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Introduction: Apolipoprotein-L1 (APOL1) risk variants G1 and G2 increase the risk of chronic kidney dis-

ease (CKD), including HIV-related CKD, among African Americans. However, such data from populations

living in Africa, especially children, remain limited. Our research aimed to determine the prevalence of

APOL1 risk variants and to assess the association between these variants and early-stage CKD in the

general pediatric population and HIV-infected children.

Methods: In a cross-sectional study, we enrolled 412 children from the general population and 401 HIV-

infected children in Kinshasa, Democratic Republic of Congo (DRC). APOL1 high-risk genotype (HRG)

was defined by the presence of 2 risk variants (G1/G1, G2/G2, or G1/G2), and low-risk genotype (LRG) by

the presence of 0 or 1 risk variants. The main outcome was elevated albuminuria, defined as a urinary

albumin/creatinine ratio $30 mg/g.

Results: APOL1 sequence analysis revealed that in the general population, 29 of 412 participants (7.0%)

carried HRG, 84 of 412 (20.4%) carried the G1/G0 genotype, and 61 of 412 (14.8%) carried the G2/G0 ge-

notype. In HIV-infected children, 23 of 401 (5.7%) carried HRG, and the same trend as in the general

population was observed in regard to the prevalence of LRG. Univariate analysis showed that in the

general population, 5 of 29 participants (17.2%) carrying HRG had elevated albuminuria, compared with 35

of 383 (9.0%) with LRG (odds ratio [OR] 2.1, 95% confidence interval [CI] 0.6–6.0; P ¼ 0.13). In HIV-infected

children, participants who carried APOL1 HRG had almost 22-fold increased odds of albuminuria

compared to those with LRG.

Conclusion: The APOL1 risk variants are prevalent in children living in DRC. HRG carriers have increased

odds of early kidney disease, and infection with HIV dramatically increases this probability.
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frican Americans have an increased risk of
developing various progressive CKDs, including
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related nephropathy, sickle cell disease nephropathy,
and HIV-associated nephropathy.1–3 This risk has
been attributed to APOL1 genetic variants.4,5 APOL1
functions as a part of the innate immune system, and
its circulating form bound to high-density lipoproteins
protects humans and higher primates against Trypano-
some species.6 The risk alleles responsible for kidney
disease are 2 coding variants in the last exon (exon 7)
of the APOL1 gene. The first allele, G1, consists of 2
amino acid substitutions (Ser342Gly and Ile384Met) in
almost complete linkage disequilibrium. The second
Kidney International Reports (2019) 4, 930–938
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allele, G2, represents a 6–base pair (bp) deletion result-
ing in loss of 2 amino acids (Asn388-Tyr389del) in the
same functional domain as G1.5–8 These variants confer
a selective advantage to Africans carrying 1 or 2 alleles
in some areas where sleeping sickness (human African
trypanosomiasis) and possibly other infectious diseases
are endemic.4,7,9 DRC is one of the countries most
affected by sleeping sickness.4

Although the protective role of APOL1 against
Trypanosome is well known (endocytosis by the para-
site with subsequent insertion into the membranes and
pore formation lead to lysis of the parasite),10 the
mechanisms of kidney damage associated with HRGs
remain obscure.11 Overexpression of APOL1 G1 and G2
variants in podocytes, using cell and animal models,
has been shown to do the following: induce a cytotoxic
effect by apoptosis, necrosis, or inflammatory cell death
(pyroptosis)12,13; disrupt autophagic flux12; alter mito-
chondrial function12,14; stimulate potassium efflux15;
and stress response pathways.15 However, to what
extent these mechanisms are involved in humans is still
unknown. Moreover, whether an environmental or
genetic “second hit” is always required to induce
damage associated with HRG is a matter of debate,16,17

especially given that <15 of 100 HRG carriers are
predicted to develop end-stage renal disease.18

Nevertheless, although evolving epidemiologic data
support an association between APOL1 HRG and pro-
gressive CKD among African Americans,7,8,16,19 infor-
mation is limited in the African population, and no data
are available in African children. A few studies indicate
that G1 and G2 alleles are most common in West Africa,
with the highest frequencies occurring in Ghana and
Nigeria (G1, >40%; G2, 6%–24%).4,16 The most recent
APOL1 variants distribution map shows the scarcity of
APOL1-related genotypic data in Central Africa,
highlighting the critical need for extensive genotyping
among diverse African ethnic groups.4

HIV infection was identified as an extremely potent
risk factor for APOL1-related CKD.8 For a person with
HIV, APOL1 HRG increases the risk of developing
HIV-associated nephropathy by 29- to 89-fold.8,16 In
sub-Saharan Africa, where HIV infection and its com-
plications are a substantial healthcare problem, policy
for early detection of CKD, including HIV-related CKD,
is lacking in most settings.20,21 In addition, the
geographic distribution of APOL1 risk variants and
their association with HIV-related CKD are not well
documented in either adults or children, and no reli-
able data are available for Central Africa. Identifying
high-risk individuals or groups, and early detection of
CKD, could contribute significantly to developing a
rational strategy to prevent or slow the progression to
Kidney International Reports (2019) 4, 930–938
end-stage renal disease of APOL1 kidney disease. This
strategy is particularly important in resource-limited
settings where renal replacement therapy is generally
unavailable or financially inaccessible.

This study aimed to describe the prevalence of
APOL1 risk variants in a pediatric population of DRC
and to evaluate the association between HRG and a
marker of early kidney damage in both the general
pediatric population and a population at risk for
APOL1-related nephropathy, namely, HIV-infected
children.

METHODS

Compliance with Ethical Standards

The study was approved by the National Ethical
Committee of the Public Health School of the Univer-
sity of Kinshasa, in compliance with the principles of
the Helsinki Declaration. A signed, written informed
consent form was obtained from parents or legal
guardians of children upon recruitment.

Study Design and Participants

This cross-sectional study was conducted from May
2017 to May 2018. In total, 813 participants (#18 years
old), composed of 2 different populations, were
enrolled. Using a multi-stage sampling strategy, Con-
golese children from the general population were
recruited in the 4 main districts that make up Kinshasa,
the capital of DRC. The participants (n ¼ 412) were
recruited from the popular churches at the rate of one
church per district, after agreement of church officials
was obtained. The choice of these churches was based
on their power of mobilization and grouping of chil-
dren of different ethnicities and social and economic
strata. To minimize sample bias, only one sibling was
randomly selected per family. The subjects were not
related to each other. For the second group, the eligi-
bility criteria were that subjects should be HIV-
infected children (n ¼ 401) treated with non-renal
toxic antiretroviral drugs following the guidelines
for integrated HIV management in DRC (the DRC
National AIDS Control Program [PNLS])22 and regu-
larly followed by the main pediatric HIV clinic in each
district recognized by PNLS. The study subjects were
not related to each other. The study is reported ac-
cording to the STROBE statement for observational
studies.

Clinical and Early-Stage Kidney Disease

Assessment

At enrollment, sociodemographic and anthropometric
data (age, gender, height, weight, body mass index),
and systolic and diastolic blood pressure (SBP, DBP),
931



Table 1. General characteristics of 2 study populations

Characteristic

General population
(children),
n [ 412

HIV-infected
children,
n [ 401 P value

Age (yr) 9.0 � 4.3 11.6 � 4.1 <0.001

Gender, male 193 (46.8) 196 (48.9) 0.30

Height (cm) 130.1 � 22.6 140.3 � 20.6 <0.001

Weight (kg) 30.6 � 13.3 34.9 � 13.8 <0.001

BMI (kg/m2) 17.2 � 2.7 16.9 � 3.0 0.13

SBP (mm Hg) 101.6 � 11.6 104.2 � 14.1 0.004

DBP (mm Hg) 61.5 � 10.1 67.4 � 10.4 <0.001

SBP > 95th percentile 50 (12.0) 58 (14.5) 0.19

DBP > 95th percentile 21 (5.0) 39 (9.7) 0.01

Serum creatinine (mg/dL) 0.57 � 0.16 0.59 � 0.21 0.11

eGFR (ml/min per 1.73 m2) 99.1 � 22.8 107.0 � 36.8 <0.001

eGFR < 60 ml/min per 1.73 m2 13 (3.1) 26 (6.5) 0.02

U-ACR $30 mg/g 40 (9.7) 72 (18.0) <0.001

Microalbuminuria (30–299 mg/g) 33 (8.0) 71 (17.7) <0.001

Macroalbuminuria ($300 mg/g) 7 (1.7) 1 (0.2) 0.07

Viral load >1000 copies/ml — 107 (26.6) —

At least one APOL1 risk allele 174 (42.2) 162 (40.4) 0.32

High-risk genotype 29 (7.0) 23 (5.7) 0.27

G1/G1 4 (0.9) 5 (1.2) —

G2/G2 11 (2.6) 4 (0.9) —

G1/G2 14 (3.4) 14 (3.5) —

Low-risk genotype 383 (93.0) 378 (94.3) 0.27

G1/G0 84 (20.4) 84 (20.9) —

G2/G0 61 (14.8) 55 (13.7) —

G0/G0 238 (57.7) 239 (59.6) —

BMI, body mass index; DBP, diastolic blood pressure; eGFR, estimated glomerular
filtration rate; SBP, systolic blood pressure; U-ACR, urine albumin-to-creatinine ratio.
Data are expressed as mean � SD or absolute (n) and relative (%) frequency, unless
otherwise indicated.
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were collected from all participants. Blood pressure was
measured on the right upper arm with participants in a
sitting position after 5 minutes of rest, using a cali-
brated aneroid sphygmomanometer for pediatric pa-
tients (WelchAllyn, Hechingen, Germany) at the heart
level. Considering the average of 3 blood pressure
measurements, hypertension was defined according to
the updated definitions of blood pressure categories
and stages reported by Flynn et al.23 For HIV-infected
children in whom viral load was not available within 6
months prior to recruitment, a viral load quantification
was performed using the Abbott m2000rt Real Time
HIV-1 assay (Abbott Laboratories, Abbott Park, IL).
The lower limit of detection was 40 copies/ml. A high
viral load was defined by a copy number > 1000/ml.
Serum creatinine was measured in all participants using
an enzymatic method, with a COBAS C111 apparatus
(Roche Instrument Center, Rotkreuz, Switzerland).
Estimated glomerular filtration rate (eGFR) was calcu-
lated using the Schwartz formula.24 Reduced kidney
function was defined as eGFR <60 ml/min per 1.73 m2.
A first of the morning, fasting, fresh urine sample was
collected from each participant. Urinary albumin
excretion, expressed as the urinary albumin/creatinine
ratio was assessed using an immunoturbidimetric
method, with a DCA Vantage Analyzer (Siemens
Healthineers Global, Erlangen, Germany). Elevated
albuminuria was defined as a urinary albumin/creati-
nine ratio $30 mg/g.

Assessment of APOL1 Renal Risk Alleles

DNA was extracted from whole blood samples using
Qiagen kits following manufacturer instructions
(QIAamp DNA Mini Kit; Qiagen, Venlo, Netherlands) in
the genetics laboratory of the University of Kinshasa.
The extracted DNA was transferred to the laboratory of
Development and Regeneration of KU Leuven (Katho-
lieke Universiteit, Leuven, Belgium) for storage and
genotyping. APOL1 genotyping was performed for 2
renal risk alleles: G1 (coding variants rs73885319A>G
[p.Ser342Gly] and rs60910145G>T [p.Ile384Met]) and
G2 (6-bp deletion, rs71785313). Exon 7 (883 bp) of
APOL1 was amplified using gene-specific primer
pairs (Fw50-GTCACTGAGCCAATCTCAGC-30/Rv50-
CATATCTCTCCTGGTGGCTG-30). Polymerase chain
reaction experiments were performed on genomic DNA
using GoTaq Green DNA Polymerase (Promega Corpo-
ration, Fitchburg, Wisconsin) and consisted of 35 cy-
cles with the annealing temperature of 55 �C. Alkaline
phosphatase and exonuclease exoSAP IT (Affymetrix,
Santa Clara, CA) were applied for polymerase chain
reaction purification. Subsequently, Sanger sequencing
was performed with an ABI 3100XL High-Throughput
DNA Sequencer (Applied Biosystems, Foster City, CA).
932
APOL1 HRG was defined by the presence of 2 risk
alleles (G1/G1, G2/G2, or G1/G2), and LRG was defined
by the presence of 0 or 1 risk alleles.

Statistical Analysis

Data were analyzed using SPSS for Windows, version
18.00, 2009 (IBM, Chicago, IL). Independent groups
were compared using the Student’s t-test, c2 test, or
Fisher’s exact test, as appropriate. Determinants of
albuminuria were assessed using logistic regression
models. To investigate possible confounding variables
and collinearity between independent variables, cova-
riates were included in the final model if they were
statistically significant in the univariate analysis, or if
they were clinically or epidemiologically relevant. ORs
were provided with their 95% CIs. A P value <0.05
was considered significant based on a 2-tailed test. A c2

test was used to test the deviation from Hardy-
Weinberg equilibrium.
RESULTS

Characteristics of the Study Population

The general characteristics of the 2 study populations
are summarized in Table 1. In the general population,
Kidney International Reports (2019) 4, 930–938
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the mean age, SBP, DBP, and eGFR were 9.0 � 4.3
years, 101.2 � 11.6 mm Hg, 61.5 � 10.1 mm Hg, and
99.1 � 22.8 ml/min per 1.73 m2, respectively. The mean
age, SBP, DBP, and eGFR in HIV-infected children were
11.6 � 4.1 years, 104.2 � 14.1 mm Hg, 67.4 � 10.4
mm Hg and 107.0 � 36.8 ml/min per 1.73 m2, respec-
tively. Of 401 HIV-infected children receiving the com-
bined antiretroviral drugs available, 95% were treated
by the first-line regimen (zidovudine or abacavir þ
lamivudine þ nevirapine or efavirenz) versus 5% by the
second-line regimen (abacavir or zidovudine or
tenofovir þ lamivudine þ lopinavir/ritonavir).

APOL1 Genotype Distribution in the General

Population and in HIV-Infected Children

Of 412 children recruited in the general population, 174
(42.2%) participants carried at least one APOL1 risk
allele (Table 1). Considering all chromosomes, the risk
allele frequency was 12.4% for G1 and 10.4% for G2.
With regard to risk genotype frequency, APOL1
sequence analysis revealed 29 participants (7.0%) car-
rying a HRG (G1/G1, G2/G2, and G1/G2), and LRG
frequencies were 57.7%, 20.4%, and 14.8% for G0/G0,
G1/G0, and G2/G0, respectively. In HIV-infected chil-
dren, 23 of 401 (5.7%) participants carried HRG,
whereas 239 of 401 (59.6%) carried G0/G0, 84 of 401
(20.9%) carried G1/G0, and 55 of 401 (13.7%) carried
G2/G0 genotypes (Table 1). Genotypes were distributed
according to the Hardy-Weinberg equilibrium (P >
0.05), and there was no difference in the distribution
between healthy and HIV-infected children.
Table 2. Descriptive statistics of characteristics of study population by le

Characteristic

General population (n [ 412)

U-ACR ‡ 30 mg/g
(n[40)

U-ACR < 30 mg/g
(n[372)

Age (yr) 9.3 � 4.5 9.0 � 4.2

Gender, male 18 (45.0) 175 (47.0)

BMI (kg/m2) 16.4 � 4.1 16.4 � 3.3

SBP (mm Hg) 106.5 � 12.3 101.1 � 11.4

DBP (mm Hg) 67.3 � 10.7 60.9 � 9.9

SBP > 95th percentile 11 (20.0) 39 (10.5)

DBP > 95th percentile 5 (12.5) 16 (4.3)

eGFR, ml/min per 1.73 m2 101.3 � 29.4 98.9 � 22.7

eGFR < 60 ml/min per 1.73 m2 2 (5.0) 11 (2.9)

Viral load >1000 copies/ml — —

APOL1 high- risk genotype 5 (12.5) 24 (6.4)

G1/G1 1 (2.5) 3 (0.8)

G1/G2 2 (5.0) 12 (3.2)

G2/G2 2 (5.0) 9 (2.4)

0 risk alleles (%)

G0/G0 21 (52.5) 215 (57.8)

1 risk allele (%) 14 (35.0) 133 (35.7)

G0/G1 8 (20.0) 78 (20.9)

G0/G2 6 (15.0) 55 (14.8)

Data are expressed as mean � SD or absolute (n) and relative (%) frequency, unless otherwise
not significant; SBP, systolic blood pressure; U-ACR: urine albumin-to-creatinine ratio.
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Prevalence of Elevated Albuminuria and the

Association with APOL1 HRG
General Population

As shown in Table 1, elevated albuminuria was
present in 40 of 412 (9.7%) healthy children, and
reduced kidney function was detected in 13 of 412
(3.1%). HIV-infected children were on average 2.6
years older, which explains some differences be-
tween the groups. However, a higher number of
these children had elevated albuminuria and a
decreased eGFR, compared with healthy children,
although the mean eGFR was higher in HIV-infected
children, possibly due to the hyperfiltration which
precedes proteinuria. Mean SBP (P ¼ 0.05) and DBP
(P < 0.001) were higher in children presenting with
elevated albuminuria than in those with normal
albuminuria (Table 2). Univariate analysis of the as-
sociation between elevated albuminuria and an
APOL1 HRG is shown in Tables 2 and 3. As reported
in Table 3, a total of 5 of 29 (17.2%) children who
carried APOL1 HRG presented with elevated albu-
minuria, compared with 35 of 383 (9.0%) children
with LRG (unadjusted OR 2.1, 95% CI 0.6–6.0; P ¼
0.13). Moreover, children carrying HRG (29 of 412)
demonstrated higher SBP (P ¼ 0.002) and DBP (P ¼
0.01) and lower eGFR (P ¼ 0.04) than those with LRG
(Table 3). Multivariate logistic regression analysis
showed that SBP >95th percentile (adjusted OR 2.73,
95% CI 1.16–6.41; P ¼ 0.021) emerged as the main
independent factor associated with elevated albu-
minuria (Table 4).
vel of albuminuria
HIV-infected children (n [ 401)

P value
U-ACR ‡ 30 mg/g

(n[72)
U-ACR < 30 mg/g

(n[329) P value

0.67 12.4 � 4.0 11.4 � 4.1 0.06

0.47 28 (38.9) 168 (51.06) 0.04

NS 16.8 � 2.8 16.3 � 3.11 0.21

0.005 106.7 � 13.2 103.7 � 14.2 0.10

<0.001 68.6 � 19.8 67.2 � 10.5 0.59

0.004 11 (15.3) 47 (14.3) 0.47

0.04 11 (15.3) 28 (8.5) 0.06

0.54 95.5 � 25.0 110.3� 38.3 0.002

0.36 4 (5.5) 22 (6.7) 0.48

— 48 (66.7) 59 (18.0) <0.001

0.14 18 (25) 5 (1.5) <0.001

0.33 4 (5.5) 1 (0.3) 0.004

0.63 11 (15.3) 3 (0.9) <0.001

0.29 3 (4.1) 1 (0.3) 0.01

0.61 31 (43.0) 208 (63.2) 0.002

1.00 23 (31.9) 116 (35.2) 0.68

1.00 14 (19.4) 70 (21.3) 0.87

1.00 9 (12.5) 46 (13.9) 0.85

indicated. DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; NS,
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Table 3. Sociodemographic characteristics, viral load level, and kidney disease markers in general pediatric population and HIV-infected
children by APOL1 risk genotype status

Characteristic

General population (n [ 412) HIV-infected children (n [ 401)

High-risk genotype
(n [ 29)

Low-risk genotype
(n [ 383) P value

High-risk
genotype (n [ 23)

Low-risk
genotype (n [ 378) P value

Age (yr) 10.0 � 4.1 9.0 � 4.1 0.20 11.4 � 3.6 11.6 � 4.1 0.81

Gender, male 12 (41.4) 181 (47.2) 0.34 9 (39.1) 187 (49.5) 0.22

BMI (kg/m2) 16.5 � 3.0 16.4 � 3.4 0.88 16.9 � 2.2 16.8 � 3.1 0.87

SBP (mm Hg) 108.4 � 11.5 101.4 � 11.4 0.002 102.5 � 14.2 104.3 � 14.1 0.55

DBP (mm Hg) 65.8 � 11.2 61.2 � 9.9 0.01 63.6 � 9.7 67.7 � 10.4 0.06

SBP > 95th percentile 7 (24.1) 53 (13.8) 0.11 2 (8.7) 56 (14.8) 0.32

DBP > 95th percentile 4 (13.8) 17 (4.4) 0.05 1 (4.3) 38 (10.0) 0.32

Viral load >1000 copies/ml — — — 10 (43.5) 97 (25.7) 0.05

eGFR, mL/min per 1.73 m2 90.9 � 21.7 99.6 � 22.8 0.04 103.2 � 32.9 107.7 � 37.0 0.57

eGFR < 60 mL/min per 1.73 m2 1 (3.4) 12 (3.1) 0.61 2 (8.7) 24 (6.3) 0.45

U-ACR $30 mg/g 5 (17.2) 35 (9.0) 0.13 18 (78.3) 54 (14.3) <0.001

Microalbuminuria (30–299 mg/g) 4 (13.8) 29 (7.5) 0.27 17 (73.9) 54 (14.3) <0.001

Macroalbuminuria ($300 mg/g) 1 (3.4) 6 (15.6) 0.40 1 (4.3) 0 (0.0) —

BMI, body mass index; DBP, diastolic blood pressure; eGFR: estimated glomerular filtration rate; SBP: systolic blood pressure; U-ACR: urine albumin-to-creatinine ratio.
Data are expressed as mean � SD or absolute (n) and relative (%) frequency, unless otherwise indicated.
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HIV-Infected Children

Elevated albuminuria was detected in 72 of 401 (18.0%)
HIV-infected children, and reduced kidney functionwas
detected in 26 of 401 (6.5%), as shown in Table 1. In the
univariate analysis, male gender (P ¼ 0.04), eGFR (P ¼
0.002),APOL1HRG (P< 0.001), and high viral load (P<
0.001) were associated with elevated albuminuria
(Tables 2 and 3). Regarding HIV-infected children car-
rying APOL1 HRG (n ¼ 23), 10 of 11 (90.9%) patients
with a viral load of >1000 copies/ml presented with
elevated albuminuria, and 8 of 12 (66.7%) children with
a viral load of<1000 copies/ml had elevated albuminuria
(OR 5.0, 95% CI 0.36–270.34; P ¼ 0.32). Multivariate
logistic regression analysis showed that APOL1 HRG
(adjusted OR 32.56, 95% CI 9.94–106.58; P< 0.001) and
Table 4. Determinants of elevated albuminuria in multivariate logistic reg
Variable Coefficient (standard error)

Dependent variable: Albuminuria

General population (n ¼ 412)

Age –0.005 (0.046)

Gender –0.048 (0.343)

BMI 0.040 (0.065)

DBP > 95th percentile 0.534 (0.614)

SBP > 95th percentile 1.006 (0.435)

eGFR < 60 ml/min per 1.73 m2 0.682 (0.798)

APOL1 high-risk genotype 0.493 (0.552)

HIV-infected children (n ¼ 401)

Age 0.024 (0.048)

Gender –0.370 (0.326)

BMI –0.054 (0.063)

DBP > 95th percentile 0.858 (0.497)

SBP > 95th percentile 0.219 (0.469)

eGFR< 60 ml/min per 1.73 m2
–0.367 (0.716)

Viral load >1000 copies/ml 2.336 (0.342)

APOL1 high-risk genotype 3.483 (0.605)

Albuminuria: (0) ACR <30 mg/g creatinine; (1) ACR >30 mg/g creatinine. Viral load: (0) copy num
body mass index; CI, confidence interval; DBP: diastolic blood pressure; eGFR: estimated glom
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a high viral load (adjusted OR 10.34, 95% CI 5.29–20.23;
P < 0.001) were the only independent risk factors
associated with elevated albuminuria (Table 4). This
strong association between APOL1 HRG and elevated
albuminuria in HIV-infected children is further high-
lighted in Table 3 and Figure 1, which show that almost
78% of HIV-infected children carrying APOL1 HRG
presented with albuminuria, compared with 14.3% of
those carrying LRG (unadjusted OR 21.60, 95% CI 7.25–
76.62; P < 0.001).
DISCUSSION

To our knowledge, the present study is the first to
describe, in an African pediatric population, the
ression analysis
Z-score Adjusted OR (95% CI) P value

–0.117 0.99 (0.90–1.08) 0.90

–0.140 0.95 (0.48–1.87) 0.89

0.621 1.04 (0.92–1.18) 0.53

0.869 1.70 (0.51–5.68) 0.38

2.312 2.73 (1.16–6.41) 0.02

0.855 1.98 (0.41–9.44) 0.39

0.891 1.63 (0.55–4.83) 0.37

0.509 1.02 (0.93–1.12) 0.61

–1.134 0.69 (0.36–1.30) 0.25

–0.865 0.95 (0.84–1.07) 0.38

1.726 2.36 (0.89–6.25) 0.08

0.467 1.24 (0.49–3.12) 0.64

–0.513 0.69 (0.17–2.82) 0.60

6.824 10.34 (5.29–20.23) <0.001

5.756 32.56 (9.94–106.58) <0.001

ber <1000/ml blood; (1) copy number >1000/ml blood. Gender: (0) female; (1) male. BMI,
erular filtration rate; OR, odds ratio; SBP: systolic blood pressure.
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Figure 1. Proportion (%) of children who presented elevated
albuminuria among those carrying the APOL1 high-risk genotype.
Higher proportions of HIV-infected patients who carried the APOL1
HRG had elevated albuminuria compared to those with the low-risk
genotype (78% of HIV-infected patients carried an APOL1 high-risk
genotype versus 14% who had a low-risk genotype), whereas no
difference in the occurrence of elevated albuminuria was observed
between subjects carrying a high-risk versus low-risk genotype in
the general population.
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prevalence of APOL1 risk variants and investigate the
association between APOL1 HRG and early-stage kid-
ney disease in both HIV-infected and healthy children.
Prevalence of APOL1 Risk Variants

We found a higher prevalence of APOL1 HRG (7.0%)
in the general population in DRC than was previously
assumed. Moreover, the allele prevalence of G1 (12.4%)
and G2 (10.4%) was also much higher than that pre-
viously reported (G1: 0%; G2: 3.8%).1 This difference
can be attributed to the increased sample size. Indeed,
Kopp et al.1 reported the worldwide frequency distri-
bution of APOL1 variants G1 and G2 in DNA samples
from 1024 individuals of various ethnicities, while only
15 individuals were recruited from DRC. However, the
most recent study describing the frequency distribu-
tion of G1 and G2 variants, in Africa and worldwide,4,7

showed the prevalence of G2 in African Americans
(13%–15%) to be similar to that found in our study.
The prevalence of the G1 allele in our study population
was lower than that reported in African Americans
(20%–22%) and much lower than the prevalence
detected in Nigeria and Ghana (>40%). Western Africa
has been reported to be the epicenter of APOL1 vari-
ants.4,5,7 It has been hypothesized that the APOL1
variants arose in the past 10,000 years on sub-Saharan
African chromosomes, likely in West Africa, where
they have been subjected to intense positive selec-
tion.4,25,26 The high prevalence of G1 and G2 alleles in
Kidney International Reports (2019) 4, 930–938
African Americans is explained by the fact that their
ancestry is predominantly from the ethnicities of the
Niger-Kordofanian language group, which is most
common in Western Africa.27 This explanation is in
line with the APOL1 G1 and G2 frequency along the
Atlantic coast of Africa, which was the source of the
Atlantic slave trade.4,27 The same reason might explain
the slight difference between the prevalence of APOL1
HRG detected in the present study (7.0%) and that
found in African Americans, which ranges4,7 from 10%
to 15%. In the present study, the prevalence of APOL1
HRG G1/G1 (1.2%) and G2/G2 (0.9%) in HIV-infected
children was consistent with the trend commonly re-
ported in other populations,4 whereas the prevalence of
HRG G2/G2 (2.6%) was higher than that of G1/G1
(0.9%) in the general population. Despite the pre-
cautions taken in selecting participants (1 sibling
randomly selected per family), some degree of selection
bias may have persisted and could have influenced the
prevalence of the G1/G1 and G2/G2 genotypes in the
general population. In addition, absolute numbers
should be interpreted with caution due to the small
study population. However, these issues highlight the
critical need for extensive sampling to perform geno-
typing among diverse African ethnic groups in order to
identify the extent of genetic diversity. In the present
study, participants were comprised of a mixed popu-
lation originating from 4 main linguistic groups
representative of more than 200 different ethnic groups
identified in DRC. Nevertheless, the observed trend in
prevalence should be confirmed in a larger population.

Prevalence of Markers of Kidney Disease

The prevalence of elevated albuminuria was 18%, and
reduced renal function was present in 6.5% of HIV-
infected children recruited in the present study.
Comparable results have been reported in Tanzania,
where albuminuria (20.4%) and eGFR <60 ml/min per
1.73 m2 (5.8%) were detected in HIV-infected chil-
dren.28 This finding is in line with several other studies
around the world, using different methodologies and
patients’ clinical profiles, showing that micro-
albuminuria is a common and early marker of kidney
damage in HIV-infected children.20,29–33 Data from the
current study showed that systolic hypertension was
not associated with elevated albuminuria in HIV-
infected children, as well as in the general pediatric
population. This result is consistent with previous
observations that in kidney disease associated with
HIV, high blood pressure is very rare. This rarity can
be partially explained by fluid losses, as in the case of
chronic diarrhea, for example, or by adrenal insuffi-
ciency due to adrenalitis.34,35 On the other hand,
increased SBP and DBP and decreased eGFR
935
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demonstrated in healthy children carrying HRG sug-
gest that increased odds of having hypertension and
kidney disease associated with APOL1 can be already
present in childhood. Although some data support a
higher incidence of hypertension and kidney disease
among APOL1 HRG compared to LRG carriers,36,37

whether this increased risk is due to the underlying
CKD or is present independently38 is unclear. Our data
may be useful in discussing this important issue.
However, the noticed increased SBP and DBP and
decreased eGFR do not appear to be in the same range
with established literature data in other populations.
As this is the first report in African children carrying
APOL1 HRG, confirmation of the present findings in a
much larger African population is required.

Determinants of Elevated Albuminuria

In our study, APOL1 HRG and a high viral load were
found to be significant independent contributors to
elevated albuminuria in HIV-infected children.
Indeed, HIV-infected children who carried APOL1
HRG had almost 22-fold increased odds of having
elevated albuminuria compared with those carrying an
LRG. This correlation between APOL1 HRG and kid-
ney disease in HIV-infected patients is stronger than
that reported in African-American children with
perinatal HIV infection16 and is consistent with data
reported in HIV-infected women in the United
States.39 On the other hand, only 18% of HIV-infected
children with elevated albuminuria carried an HRG,
suggesting that additional genetic or environmental
factors might contribute to the development of kidney
disease among HIV-infected children. A high viral load
was found to be significantly associated with elevated
albuminuria in our study. This result is consistent
with several previous studies in Africa and around the
world.19,28,32,39,40 The strong association between viral
load and albuminuria in HIV-infected children treated
with antiretroviral drugs may emphasize that albu-
minuria can be used as an indicator of HIV treatment
failure or resistance. In terms of the presence of
elevated albuminuria in HIV-infected children car-
rying HRG, no statistically significant difference was
observed between patients with high viremia (viral
load >1000 copies/ml) and those whose viral load
was <1000 copies/ml. In contrast, in a longitudinal
study, Estrella et al.41 described the association be-
tween APOL1 risk alleles and kidney function by
extent and degree of HIV viremia suppression. Given
the large but nonsignificant OR observed in our study,
we assume that the study was underpowered to detect
such an association. A longitudinal study is ongoing
and will show an evolution of albuminuria and kidney
function in our population.
936
This study is one of the few in Africa that meets the
critical need for extensive sampling to perform geno-
typing among diverse African ethnic groups. Particu-
larly, Central Africa is highlighted as a gap in the most
recent map of the distribution of APOL1 risk variants in
Africa.4 However, the study has some limitations. The
cross-sectional design could not determine whether a
direct cause–effect relationship explains the associations
found. Furthermore, the prevalence of the markers of
kidney disease reported in our study might be slightly
overestimated, despite the precautions taken to minimize
the bias due to a single measurement of albuminuria and
creatinine. These measures consisted of the collection of a
first of the morning, fresh fasting urine sample in order to
exclude orthostatic proteinuria and the effect of meals,
and to control factors known to affect the occurrence of
albuminuria, such as fever, urinary tract infection, and/or
hematuria.

Therefore, determining the longitudinal trajectory of
albuminuria, hypertension, and CKD associated with
APOL1 risk variants is needed. For this purpose, a pro-
spective follow-up including all children who presented
with albuminuria as well as those with HRG is in prog-
ress. Nevertheless, the findings of the present study are
of importance in defining preventive and therapeutic
strategies against APOL1-related kidney disease.

CONCLUSION

This study is the first to report the high burden of
APOL1 risk variants in a pediatric population from
Central Africa and is one of the few studies showing
the association of APOL1 HRG with early kidney
damage in the general pediatric population and HIV-
infected children. Data from the present study
showed that carriers of HRG have increased odds of
exhibiting early kidney disease, and additional infec-
tion with HIV dramatically increases this probability.
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