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Abstract

Primary liver cancer (PLC) is heterogeneous and it is an aggressive malignancy with a poor 

prognostic outcome. Current evidence suggests that PLC tumorigenesis is driven by rare 

subpopulations of cancer stem cells (CSCs), which contribute to tumor initiation, progression, and 

therapy resistance through particular molecular mechanisms. Energy metabolism and 

mitochondrial function play an important role in the regulation of cancer stemness and stem cell 

specifications. Since the role of mitochondrial function as central hubs in cell growth and survival, 

studies on the critical physiological mechanisms of the liver underlying their therapy-resistant 

phenotype is important. In this review, we focus on liver CSC-related mitochondrial metabolism 

that contributes to the liver CSC features, in terms of enhanced drug-resistance and increased 

tumorigenicity, and to discuss their roles on potential therapies windows for PLC therapies.

Introduction

Primary liver cancer (PLC) is the sixth most common malignant cancer worldwide [57]. 

Moreover, liver cancer is among the most aggressive and difficult-to-treat malignancies, with 

a 5-year relative survival rate of less than 21% in the United States [34]. PLC mainly 

consists of two histologic types, i.e., hepatocellular carcinoma (HCC) and intrahepatic 

cholangiocarcinoma (iCCA). HCC is the most common type of PLC, accounting for 90% of 

all liver cancer cases, followed by iCCA [71]. Potentially curative treatments, such as 

surgical resection, radiofrequency ablation, and liver transplantation, can only be applied in 

30-40 percent of patients in the West, and even a smaller proportion of patients in Asia [19]. 

In addition, recurrence is quite frequent even after curative treatment; therefore, the long-

term outcome for PLC treatment is still unsatisfactory [71]. The main challenge to overcome 

this issue is that PLC is clinically and biologically heterogeneous [82]. Due to the high 

recurrence, high mortality and resistance to conventional therapies, the development of new 

chemopreventive agents for precision management of PLC is an important research priority.
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Emerging evidence supports the hierarchical model of cancer stem cells (CSCs) as the main 

driver of tumor progression, cancer recurrence and metastasis [4]. CSCs exhibit features of 

normal stem cells, e.g., self-renewal and multilineage differentiation capacity but also is 

responsible for tumor initiation. Therefore, eradicating CSCs may be a critical approach to 

cancer therapy. Previous studies have shown the existence of CSCs in human liver cancers 

[61, 70, 90]. Indeed, accumulating evidence supports that liver CSCs are histologically 

heterogeneous and contain a small fraction of cells with stem cell properties (e.g., self-

renewal and differentiation) in PLC such as expressions of a variety of CSC markers. 

Currently, a number of cell surface markers have been identified as liver CSC markers 

including epithelial cell adhesion molecule (EpCAM), CD44, CD24, CD133, CD90, and 

CD13 (Table 1). In addition, other markers including oval cell marker OV6, Hoechst dye 

efflux, detoxifying enzymes aldehyde dehydrogenases (ALDH) are also frequently used to 

identify liver CSCs [67]. Indeed, our group has identified a novel HCC subtype defined by 

the liver CSC markers EpCAM and alpha-fetoprotein (AFP), which is associated with poor 

prognosis [89]. As cells expressing these markers may be functionally linked to CSC 

properties, studies on targeting CSC markers may help understanding therapeutic resistance 

of PLC.

The mitochondria of the liver, compared to other tissue types, have unique features since the 

liver plays a central role in a variety of critical biological metabolism functions including the 

homeostasis of carbohydrate, lipid, amino acids and protein synthesis [50]. In addition, the 

liver is one of the abundant tissues in terms of density and count of mitochondria [3]. The 

density of mitochondria is distinct depending on the demands of mitochondrial oxidative 

phosphorylation (OXPHOS) in different organs. Accumulation of damaged mitochondria is 

a crucial factor in chronic liver diseases [3]. Consequently, mitochondrial dysfunctions are 

frequently described in PLC [64], which have been reported to be associated with decreased 

ROS production, impaired apoptosis, increased anabolism rate, and proliferative potential, 

reduced autophagic degradation [78]. Interestingly, mitochondria have been demonstrated 

specifically affecting stem cell faith and differentiation potential, suggesting that modulation 

of mitochondrial activities contribute to the stem cell phenotype. However, there is no 

simple concept for the role of mitochondria in liver CSCs. Given the central role of 

mitochondria of the liver and stem cells in cell function and death decisions, we will focus 

on mitochondrial metabolism in liver CSC biology. This review will summarize functions of 

mitochondria, including mitochondrial metabolism, mitochondrial biogenesis, mitochondrial 

dynamics and mitophagy, cell death, oxidative stress, and mitochondrial bioenergetics, in the 

context of functional regulations of liver CSCs (Figure 1).

Mitochondrial metabolism in liver CSCs

One of the most striking characteristics of CSCs is their ability to form a specialized niche to 

adapt to changing microenvironmental conditions for their own benefit. This specialized 

niche is termed the CSC microenvironment [65]. This specific microenvironment maintains 

the principal properties of CSCs, protects them from multiple drug transporters and immune 

surveillance, and acquires resistance to DNA damage and mitochondria-mediated cell death 

mechanisms to facilitate tumor progression. The CSC microenvironment is dependent on 

activation of certain signaling pathways including altered tumor’s metabolic activities, 
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which is conducive to CSC resistance to anticancer treatments. Due to distinct 

microenvironmental conditions they survive in, CSCs are considered highly heterogeneous 

and exhibit a distinct metabolic phenotype in different tumor types in terms of stemness 

features [86]. Indeed, a number of studies suggest that CSCs preferentially rely on glycolytic 

pathways, which presents low or absent rates of OXPHOS and high lactate production [10, 

86]. In fact, there are several metabolic benefits to use “Warburg effect” for CSC, including 

increased ATP production rates while glycolytic signaling produces intermediates for 

biosynthesis, reduced ROS production in response to stressful environmental conditions 

characterized by low oxygen (hypoxia) [10, 86]. Interestingly, some studies indicate that 

mitochondrial oxidative metabolism may be a prevalent source of energy for CSC, 

suggesting a possible function for metabolic plasticity in CSCs [18].

Immune escape plays an important role in the initiation and progression of a malignant 

tumor. CSCs have the ability to evade immune surveillance as well as promote 

immunosuppression to maintain stem-like features and resistance to therapy through a 

variety of niche-specific mechanisms [66]. Thus, disruption of the interactions between 

tumor cells and infiltrating immune cells that drives a CSC microenvironment will be crucial 

for effective treatment. In addition, a number of studies suggest that the “Warburg effect” 

also is critical for instigating immunosuppressive response [1, 24]. On the one hand, 

glycolysis of cancer cells has been implicated in the inhibition of the function of anticancer 

immune cells [24]. Glucose utilization is required for the functional activation of T cells; 

however, rapidly dividing tumor cells may compete with T-cells for limited resources 

thereby disrupting their activity. Specifically, cancer cells may increase lactate production 

via activated glycolytic metabolism to maintain an acidic, low-pH tumor microenvironment, 

which is a product of tumor glycolysis to suppress antitumor immune cells, such as T 

effector cells and NK cells [24]. On the other hand, mitochondria, as the master regulators of 

many stress-induced signals, may trigger signaling mechanisms that are critical for the 

activation of antitumor immune responses [22]. Collectively, existing data convincingly 

demonstrate that metabolic reprogramming from mitochondrial respiration to glycolysis is a 

key mechanism to block immune surveillance during tumorigenesis.

The liver is an exquisitely dynamic organ, being able to change metabolic shift in response 

to body is conditions during fasting and feeding. Recent studies demonstrate the importance 

of metabolic reprograming in liver CSCs (Table 1). The CSC metabolism in PLC can be 

functionally identified by the expression of liver CSC markers, including CD133, CD44, and 

Nanog, and in general, liver CSCs have been found to favor glycolysis and suppress 

OXPHOS to promote stemness and resistance to treatment [12, 32, 72, 74]. Indeed, CD133+ 

tumors display higher expression of glycolytic enzymes and glycolytic capacity, coupled 

with a decrease in oxygen consumption rate (OCR) in order to promote glycolysis in liver 

CSCs [72]. Further, knockdown of glycolytic enzymes, LDHA and PDK4, in CD133+ PLC 

displays increased protein levels of several stemness markers (NANOG, OCT4, and SOX4), 

suggesting that a metabolic shift is important factor in sustaining stemness [72]. Similarly, 

global metabolic analysis demonstrates that CD133+ HCC exhibits an increased 

proliferation through enhancing glycolytic metabolism compared with CD133− HCC [32]. 

Furthermore, Thanee et al. found that CD44+ iCCA is advantageous for maintaining low 

ROS levels through promoting glutathione synthesis, resulting in increasing chemotherapy 
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resistance [74]. In addition, knockdown of NANOG in HCC impaires glycolytic activity as 

demonstrated by the glycolytic flux (extracellular acidification rate or ECAR) [12]. 

Importantly, NANOG directly represses OXPHOS and maintains low intracellular ROS 

levels of CSCs required for the maintenance of CSCs properties [12]. Restoration of 

OXPHOS activity renders liver CSCs more susceptible to chemotherapy drugs [12]. Overall, 

these studies show that liver CSCs have specific metabolism pathways to maintain stemness 

properties of CSCs and resistance to chemotherapeutic drugs.

Mitochondrial biogenesis in liver CSCs

Mitochondrial dysfunction is often detected as an early alteration of liver diseases such as 

insulin resistance, non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD) 

and HCC, suggesting a causative effect [3, 20]. Cells have developed different mechanisms, 

including mitochondrial biogenesis, mitophagy, fusion and fission, to maintain 

mitochondrial functions or to block the effects of mitochondrial damage in response to 

metabolic demands and stressors. Mitochondrial biogenesis plays an important role in 

keeping mitochondrial mass to balance energy homeostasis during energy deprivation or to 

adapt mitochondrial insults. Interestingly, stem cells with increased mitochondrial 

biogenesis are associated with various stem cell differentiation, suggesting that loss of 

mitochondrial function is required to maintain the stemness properties [13, 88]. In addition, 

the hepatogenic differentiation of stem cells is accompanied by an increase in the 

mitochondrial biogenesis [79, 93].

There is a difference in the metabolic stage from the development and progression of PLC 

(Figure 2. In a healthy liver, the metabolic energy consumption relies primarily on 

mitochondrial OXPHOS, which is efficient to generate ATP than glycolysis pathway [94]. 

Once the liver starts to accumulate lipids, it enhances the liver susceptibility to subsequent 

damage induced by inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic 

reticulum stress and fibrinogenesis, which may lead to nonalcoholic fatty liver disease 

(NAFLD) [7, 56]. Liver tissues from patients with early-stage NAFLD have increased 

mitochondrial respiratory rates and mitochondrial biogenesis to mitigate disease 

progression. However, mitochondrial adaptations are lost in the early stages of nonalcoholic 

steatohepatitis (NASH), which has a low mitochondrial respiratory function despite an 

increased mitochondrial mass [39]. In PLC, there is a metabolic shift from mitochondrial 

OXPHOS to glycolysis accompanied by a decrease in mitochondrial mass, which makes 

PLC more reliant on the glycolysis pathway than on mitochondrial metabolism [53, 77]. 

These findings indicate that liver adapts to stress conditions by acquiring a mitochondrial 

flexibility at early stages of NAFLD, which is subsequently lost as a liver tumor progresses. 

Therefore, increasing mitochondrial biogenesis while preserving intact antioxidant defenses 

would benefit future treatment for PLC.

Mitochondrial biogenesis is a highly regulated multi-step process involving the coordinated 

transcription and translation of both mitochondria and transcripts of nuclear origin [60]. 

Mitochondrial biogenesis is known to be regulated by peroxisome proliferator-activated 

receptor-γ coactivators (PGC1s), adenosine monophosphate (AMP)-activated protein kinase 

(AMPK), eNOS, NRFs, SIRT1, SIRT3, and mitochondrial transcription factor A (TFAM). 
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The PGC1a, including PGC1a and PGC1p, is a family of PGC-1 transcriptional coactivators 

that are master regulators of mitochondrial biogenesis as well as involve different liver 

cellular energy metabolic processes including OXPHOS and fatty acid β-oxidation and 

gluconeogenesis [64]. PGC1s co-activate a variety of transcription factors and nuclear 

receptors, such as the peroxisome proliferator-activated receptors (PPARs), estrogen-related 

receptors (ERR), NRF1 and NRF2, to activate expression of genes implicated in 

mitochondrial metabolism [56, 64]. PGC1a and PGC1p have distinct roles in the regulation 

of liver metabolism depending on the different environmental conditions. During energy 

starvation, PGC-1α could upregulate gluconeogenesis, which contributes to de novo glucose 

synthesis in the liver, to adapt to the fasting environment. Conversely, PGC1p could 

upregulate the hepatic de novo lipogenesis by co-activation of LXRα and the sterol response 

element binding protein (SREBP1) due to the reduction of saturated fatty acid consumption 

[48, 60]. During PLC, cancer cells may upregulate glycolysis by negative regulation of 

gluconeogenesis, thereby favoring cell survival in the hypoxic and nutrient-deprived tumor 

microenvironment that characterizes early stages of tumorigenesis [26, 85]. Indeed, the 

expression levels of PGC1a and its target genes involved in mitochondrial metabolism and 

gluconeogenesis are significantly decreased in late stages of PLC and in a mouse model of 

HCC [37, 80]. Interestingly, liver CSCs tend to have lower levels of mitochondrial 

metabolism compared with non-Liver CSCs through increased expression of acetylated 

PGC-1α [32], which leads to its inactivation and decreases mitochondrial biogenesis [2]. 

However, other studies demonstrate that cancer cells shift to more efficient energy 

production to support their migrating phenotype by PGC1a-mediated promotion of 

mitochondrial biogenesis and respiration, during the metastatic cascade in PLC [42, 47]. 

Thus, given that the role of PGC1a in regulating mitochondrial biogenesis and 

gluconeogenesis, it can be hypothesized that altered mitochondrial biogenesis could be 

related to the liver CSC microenvironment.

Mitochondrial mitophagy in liver CSCs

Mitophagy is a selective autophagic process to eliminatie dysfunctional mitochondria. This 

process is important for the maintenance of overall mitochondrial integrity to defective 

mitochondria following damage or stress [6]. Moreover, mitophagy/autophagy regulates 

cellular homeostasis and prevents cell death by keeping mitochondrial bioenergetics and 

decreasing oxidative stress and its alteration has been linked to various liver diseases 

including PLC [11, 45, 84]. Increasing evidence supports that dysregulation of mitophagy 

could be an etiological key factor in tumorigenesis of PLC [11]. In addition, an imbalance in 

the dysregulation of mitophagy could induce mitochondrial degradation process, which in 

turn results in alteration of cellular homeostasis and promotes tumor initiation and 

progression. Mitophagy/autophagy acts as a double-edged sword in the tumorigenesis, 

depending on the different environmental conditions [76, 91]. Whereas tumorigenesis of 

PLC relies on suppression of mitophagy, tumor progression possiblly relies on the bearing of 

functional mitophagy. Parkin RBR E3 Ubiquitin Protein Ligas (PARK2) is an E3 ubiquitin 

ligase that is responsible for ubiquitination of damaged mitochondria [87]. Homozygous 

mutations in PARK2 are commonly found in various tumors, which lead to repression of 

mitophagy, as well as an accumulation of dysfunctional mitochondria [11]. In addition, 

knockout of the PARK2 gene in mice develops spontaneous liver tumors [21]. Moreover, 
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hepatocyte-specific knockout of Becn1, a gene essential for autophagy, can develop 

spontaneous tumors, while knockout of other important autophagic genes such as Atg5 or 

Atg7 can develop only benign hepatic tumors [75]. Collectively, these results suggest that an 

ability to increase mitochondrial mitophagy may be an effective strategy for treatment to 

prevent PLC.

Interestingly, tumors cells isolated from atg5-knockout mice have a significantly reduced 

population of CD133 and ITGA6/CD49f double-positive cells [44]. Recent studies found 

that mitophagy/autophagy plays an important role in the maintenance of stemness properties 

in liver CSCs. Liu et al. found that when mitophagy is inhibited, serine-392 of p53 is 

phosphorylated to modulate p53 mitochondrial translocation, which may lead to its 

activation and translocation into the nucleus, thereby binding to the NANOG promoter to 

inhibit the expression of NANOG, which results in the decrease of stemness and self-

renewal ability of liver CSCs [49]. However, when mitophagy/autophagy is enhanced, p53 is 

recruited to mitochondria and subsequently is removed through mitophagy/autophagy 

mechanism [49]. Thus, mitophagy plays a critical role in the quality control of mitochondria, 

it may be possible to target tumor suppressor to mediate the stemness of liver CSCs [44]. 

Together, it may be possible to target mitophagy to deplete liver CSCs, which is dependent 

on wild-type p53 status.

Mitochondrial induced cell death in liver CSC homeostasis

CSCs is resistance to treatment and is associated with other mitochondria-related function, 

such as impaired cell death [17, 25]. In fact, several studies suggest that CSC-resistant 

features can be impaired by targeting components of the anti-cell death machinery [68]. 

Therefore, unique metabolism in liver CSCs can be associated with abnormalities in 

mitochondrial function, which affect cell death programs.

Apoptotic death is an energy-dependent cell death program whose regulatory pathways are 

important in CSCs. Apoptotic processes are regulated via two signaling pathways: extrinsic 

pathways (death receptor pathway) and the intrinsic pathway (mitochondrial pathway) [29]. 

Moreover, apoptosis is also regulated by the inhibitors of apoptosis proteins (IAPs), such as 

survivin, which can inhibit the initial activation of caspases-8 and caspases-10. Extracellular 

stimuli, including cytokines, growth factors, nitric oxide or toxins, may trigger the extrinsic 

apoptotic pathway through the binding of extracellular death receptors to cell surface 

receptors, such as Fas ligand (FasL), nerve growth factor receptor (NGFR), TNF-α and 

TNF-related apoptosis-inducing ligand (TRAIL) receptors. The intrinsic pathway of 

apoptosis, also known as the mitochondria-mediated death pathway, refers to cell death by a 

variety of mitochondrial stress signals, which lead to the activation of BH3-only 

proapoptotic B-cell leukemia/lymphoma 2 (Bcl-2) family protein. The BCL-2 family 

proteins could inhibit (anti-apoptotic members) or induce (pro-apoptotic members) 

mitochondrial outer membrane permeabilization (MOMP) that releases the apoptosis-

triggering factors, such as cytochrome c and Smac, from the mitochondrial intermembrane 

space into the cytoplasm, resulting in activated caspase-induced apoptosis. Mitochondrial 

dysfunction could trigger intrinsic apoptotic pathways, which is associated with 

overexpression of BCL-2 family protein in cancer [5]. Both intrinsic and extrinsic apoptosis 
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pathways may be linked to therapy evasion of liver CSCs. For instance, the Bcl-2 family 

proteins consist of anti-apoptotic proteins (Bcl-2, Bcl-XL, and Mcl-1) and pro-apoptotic 

proteins (Bax, Bak, Bid et. al), which regulate the intrinsic pathway of apoptosis in liver 

CSCs. Recent studies show that antiapoptotic genes (BCL-2, and BCL-xl), as well as IAP 

family of proteins (survivin) are up-regulated in liver CSCs [36], which is correlated with 

enhanced chemotherapy resistance to sorafenib [23]. Furthermore, TRAIL is a promising 

anticancer agent, which preferentially kills tumor cells without significant cytotoxicity 

toward normal cells [58]. It can bind to the death receptors TRAIL-RI (DR4) and/or TRAIL-

RII (DR5) and activate caspase-8 to promote extrinsic apoptotic pathway. In addition, liver 

CSCs show up-regulation of DR4 and DR5 [46], which may lead to cancer cells and CSCs 

to have a differential sensitivity to TRAIL apoptosis induction. Moreover, liver CSCs treated 

with a recombinant human soluble TRAIL show increased cell death significantly [46]. 

These data suggest that one of the reasons for the failure of existing therapies is that CSCs 

may have the ability to evade cell death through anti-apoptotic mechanisms.

Interestingly, increased cell death occurs in a majority of human liver diseases, which could 

serve as a sensitive parameter for the detection of chronic and acute liver diseases due to 

toxic, viral, metabolic, or autoimmune origin-related insults [51]. Clinical data and animal 

models suggest that mitochondria is a crucial organelle in the trigger of liver disease 

progression characterized by increasing hepatocyte death, which is correlated with the 

subsequent development of inflammation, fibrosis, cirrhosis and PLC [20, 55]. Distinct 

modes of cell death including apoptosis (programmed cell death), necrosis (unprogrammed 

cell death, in response to injury) and necroptosis (programmed form of necrotic cell death) 

trigger specific cell death responses and the development of liver disease, such as I/ R injury, 

NASH, PLC [51]. Hepatocyte necrosis is a largely unregulated consequence of 

environmental stress, characterized by mitochondrial dysfunction and consequent rapid ATP 

depletion. This consequence results in rapid swelling of cells and ultimately cellular rupture, 

which then elicits significant inflammatory responses. Sakurai et al. found hepatocyte 

necrosis acts as a crucial mediator of carcinogen-induced HCC development [69]. The 

tumor-promoting effects of apoptosis of hepatocyte have been demonstrated by the 

antiapoptotic proteins Mcl-1 or Bcl-xl liver knockout model, which shows an increased rate 

of apoptosis of hepatocyte and an increased spontaneous development of HCC [83]. 

Interestingly, tumor development could be inhibited by hepatocyte-specific deletion of pro-

apoptotic proteins Bak, which provides a direct connection between apoptosis and tumor 

development of PLC [30]. In contrast to the role of tumor-promoting effects of cell death in 

normal liver tissue, cell death in liver cancer represents the role of tumor suppressing effects. 

Accordingly, liver tumor, especially CSCs, may have undergone a selection process, such as 

mitochondrial dysfunction, which enables cells to evade apoptosis. Therefore, one needs to 

carefully distinguish the role of cell death between normal liver tissue and liver tumor for 

treatment of liver diseases.

Mitochondrial control of redox balance in liver CSC homeostasis

Mitochondria are the major contributors to the production of reactive oxygen species (ROS) 

[31]. ROS are chemically reactive molecules that have been implicated as a major 

contributor to stress and diseases, including cancer [33]. It is evident that intracellular ROS 
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in redox homeostasis also play prominent roles in normal stem cells and CSCs including 

maintenance of stem cell self-renewal, differentiation and survival. To maintain the steady 

state of cellular conditions, ROS can be scavenged by antioxidant enzymes, such as 

superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx) or 

peroxiredoxins (Prx). The superoxide dismutase converts superoxide anion radicals into 

hydrogen peroxide, then be further detoxified into the water by catalase [81]. Indeed, both 

stem cells and CSCs possess critical mechanisms by which to cope with the mitochondrial 

ROS accumulation through elevation of antioxidant defenses. Thus these defense 

mechanisms act as an important redox regulator on self-renewal and stemness. For instance, 

hematopoietic stem cells maintain a low intracellular level of ROS to acquire a quiescent 

state, whereas a high level of ROS confers potent capacity for cell proliferation and 

differentiation that abolishes self-renewal of stem cell [35]. Proliferative neural stem cells 

(NSCs) display a high ROS status, which could act as the second messengers [41]. In 

addition, ROS can cause mitochondrial DNA damage, which is associated with the 

development of PLC [62]. The accumulation of mitochondrial DNA mutations in PLC 

suggests its contribution to tumorigenesis [62]. Further, ROS production and ChREBP 

activation trigger advanced glycation end products (AGEs)–mediated cell proliferation in 

liver cancers [14]. Despite this, it was suggested that maintaining a low level of intracellular 

ROS within CSCs may be a crucial property of the self-renewal process. Haraguchi et al. 

have reported that CD13+ liver CSCs are relatively resistant to chemo/radiation therapy, 

perhaps due to the low intracellular ROS, including lower levels of mitochondrial ROS 

(MitoSOX) [27, 38]. The enriched CD13+ liver CSCs might actually be a “G0-like” 

subpopulation by keeping a lower level of ROS to survive from chemotherapy [27]. 

Pharmacologic depletion of CD13 expression in liver CSCs by ubenimex treatment inhibits 

stemness properties and reduces tumorigenicity [27]. Interestingly, CD13 inhibition exhibits 

high ROS level and proliferation status [27]. On the other hand, CD13+/N-cadherin+ cells 

display high ROS level in liver cancer, suggesting that the EMT process may be associated 

with an increase of ROS level [38]. Similarly, CD133+ liver CSCs are also more 

radioresistance that is associated with low ROS levels [63]. In addition, EpCAM+ liver CSCs 

have been shown to contain lower ROS levels to maintain long-term self-renewal and 

survival. However, Disulfiram (DSF), a CSC marker aldehyde dehydrogenase inhibitor, 

suppresses self-renewal capability of liver CSCs mainly through increases in mitochondrial 

ROS production rather than reducing the scavenging of ROS [16]. Further, NANOG 

decreases OXPHOS function to prevent mitochondrial ROS production, which maintains 

stemness characteristics of liver CSCs [12]. Liver CSC treated with the mitochondrial ROS 

inducer, Paraquat, represses the self-renewal capacity, indicating that induction of ROS 

inhibits self-renewal ability of liver CSCs [12, 54]. Additionally, we recently report that, in 

solid tumor, cancer cells harboring low ROS display enhanced stemness whereas cancer 

cells containing higher ROS are more proliferative [9]. Given these findings, CSCs may be 

partially differentiated due to the imbalance of redox homeostasis in the light of tumor 

microenvironment changes, which leads to heterogeneous tumor cell population including 

CSCs and non-CSCs.
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Conclusions and future perspectives

Most of the anticancer drugs such as cisplatin and 5-fluorouracil preferentially kill 

proliferating non-CSC tumor cells that, initially, causes the shrinkage of tumor size. 

However, due to mostly unharmed CSC populations, prolonged treatment with these drugs 

results in enriched CSCs, consequently contributing to therapy resistance. In this view, it is 

crucial to understand mitochondrial metabolism in the context of chemoresistance 

contributed by liver CSCs, with the purpose of improving the development of novel 

therapeutic strategies for targeting liver CSCs.

Accumulating evidence supports that liver CSCs preferentially relying on the glycolytic 

pathway and presents low or absent rates of OXPHOS. Due to the presence of unique 

metabolic activities of CSCs, drugs that suppress glycolysis have been studied as potential 

anticancer agents. Consistently, 2-deoxy-D-glucose (2-DG), a glucose analog by 

competitively inhibits glucose-uptake, has been found to induce apoptosis of liver CSCs in 

combination with Sorafenib [73]. ADI-PEG20 have been found to inhibit the Warburg 

Effect, which upregulates OXPHOS and targeting glutamine and glycolysis metabolism 

[40]. A randomized phase II study shows a beneficial effect of ADI-PEG20 in stabilizing the 

progression of pretreated advanced HCC in an Asian population [92]. Furthermore, the use 

of ADI-PEG20, in combination with other molecularly targeted or cytotoxic agents, should 

be investigated, which may improve the success of the therapeutic effect of PLC [28]. On the 

other hand, Metformin, which interferes with OXPHOS by repressing NADH-coenzyme Q 

oxidoreductase (complex I), has been shown to enhance tumor aggressiveness and resistance 

to Sorafenib treatment in diabetic patients with advanced HCC [8]. In addition, studies 

suggest that Sorafenib enhances glycolysis of liver CSCs [73]. Thus, co-treatment with 

glycolytic inhibitors or upregulation of OXPHOS to target CSCs in combination with 

chemotherapy might be more effective in the future treatment of PLC. Interestingly, Griffin 

et al. conducted a study with a large cohort of patients with diabetes [59]. They found a 

strong association between the use of metformin and a reduction of liver cancer. This study 

may support the hypothesis that enhancing mitochondrial function may be an effective 

strategy for treatment to prevent PLC.

Moreover, since mitochondrial function and liver CSC features seem to be closely linked, 

drugs that regulate mitochondrial function may be worth exploring as novel therapies. XIAP 

is the most effective inhibitor of caspases and has been identified as a major repressor of 

mitochondrial-mediated apoptosis [15]. AEG35156 is an antisense oligonucleotide to 

promote apoptosis by inhibiting the apoptosis protein XIAP. A randomized phase II study 

show that AEG35156 in combination with Sorafenib has a better effect in progression-free 

survival (PFS) of advanced HCC compared to sorafenib alone [43]. Furthermore, Vitamin C 

increased intracellular ROS in liver CSCs, leading to cell cycle arrest and apoptosis. In 

addition, intravenous Vitamin C use is associated with improved disease-free survival in 

HCC patients [52]. Together, the vision of PLC as a metabolic disease strengthens the 

clinical significance of mitochondria function, particularly the relevance of liver CSCs for 

cancer initiation, progression, recurrence, and therapy. Although the Warburg effect is linked 

to enhanced glycolysis, mitochondrial dysfunction, as the concept of cancer metabolism for 

the benefit survival of PLC, argues the importance of mitochondrial functions in promoting 
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tumor progression. Furthermore, revealation of mitochondrial metabolism in 

chemoresistance of liver CSCs may have important therapeutic implications in the future.
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Figure 1. An integrative model of the roles of mitochondrial metabolism in liver cancer stem 
cells.
This illustration encompasses five key features of mitochondrial dysfunction needed for the 

maintenance of liver CSCs. In particular, Liver CSCs may preferentially (1) rely on 

glycolytic pathways to increase ATP production for biosynthesis; (2) reduce ROS levels to 

acquire a quiescent state in response to drug resistance; (3) decrease mitochondrial 

biogenesis through increased expression of acetylated PGC-1α to reduce mitochondrial 

respiration; (4) enhance mitophagy to block p53 mitochondrial translocation, which may 

bind to the NANOG promoter to inhibit the expression of NANOG, resulting in reduced 
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stemness and self-renewal ability of liver CSCs; (5) acquire the ability for evading 

mitochondria-mediated death pathway by overexpressing BCL-2 family proteins thereby 

resistance to anticancer treatments. Inner circle: a dysfunctional CSC mitochondrium. 

Middle circle: five features of mitochondrial dysfunction. Outer circle: molecular signaling 

pathways of mitochondria, including mitochondrial metabolism, oxidative stress, 

mitochondrial biogenesis, mitochondrial mitophagy, and cell death, in the context of 

functional regulations of liver CSCs. Abbreviation: CSC: cancer stem cell; Cyt C: 

Cytochrome C; ROS: Reactive Oxygen Species; HK2: Hexokinase 2; PGI: 

Phosphoglucoisomerase; PFK: Phosphofructokinase; PK: Pyruvate kinase.
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Figure 2. Principal metabolic alterations during hepatocarcinogenesis
The metabolic energy consumption relies primarily on mitochondrial OXPHOS in a healthy 

liver. Once the liver starts to subsequent damage induced by oxidative stress, and lipids 

accumulation, which may lead to NAFLD. In the early stages of NASH, mitochondrial 

adaptations are lost, which includes a low mitochondrial respiratory function. Finally, a 

metabolic shift from mitochondrial OXPHOS to glycolysis accompanied by a decrease in 

mitochondrial mass occurs during malignant transformation to PLC. Abbreviation: NAFLD, 

nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; PLC, Primary liver 

cancer.
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Table 1:

Known liver CSC markers and their role in cellular metabolism

Marker Metabolic phenotype Function in therapy Reference

CD13 Maintain lower levels of mitochondrial ROS Combining a CD13 inhibitor with a chemo/radiation therapy 
inhibit tumor progression

27,38

CD133 Decrease mitochondrial OXPHOS and promotes 
glycolysis

Targeting glycolytic enzymes represses stemness properties in 
CD133+ PLC cells

32,72

CD90 Higher levels of the mitochondrial ROS Actively proliferate and are sensitive to 5-FU therapy 27

CD44 Maintaining low ROS levels through promoting 
glutathione synthesis

Combining a CD44 inhibitor with a Sulfasalazine inhibit tumor 
progression

74

EPCAM Maintaining low ROS levels Not reported in this paper 16

CD24 Not reported Not reported

DLK1 Not reported Not reported

OV6 Not reported Not reported
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