. (D Right) Spindle numbers and delta-power were no longer correlated 

when only NREM was considered in four animals. (E Middle) Spindle numbers and gamma-power were negatively correlated in four animals. (E Right) Spindle numbers 

and gamma-power were no longer negatively correlated when only NREM was considered in four animals.
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observed (agreement above 0.95). We utilized these optimized 
human scores to determine the reliability of our custom 
MATLAB-based algorithm. This manual validation of algorith-
mic results provided a level of validation akin to that which 
had been performed in automated spindle detection methods 
of human EEG [19].

Our automated mouse spindle detection method was 
modified from the algorithm employed in Ferrarelli et  al. [20] 
for use with human EEG data. We chose to base our detection 
method on this algorithm because Warby et al. [19] found that 
this method provided the best precision of the six human 
spindle detection methods they evaluated. Optimal precision is 
more favorable than recall for mouse EEG, because intracranial 
electrodes have better signal-to-noise than scalp electrodes 
used in human studies. Additionally, the MATLAB based code 
was intuitive and easy to modify for our needs with mouse EEG. 
Furthermore, this method had been previously modified for 
use in a mouse EEG study [27], although systematic validation 
was not conducted. Thus, our validation of a modified Ferrarelli 
spindle detection method compliments the existing mouse 
literature and allows comparison with human studies which 
use the same methodology.

For this study amplitude threshold settings were calculated 
from cubed RMS data including epochs from all behavioral 
states. It is important to note that this data represented normal 
light period sleep–wake behavior and was free of movement 
induced artifacts. While generally not an issue, an unusually 
high proportion of wakefulness, or excessive locomotor activity-
induced EEG artifacts, have the potential to negatively impact 
the amplitude threshold calculation. Since pristine recordings 
may not always be available, we suggest several possible 
ways to deal with these issues: (1) Score epochs containing 
movement artifacts separately from wakefulness. Our MATLAB 
script can exclude such epochs from the threshold calculation. 
(2) Thresholds can be based on NREM epochs alone. For this, 
alternative multipliers must be determined empirically using 
exemplar recordings. When using NREM EEG data only for 
baseline calculations, we have found that an upper threshold 
multiplier of 2.5 and a lower threshold multiplier of 1 provides 
similar threshold values as the default settings with artifact-
free records. Using NREM only threshold settings may also be 
used if the EEG record does not include sleep-wakefulness state 
proportions that are typical of natural undisturbed behavior 
in mice. (3) Finally, if possible amplitude thresholds can be 
calculated from longer duration EEG records, when available, 
to mitigate spindle detection issues arising from atypical sleep-
wake in a particular section of the EEG record.

Measuring individual spindle events has several advan-
tages over the use of surrogates of sleep spindle activity such 
as sigma-power including the ability to describe the properties 

of spindles such as their frequency, duration, and amplitude. 
Sigma-power has been commonly used in publications that 
explore sleep spindle-generating neurocircuitry [29, 30]. Here we 
show that total NREM sigma-power is a poor marker of spindle 
activity for several reasons. As shown in Table 2 spindle density 
only correlated with sigma-power if short sample time periods 
were used (<15-minute bins). Any data binning above 15 minutes 
did not reveal a correlation between spindle density and sigma-
power. Further, sigma-power used alone to assess spindles can be 
difficult to interpret, providing conflicting outcomes depending 
on differing analysis techniques. For example, in three mouse 
studies, overall NREM sigma-power was unchanged across EEG 
recording sessions, comparing measures in experimental and 
control mice [29, 30, 40]. However, measures of sigma-power at 
state transitions between NREM to REM sleep differed between 
the three studies. These reports highlight the need to maintain 
fine temporal resolution within the EEG recording, and thus 
demonstrate the importance of detecting individual sleep 
spindles rather than just sigma-power.

Having validated our spindle detection method, we now have 
more confidence that the sigma-power surge at NREM to REM 
transitions is a valid proxy of spindle activity in mice; this had 
previously not been established. In our hands, increased sigma-
power was found at sleep-wakefulness state transitions (NREM–
REM and wake–NREM) similar to previous reports in mice [29, 30, 
40]. Importantly, detected spindles and sigma-power measures 
were well correlated. Thus, detecting individual spindles 
provides greater sensitivity and temporal detail than is possible 
by studying sigma-power alone.

Seminal work by Steriade and colleagues [45] investigated 
the interplay between spindles and slow-waves, alluding to 
functionally relevant interactions. However, this work was 
performed in cats, in which spindles are more clearly visible 
in raw EEG. With recent advances in mouse genetic approaches 
and signal processing techniques, future experiments may 
reveal whether new therapeutic strategies are more efficacious 
by targeting the coupling of spindles to their physiologically 
relevant position with other oscillations, such as delta 
oscillations and/or hippocampal sharp-wave-ripples, rather 
than simplified analysis of the spindle number or sigma-power. 
With our method, we resolved spindles as individual transient 
events, which enabled estimates of start-points and end-
points of spindles, allowing alignment or superimposition of 
spindles with other transient events, such as slow waves [26]. 
This provided the level of fine-grain detail required for studying 
spindles in temporal relation to other oscillations.

The frequency band that constitutes the spindle range has 
been defined inconsistently between different studies [26–29, 46] 
Lüthi et al. [47] discuss 10–15 Hz as the sigma/spindle frequency. 
Vyazovskiy et al. [28] focused on 10–13 Hz, Kim et al. [27] used 

Table 3.  Spindle numbers and percentage for each behavioral state across 4-hour records in four mice

 
Total  
spindles

NREM 
spindles “Wake” spindles

“Wake” spindles 
with NREM-like 
EMG

“Wake” to  
NREM spindles

NREM to “Wake” 
spindles

REM 
spindles

Mean ± SEM 902.5 ± 14.0 805.8 ± 20.8 44.0 ± 19.4 29.0 ± 9.1 4.3 ± 2.4 13.8 ± 4.6 52.8 ± 9.3
% Total spindles 

± SEM
89.3 ± 1.4  4.9 ± 2.2  3.2 ± 1.1 0.5 ± 0.3 1.5 ± 0.5 0.1 ± 0.01

Spindles detected during wakefulness were compared to their temporally aligned EMG signal. NREM-like EMG is defined as values less than three standard 

deviations above the mean of RMS transformed EMG activity during NREM.
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10–16 Hz, Astori et al. used 10–12 Hz [29], Franken et al. [46] cited 
11–15 Hz, and Latchoumane et al. [26] designated 7–10 Hz as the 
sigma range, each of these studies were performed using mice. 
Broader ranges have been used in classic work in cats which 
focused on 7–14 Hz [48] or 7–16 Hz [5]. Consistent with other 
reports [28, 29, 36], we evaluated NREM to REM transitions and 
observed a distinct area of high energy between the frequencies 

of ~10 Hz and ~15 Hz which decayed rapidly with the onset of 
REM sleep, and a separate theta peak of ~7 Hz which continued 
into REM.

Here we also replicate the finding that zolpidem attenu-
ates sigma-power [31–33] in mice. We further demonstrate for 
the first time that a decrease in spindle density parallels the 
decrease in sigma-power. Furthermore, as shown in Figure  5, 
the decrease in spindle density appears more robust than the 
decrease in sigma-power. One consideration, however, is that 
these drugs in rodents produce the opposite effect on sleep 
spindles in humans, that is, increasing both spindle number and 
sigma-power [18, 49, 50]. The reason for this between-species 
discrepancy is not known but is likely because doses given to 
mice are usually ~100-fold higher (mg/kg) than in humans. 
Mice require at least 5–10 mg/kg to induce NREM sleep reliably 
[31–33], whereas human studies typically administer a 3 mg or 
10 mg total dose per participant regardless of body weight [18, 
49, 50].

A number of approaches have been explored for auto-
mated detection of sleep spindles (Warby et  al. [19]). While 
these methods are in general quite similar, subtle variations in 
data processing methods make it difficult to compare spindle 
findings across different studies. Such methods principally 
vary based on the method employed to provide a quantitative 
measure of power in the spindle frequency range; including RMS 
or Hilbert transform, and wavelet-based approaches. Moreover, 
threshold settings are often based on mean values as a baseline 
[20, 27, 51], whereas other methods employ alternatives such as 
standard deviation values [26, 52] or percentiles [37, 53]. While 
each of these approaches are utilized to the same end, different 
techniques may have certain advantages, depending upon the 
measure of interest (temporal localization, accuracy of spindle 
frequency, etc.). For example, wavelet-based approaches may be 
more sensitive to peak frequencies (detecting narrow frequency 
ranges) whereas band-filter based approaches are more sensitive 
to broader frequency bands. We favored a band-filtered approach 
here, because spindles are classically described as oscillatory 
events existing within a defined frequency bandwidth. Other 
significant sources of variability include the frequency band 
used to define spindles as well as event duration criteria. Our 
detection approach was designed to be flexible and is easily 
adjustable to account for differing detection criteria; it has a 
graphical user interface for adjustment of the main detection 
parameters. For example, users can vary the duration settings to 
detect only spindles that last longer than a second, or they can 
vary the threshold settings in order to selectively detect large 
spindles. Spindle amplitude is a parameter of particular interest 
because large spindles may reflect events generated closer to the 
recording electrode and/or those most likely to induce synaptic 
plasticity in cortical circuits [54].

There has also been some variation in reported spindle dens-
ity in mice, our automated method detected sleep spindle dens-
ity in the same range as previous reports. Most previous studies 
report mouse NREM spindle density in the range of 3–11 spindles 
per minute [28, 37, 55]. Our average NREM spindle density during 
the light phase was 6.3 spindles per minute (Figure  4C, right). 
One study reported a lower value of 1.66 spindles per minute [27]; 
using more stringent detection criteria. Hence, this study possibly 
excluded many lower amplitude events and thus detected fewer 
spindles overall compared to other studies. Moving forward, 
it would be extremely helpful for the field to come to a better 

Figure 5.  Spindle density and sigma-power decrease in parallel after hypnotic 

drug treatment despite an elevation of NREM sleep. Average time spent in NREM 

(A) aligned with NREM spindle density (spindles/minute) (B) and normalized 

sigma-power (C) are depicted for 4 hours following an intraperitoneal injection 

of saline (black dotted line) or zolpidem (10 mg/kg; red solid line). Data depicted 

as the mean of four animals, error bars represent SEM; 20-minute bins. (D) EEG 

power after an injection of zolpidem. Dark represents the first hour producing 

the largest effect, while subsequent hours are shown by lighter shades. 

*p < 0.05,**p < 0.01, n.s. not significant.
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consensus on the frequency and duration of sleep spindles. To 
facilitate this effort, we will provide the MATLAB script for our 
detection algorithm to investigators upon request.

In conclusion, despite mice becoming a preferred model 
species for the study of sleep, no validated method for detecting 
sleep spindles has been previously reported. This study 
validated an automated spindle detection method in mouse EEG 
recordings, which will hopefully facilitate future work directed 
at understanding the mechanisms of spindle generation and 
functional impact of sleep spindles.
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