
The development of high throughput RNA sequencing 
(RNA-seq) [1,2] is revolutionizing transcriptome analysis. 
It provides for a direct assessment of gene expression with 
relatively low background, a potentially unlimited dynamic 
range, and the ability to detect low abundance transcripts [2]. 
RNA-seq also provides opportunities to revisit, verify, and 
improve existing microarray data sets by reinforcing valid 
findings, and eliminating false positive results that can arise 

due to hybridization artifacts [3]. Large-scale transcriptome 
data sets using microarray technology were developed, and 
have been widely used for decades [4-6]. With the help of the 
retinal transcriptome microarray databases generated from 
BXD mouse strains hosted on GeneNetwork [7-11], our group 
has examined molecular networks contributing to various 
glaucoma-related phenotypes. We used the BXD strains 
and tools hosted on GeneNetwork to identify Aldh7a1 as a 
gene modulating retinal ganglion cell (RGC) death following 
elevated intraocular pressure (IOP) [12]. We also identified 
Cdh11 as a gene modulating normal IOP [13]. Finally, we 
identified Pou6f2 modulating central corneal thickness 
(CCT) in the mouse as a potential risk of glaucoma in humans 
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Purpose: The goal of the present study is to provide an independent assessment of the retinal transcriptome signatures 
of C57BL/6J (B6) and DBA/2J (D2) mice, and to enhance existing microarray data sets for accurately defining the allelic 
differences in the BXD recombinant inbred strains.
Methods: Retinas from B6 and D2 mice (three of each) were used for the RNA sequencing (RNA-seq) analysis. Tran-
scriptome features were examined for both strains. Differentially expressed genes between the two strains were identi-
fied, and bioinformatic analysis was performed to analyze the transcriptome differences between the B6 and D2 strains, 
including Gene Ontology (GO) analysis, Phenotype and Reactome enrichment, and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis. The RNA-seq data were then directly compared with one of the microarray data sets 
(Department of Defense [DoD] Retina Normal Affy MoGene 2.0 ST RMA Gene Level Microarray Database) hosted 
on GeneNetwork.
Results: RNA-seq provided an in-depth analysis of the transcriptome of the B6 and D2 retinas with a total of more than 
30,000,000 reads per sample. More than 70% of the reads were uniquely mapped, resulting in a total of 18,100 gene 
counts for all six samples. A total of 1,665 genes were differentially expressed, with 858 of these more highly expressed 
in the B6 retinas and 807 more highly expressed in the D2 retinas. Several molecular pathways were differentially active 
between the two strains, including the retinoic acid metabolic process, endoplasmic reticulum lumen, extracellular matrix 
(ECM) organization, and the PI3K-Akt signaling pathway. The most enriched KEGG pathways were the pentose and 
glucuronate interconversions pathway, the cytochrome P450 pathway, the protein digestion and absorption pathway, and 
the ECM-receptor interaction pathway. Each of these pathways had a more than fourfold enrichment. The DoD Normal 
Retina Microarray Database provided expression profiling for 26,191 annotated transcripts for B6 mouse, D2 mouse, and 
53 BXD strains. A total of 13,793 genes in this microarray data set were comparable to the RNA-seq data set. For the B6 
and D2 retinas, the RNA-seq data and the microarray data were highly correlated with each other (Pearson's r=0.780 for 
the B6 mice and 0.784 for D2 mice). These results suggest that the microarray data set can reliably detect differentially 
expressed genes between the B6 and D2 retinas, with an overall accuracy of 91.1%. Examples of true positive and false 
positive genes are provided.
Conclusions: Retinal transcriptome features of B6 and D2 mouse strains provide a useful reference for a better under-
standing of the mouse retina. Generally, the microarray database presented on GeneNetwork shows good agreement 
with the RNA-seq data, but we note that any allelic difference between B6 and D2 mice should be verified with the latter.
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[14]. Subsequently, two independent genome-wide association 
studies in humans identified CDH11 (Gene ID 1009; OMIM 
600023) and POU6F2 (Gene ID 11281; OMIM 609062) as 
genes modulating IOP in humans, and as factors for glaucoma 
risk [15,16], supporting our findings, and proving the power 
of this systems biology approach and the microarray data 
sets hosted on GeneNetwork. The BXD strains represent a 
recombinant inbred strain set derived from C57BL/6J (B6) 
and DBA/2J (D2) parents, whose genomic variance forms the 
foundation of the BXD mice.

In the present study, we generated RNA-seq data from 
the retinas of B6 and D2 mice. The transcriptome features 
and differences were investigated. We also compared the 
RNA-seq data to our microarray data set (Affymetrix 
MouseGene 2.0 ST Array Gene Level) hosted on GeneNet-
work. With the parental RNA-seq data, allelic differences in 
the BXD recombinant inbred strains that may arise due to 
hybridization artifacts could be precisely defined. The results 
suggest that a combination of microarray and RNA-seq data 
can lead to more valid results, compared to either data set 
alone.

METHODS

Animals: For the RNA-seq analysis, a total of six samples 
were analyzed, three samples from B6 mice (two males and 
one female) and three samples from D2 mice (two males and 
one female). All the animals were between 60 and 100 days 
of age. Mice were maintained on a 12 h:12 h light-dark cycle 
in a parasite-free facility with food and water ad libitum. All 
procedures involving animals were approved by the Animal 
Care and Use Committee of Emory University, and were in 
accordance with the ARVO Statement for the Use of Animals 
in Ophthalmic and Vision Research.

RNA extraction: Mice were deeply anesthetized with 15 mg/
kg of xylazine and 100 mg/kg of ketamine, and then eutha-
nized with rapid cervical dislocation. Retinas from both eyes 
were quickly removed under a dissection microscope and 
directly placed into 160 U/ml Ribolock® (Thermo Scientific, 
Walton, MA) in Hank’s Balanced Salt Solution (Sigma, St. 
Louis, MO) on ice. Tissue was stored at −80 °C. RNA was 
isolated in batches using a Qiacube and the RNeasy Mini Kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s 
instructions. The isolation included on-column DNase1 treat-
ment to remove contaminating genomic DNA. All tissue was 
harvested between 10 AM and 12 PM to minimize circadian 
differences in gene expression. RNA integrity (RIN) was 
assessed on a Bioanalyzer 2100 (Agilent, Santa Clara, CA). 
The RIN score for all samples ranged from 9.1 to 9.5. RNA 

was then quantified with spectrophotometry, and 260/280 
ratios for all samples were >2.1.

The retinas were dissected from the eye, and during the 
process, there are traces of RPE still attached to the retina. 
These traces were small, and to reveal the lack of significant 
RPE contamination, we examined the expression of RPE 
genes in the samples. The expression of genes in Figure 1 
represents several different ocular cell types, including 
RPE. These data can be used to determine the makeup of the 
samples and the low level of RPE contamination.

RNA sequencing and data processing: Six samples of purified 
retinal RNA underwent library preparation with the Illumina 
(San Diego, CA) TruSeq Stranded Total RNA kit. Paired-end 
sequencing (100 bp) was performed by Hudson Alpha (Hunts-
ville, AL). FastQC of the files was performed for quality 
control. Reads from each replicate were not trimmed before 
mapping, as this was recently shown to decrease the ability 
to map, and correlation with microarray data [17]. To avoid 
mapping issues arising from mouse strain heterogeneity, 
separate genome indices were built for the B6 and the D2 
mouse genome. This was achieved by manually substituting 
the mm10 B6 reference genome (Ensembl version 86) with 
D2-specific single nucleotide polymorphisms (SNPs) and 
indels (from dbSNP 142). The reads were then mapped to each 
genome using the two-pass mapping mode in RNA-STAR 
with default parameters. For each sample, strand-specific 
bam files were sorted and indexed with samtools. Counts per 
gene were tabulated with the “summarizeOverlaps” internal 
R function from uniquely mapped reads only. Differential 
expression analysis was performed using a generalized linear 
model in edgeR [18] after any genes with fewer than 0.5 
counts per million (cpm) in more than three samples were 
removed. All p values were adjusted using the false discovery 
rate (FDR). Statistical significance was assumed for genes 
with FDR<0.001 and a twofold change between strains. For 
comparison with the microarray data, log2-transformed cpm 
counts were z-scaled, and multiplied by 2, before a constant 
of 8 was added to avoid negative values. This is essentially 
the same normalization procedure that was applied to the 
microarray data sets hosted on GeneNetwork [6,19,20]. All 
raw data are deposited in the Gene Expression Omnibus 
(GEO), accession GSE127942.

Comparison between the RNA-seq and microarray data sets: 
Correlation tests were performed on genes extracted from the 
RNA-seq and microarray data sets. Gene symbols were used 
for the comparisons. In cases where there were duplicate gene 
symbols represented by different probes in the microarray 
annotation file, an average value of all probes capturing 
different parts of the transcripts was calculated to represent 
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the expression level of the gene. The absolute differential 
expression values for each gene between the two data sets 
were calculated as the expression level of B6 minus D2 [21]. 
When the RNA-seq and microarray data sets were compared 
in detecting differentially expressed genes, the original probe 
value was used instead of the average value of all probes for 
a gene.

Bioinformatics: The differentially expressed genes between 
the B6 and D2 retinas were submitted for enrichment analysis 
to databases, including Gene Ontology (GO) [22,23], MGI 
mammalian phenotype ontology [24], Human Phenotype 
Ontology [25], and Reactome biologic pathways [26] with 
the R package EnrichR [27,28]. The top hits of the package 
output ‘combined scores’ and adjusted p values were used to 
determine significance. The differentially expressed genes 
were also submitted for Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis [29-31]. Redundancy control 
was run for each database. For GO analysis, “REVIGO” 
[32] was used for redundancy reduction, before the results 
were plotted. For all other enrichment analysis databases, 
“ReCiPa” [33] was used to reduce redundancy. The redundant 
pathways were combined into the pathway with a broader 
spectrum of genes and greater significance.

RESULTS

RNA-seq representation of the retinal transcriptome: Quality 
evaluation (FastQC) of the RNA-seq files showed that >90% 
of reads had a Phred quality score of >30 (Appendix 1). Each 
replicate had >30 million raw reads, of which more than 70% 
could be uniquely mapped, resulting in a total of 18,100 gene 
counts for all three samples in the B6 group and three samples 
for the D2 group. Any genes with fewer than 0.5 cpm in the 
combined data were removed. Because the retina is a highly 
heterogeneous tissue composed of various cell types, this 
cutoff was chosen to include RNA from less common cells in 
the retina, such as specific RGC subtypes. As the first survey 
of the data quality, we examined the expression levels of 
signature genes for different retinal cell types (four of each), 
including RGCs, amacrine cells, bipolar cells, Müller glia, 
and photoreceptors [11,34-36] (Figure 1). These genes were 
compared with marker genes of the cornea and RPE, which 
should show negligible expression in clean retinal tissues 
[11]. Commonly used housekeeping genes [37] were also 
examined as reference control (Figure 1). Most of the retinal 
cell type-specific signature genes were highly expressed, 
compared with the housekeeping genes, especially the gene 
for rhodopsin (Rho) and other photoreceptor markers. The 
retinas were dissected from the eye, and during the process, 

Figure 1. Transcriptome features of cell-specific markers. Expression levels of signature genes are shown as z-scored log2 values from the 
RNA sequencing (RNA-seq) data set, with the same z-scaling method also used on GeneNetwork. Thus, every increase by one unit represents 
a doubling in expression. Marker genes for cell types or tissues not present in the neural retina show low to negligible expression. RGC, 
retinal ganglion cell; RPE, retinal pigment epithelium; D2, DBA/2J mutation genes. Red asterisks represent differentially expressed genes. 
The number of reads in counts per million (cpm) for the most expressed gene (Rho) is 1,369,988±114,467for the B6 mice and 958,400±43,184 
for the D2 mice. The cpm for the lowest expressed gene in this figure (Upk1b) is 36±8.0 for the B6 mice and 23±5.0 for the D2 mice. Raw 
reads for all genes are available from the Gene Expression Omnibus (GEO), accession GSE127942.
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there were traces of RPE still attached to the retina. These 
traces were small, and to reveal the lack of significant RPE 
contamination, we examined the expression of RPE signature 
genes in the samples. The expression of genes in Figure 1 
represents several different ocular cell types, including RPE. 
These data are used to determine the makeup of the samples 
and the low level of RPE contamination.

We also examined two genes with known mutations in 
the DBA/2J strain contributing to eye phenotypes, tyrosinase-
related protein 1 (Tyrp1) and glycoprotein non-metastatic 
melanoma protein B (Gpnmb) [38,39]. Gpnmb showed a 
difference in expression between the two strains, while Tyrp1 
and the other listed genes were similarly expressed between 
the B6 and D2 retinas (Figure 1).

Among the housekeeping genes examined, Actb, Gapdh, 
and Ppia were equally expressed across samples (low 
standard error of the mean [SEM] levels); however, Rn18s 
(Encoding 18S rRNA) displayed a surprising variability 
(Figure 1). This high variability of Rn18s is known to be 
associated with cell differentiation, forming organs and their 
maturation [37]. These results suggest that the Actb, Gapdh, 
and Ppia are better choices as housekeeping genes for the 
retina.

Transcriptome differences reveal unique features between the 
B6 and D2 retinas: Differentially expressed genes between 
the B6 and D2 retinas were extracted from RNA-seq data, 
and the p values were adjusted for multiple comparisons 
with the false discovery rate [40]. We found 1,665 genes that 
were differentially expressed, with 858 of these more highly 
expressed in the B6 retinas and 807 more highly expressed 
in the D2 retinas (Appendix 2). The differentially expressed 
genes were submitted for enrichment analysis, including GO 
[22,23], Phenotypes in both Mouse [24] and Human [25], and 
Reactome [26] enrichment using EnrichR [27,28]. The top 
five pathways for each enrichment are shown in Figure 2. The 
pathways with statistical significance included the retinoic 
acid metabolic process and extracellular matrix organization 
in the GO biologic process (Figure 2A), the endoplasmic 
reticulum lumen in the GO cellular component (Figure 
2C), and the extracellular matrix organization and collagen 
formation in the Reactome database (Figure 2F). The genes 
involved in each pathway are summarized in Appendix 3 and 
Appendix 4.

The differentially expressed genes were also submitted 
for KEGG analysis, in which the top 30 pathways are listed 
(Figure 3). The greatest number of differentially expressed 
genes fell into the metabolic pathway (n=107). The second 
most involved pathway was the PI3K-Akt signaling pathway 
(n=41, Appendix 5). There were 19 genes involved in the 

retinol metabolism pathway, with 16 genes expressed at 
a higher level in the B6 retinas and only two genes (Rdh9 
and Cyp4a12b) showing higher expression in the D2 retinas 
(Appendix 6). The most enriched pathways were the pentose 
and glucuronate interconversions, the drug metabolism 
- cytochrome P450, the ECM-receptor interaction, alpha-
linolenic acid metabolism, and protein digestion and absorp-
tion, with more than fourfold enrichment for each pathway 
(Figure 3, Appendix 7- Appendix 8-Appendix 9, Appendix 
10, and Appendix 11).

Comparison of RNA-seq and microarray data: RNA 
sequencing directly quantifies read counts, while micro-
array technology relies on the binding of a transcript to a 
predesigned probe sequence. To investigate these technical 
differences, and understand how they might be reflected in 
the mouse retinal transcriptome, we contrasted the RNA-seq 
data with the Department of Defense (DoD) Congressionally 
Directed Medical Research Programs (CDMRP) Normal 
Retina Database, which is publicly available on GeneNet-
work. This previously established data set uses the Affyme-
trix MouseGene 2.0 ST Array, which provides expression 
profiling for 26,191 well-established annotated transcripts, 
9,049 non-coding RNAs, and more than 600 microRNAs [8]. 
Details about the data processing can be found in King et al. 
[8]. This data set consists of 52 BXD strains, as well as B6, 
D2, and an F1 cross between B6 and D2 (B6D2F1). A total 
of 222 microarrays were used to describe the retinal tran-
scriptomes of these combined 55 mouse strains, which were 
usually represented by four biologic replicates per strain.

A total of 13,793 genes (represented by 16,445 probe 
sets) in the microarray data set were also identified in the 
RNA-seq data set (Appendix 12). In the microarray database, 
some genes were represented by multiple annotated probe 
sets. When we encountered this situation, the mean value of 
all probe sets was used to represent the expression level of the 
gene. The RNA-seq data and the microarray data showed a 
high correlation; the Pearson’s r value for the B6 retina was 
0.780 (Figure 4A) and for the D2 retina was 0.784 (Figure 4B). 
Thus, there was good agreement between the two data sets, 
suggesting that gene expression values from either RNA-seq 
or microarrays are reliable and comparable, except a few 
genes with either high or low expression.

Identification of differentially expressed genes: The absolute 
difference in the mean expression of genes between the B6 and 
D2 retinas from the microarray data set was calculated (see 
Methods and Appendix 13), and compared to the RNA-seq 
data, as shown in Figure 5. Pearson’s r value was 0.408 for 
the differentially expressed values of all genes (p<0.001), 
indicating moderate agreement between the filtered data 
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sets. When the expression level with differences above 0.5 
on a log2 scale (|B6-D2| >0.5) was considered the threshold 
for the microarray data, 848 genes were identified as differ-
entially expressed, of which 387 (45.6%) were confirmed by 
the RNA-seq data as true positive, while 461 (54.4%) were 
identified as false positive (Figure 5). Simultaneously, 15,597 
genes did not show differential expression in the microarray 
data set, of which 14,598 (93.6%) genes were confirmed as 
true negative, and 999 (6.4%) genes were identified as false 
negative by the RNA-seq data (Figure 5). Thus, the sensitivity 
and specificity of detecting differentially expressed genes 
using the microarray data set were 27.9% and 96.9%, respec-
tively. The precision, i.e., the positive predictive value of the 

microarray data in detecting differentially expressed genes, 
was 45.6%, and the negative predictive value was 93.6%. The 
overall accuracy of the microarray data sets relative to the 
RNA-seq data was 91.1%.

Although the microarray methodology might over-
estimate the number of differentially expressed genes, the 
results suggest that the retinal transcriptome is generally 
well represented with both technologies. Expression values 
from microarrays depend on probe hybridization, which can 
be affected by differences in the genome sequence observed 
between strains. Thus, genomic variants overlapping the 
probe targeting area could directly affect the affinity of the 
probe to the transcript [41,42]. RNA-seq is not dependent 

Figure 2. Enrichment analysis of differentially expressed genes between B6 and D2 retinas. (A) Biologic Processes, (B) Molecular Function, 
and (C) Cellular Components. Several additional databases were examined, including Mammalian phenotypes in Mouse (D) and in Human 
(E), which are presented along with enrichment in the Reactome (F). Each bar chart shows the top five enriched pathways. The adjusted p 
value of the enrichment is indicated within each bar. Red asterisks indicate statistically significant enrichments (p<0.01). Genes involved 
in each pathway are listed in Appendix 3.
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Figure 3. The KEGG pathways for 
the genes differentially expressed 
between the B6 retina and the D2 
retina. The greatest number of 
differentially expressed genes fell 
into the metabolic pathway (n=107). 
The second most involved pathway 
was the PI3K-Akt signaling 
pathway (n=41). The most enriched 
pathway (>5-fold) was the pentose 
and glucuronate interconversion 
pathway.

Figure 4. Correlation between the RNA-seq and microarray data sets for B6 and D2 mice. Mean expression values of each gene were used 
for the RNA sequencing (RNA-seq) and microarray data sets. The Pearson’s r value was 0.780 for B6 (A) and 0.784 for D2 (B), indicating 
good agreement between the two data sets. The red line shows a linear fit, while the blue line is a smoothed loess fit with gray-shaded 95% 
confidence intervals. The good agreement between the red and blue lines indicates that comparisons between microarray and RNA-seq data 
are valid, except a few genes with high or low expression, where the linear fit does not overlap the 95% confidence interval.
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upon hybridization of a target to a probe, and thus, this 
technology can serve to validate the results obtained using 
a microarray system.

An example for validation of the microarray data by 
RNA-seq is Stab2. In the microarray data set, clear differ-
ential expression of the gene Stab2 was identified between 
the parental strains, as well as across the BXD strains 
(Probe_17243763, Max LRS=27). The likelihood ratio 
statistic (LRS) is used as a measurement of the associa-
tion or linkage between differences in RNA expression [6], 
where values exceeding 17 usually approximate statistical 
significance at the p=0.05 level after correction for multiple 
testing. The Stab2 probe coverage area contained no SNP, and 
it was also identified as a differentially expressed gene in the 
RNA-seq data (Figure 6).

In another case, a clear differential expression of the 
gene Anapc1 was identified by the microarray data set 
(Probe_17391461, Max LRS=124.5). However, the RNA-seq 
data showed no statistically significant differential expression 
for this gene. Probe verification using the UCSC Genome 
Browser showed an SNP (rs27412956) in the probe coverage 
area that may lead to mis-binding toward the D2 sequence. 
This potentially explains why Anapc1 showed lower 

expression levels in the D2 mice compared to the B6 mice in 
the microarray data set (Figure 7), suggesting that an SNP in 
a probe hybridization locus alters probe binding. Moreover, 
this mis-binding affected not only the D2 parental strains 
but also all the BXD strains with D2-derived alleles for this 
genomic region, resulting in a false-high LRS. In such cases, 
the RNA-seq data set is helpful in identifying false positive 
results. Similar false positive cases caused by D2 SNPs were 
seen in a total of 211 genes (222 probes, Appendix 14).

DISCUSSION

Retinal transcriptome features of B6 and D2 mice: In the 
present study, we examined the retinal transcriptome of two 
different mouse strains, C57BL/6J and DBA/2J. Although it is 
known that there are clear sex differences in gene expression, 
we chose mixed genders for this study, as this most closely 
mirrored the sex distribution of BXD mice from the GeneNet-
work databases [43]. The B6 mouse is the most widely used 
mouse strain in research. In many ways, this strain serves 
as the ultimate inbred mouse strain, not only being the 
background strain for most transgenic lines but also func-
tioning as the reference genome for the mouse. In contrast, 
the D2 mouse holds a specific interest for the neuroscience 
and the vision research community, as this strain is used in 

Figure 5. Correlation between the 
RNA-seq data set and the micro-
array data set for differentially 
expressed genes. Differences (the 
B6 and D2 mice) of the mean 
expression value (Z-score) for each 
transcript are compared between 
the RNA sequencing (RNA-seq) 
and microarray data sets. The Pear-
son’s r value is 0.408 (p<0.001), 
indicating good agreement between 
the two data sets in detecting differ-
entially expressed genes. The blue 
line indicates a linear fit with gray-
shaded 95% confidence intervals. 
DE, differential expression.
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behavioral addiction research [44], and develops pigment 
dispersion glaucoma with onset at approximately 6 months 
of age [39,45]. When we examined the retinal transcriptome 
between these two strains using RNA-seq, several differences 
became apparent. Two mutations are known to be respon-
sible for the DBA/2J eye phenotype: GpnmbR150X, a nonsense 

mutation, and Tyrp1isa, an allele leading to two amino acid 
substitutions. However, at the mRNA level, this must not 
necessarily mean that these two genes are differentially 
expressed, because we found differential expression only for 
Gpnmb. Although more research on this topic is warranted, it 
can be speculated that the nonsense mutation in Gpnbm leads 

Figure 6. An example of a true differentially expressed gene. A: Expression levels of Stab2 mRNA (y-axis) across the BXD strains (x-axis) 
from the Department of Defense (DoD) database (Probe_17243763). B: Probe verification at UCSC demonstrates that there is no single 
nucleotide polymorphism (SNP) in the probe coverage area. C: This gene is also identified as a differentially expressed gene in the RNA 
sequencing (RNA-seq) data. Viewing the RNA-seq signal in the Integrative Genomics Viewer (IGV) browser further confirms that this 
gene is highly expressed in D2 mice in all the exons, while there is no signal for the B6 mice.

Figure 7. An example of a false differentially expressed gene. A: Expression level of Anapc1 mRNA (y-axis) across the BXD strains (x-axis) 
from the Department of Defense (DoD) database (Probe_17391461). B: Probe verification at UCSC demonstrates that there is a single 
nucleotide polymorphism (SNP; rs27412956) in the probe coverage area which may lead to mis-binding toward the D2 sequence. C: This 
gene is identified as not differentially expressed in the RNA sequencing (RNA-seq) data. Viewing the RNA-seq signal in the Integrative 
Genomics Viewer (IGV) browser shows equal expression between the two stains across all exons, indicating that this is a false positive 
differentially expressed gene using microarray methodology.
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to increased nonsense-mediated decay (NMD), and therefore, 
early mRNA removal by the NMD machinery [46], which can 
be seen as different expression between D2 and B6 mice. In 
contrast, the amino acid substitutions in the Tyrp1 gene do 
not lead to early transcriptional termination, and therefore, 
are tolerated at the mRNA level.

In the Gene Ontology analysis for differentially expressed 
genes, the most significantly enriched pathway was the reti-
noic acid metabolic process (Figure 2A). The main contrib-
uting genes (CYP26A1, CYP26B1, and CYP26C1) come from 
the CYP26 family, also known as retinoic acid hydroxylase. 
All three genes are statistically significantly higher expressed 
in B6 mice than in D2 mice. These genes are also the main 
contributors to the significant enrichment of the cytochrome 
P450 pathway and the retinol metabolism pathway in KEGG 
analysis (Figure 3). Another significantly enriched pathway 
is the ECM organization, which is also the only significantly 
enriched pathway of the Reactome analysis (Figure 2A,F). The 
ECM is known to play multiple roles in the retina, including 
retinal development [47,48], regulation of retinoid transport, 
oxygen and nutrient transport [49], vascular homeostasis 
[50], glia-neuron interactions [51], and even regeneration of 
RGCs [52]. This difference in the ECM between the B6 and 
D2 retinas may potentially contribute to the differences in 
RGC survival [53], and other retinal phenotypes between the 
two strains, which makes the biologic approach using BXD 
strains (offspring inbred strains of B6 and D2) more powerful 
in revealing genetics of retinal diseases, such as glaucoma 
and age-related macular degeneration.

Pathway analysis using KEGG demonstrated differences 
in the PI3K-Akt signaling pathway, with 54 genes that were 
differentially expressed (Figure 3). The PI3K-Akt signaling 
pathway is an important intracellular signaling pathway 
for cell cycle regulation. Overactivation of this pathway 
can reduce apoptosis, allow proliferation, and is associated 
with specific cancers [54]. This difference in the PI3K-Akt 
signaling pathway could affect changes in the ability of 
axons to regenerate. In the retina, Pten silencing is known to 
increase retinal ganglion cell survival, and promote axonal 
regeneration after injury [55]. There is a strong difference 
in the ability of optic nerve regeneration across the BXD 
strains [56]. Part of this may be due to transcriptome variance 
between the parental strains (B6 and D2) in this PI3K-Akt 
signaling pathway, for it is known that AKT is involved in 
the effects of Pten knockdown [57]. An interesting feature of 
the Pten-dependent regeneration response is that the parental 
strains (B6 and D2) are not at the extremes of the phenotype 
[56]. Thus, axon regeneration displays genetic transgression, 

and is a complex trait modulated by multiple genomic loci in 
the BXD strain set.

Furthermore, pathways involved in the innate immune 
system were also identified in the KEGG pathway analysis 
(Appendix 15). Many contributing genes were related to 
the complement system, including C1qb, C1qc, C1ra, C3, 
and C4b. The retina-intrinsic innate immunity network was 
reported to be activated by various types of retinal injures, 
including optic nerve crush [9] and ocular blast injury [7]. 
The related genes were mostly higher expressed in B6 mice 
rather than D2 mice (Appendix 7), indicating a greater innate 
immune response in the retina of B6 mice compared to that 
of D2 mice.

RNA-seq profiling enhances the transcriptome analysis of 
microarray data sets from GeneNetwork: The BXD strains 
are derived from the B6 and D2 progenitor strains, and 
their genomic variance allows us to map quantitative trait 
loci (QTLs) with high resolution, and economically, using 
microarray technology. Although this approach provides 
large amounts of information, it is not without limitations: 
Because the core principle behind microarrays is hybridiza-
tion between two nucleic acid strands, the signal depends on 
the probe binding to the target sequence. Genomic variants 
between the B6 and D2 retinas, such as SNPs and indels, may 
influence hybridization kinetics, and cause incorrect detec-
tion of the expression level of genes [3,58]. A sequence that 
contains a single SNP may show a decreased binding affinity 
toward the probe, resulting in a less intense fluorescence 
signal, and thus, a lower readout for the probe capturing that 
particular transcript [42].

RNA-seq has developed rapidly over the past 10 years, 
and has now replaced the use of microarrays in transcrip-
tomics [1,2,59,60]. The inherently lower background noise 
and higher dynamic range make RNA-seq more accurate 
in detecting low abundance transcripts [2]. In this study, 
the RNA-seq data from the B6 and D2 mice showed high 
consistency when compared with the DoD Normal Retina 
Microarray Data set (Figure 4). Beyond that, a moderate to 
high correlation of the differentially expressed genes between 
the two data sets suggested that the microarray data set still 
performs well at detecting differences between different 
strains of mice (Figure 5).

Ultimately, the combination of the technologies benefits 
analysis, especially for the study of recombinant inbred 
strains: Microarrays are more affordable for high throughput 
experiments, while RNA-seq analysis of the parental strains 
can limit the high false positive QTL rate. Note that not all 
the SNPs have to cause mis-binding between a microarray 
probe and the cDNA. Microarrays that feature arbitrarily 
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designed mismatch probes still detect approximately 70% 
of perfect match signals, indicating that hybridization is not 
a binary measure, compared to RNA-seq read counts [41]. 
Thus, cross-checking results obtained from microarray data 
in recombinant inbred populations with RNA-seq data from 
the respective parental strains refines the analysis. After all, 
the genome sequences of the BXD strains are inherited from 
either the B6 or D2 mice. If a differentially expressed gene 
cannot be confirmed with RNA-seq data, and meanwhile, all 
the BXD strains with a D2 haplotype at that locus show lower 
expression, then there is a high chance for this finding to be 
false positive. If differential expression is not confirmed with 
the parental RNA-seq data, and the differential expression 
in BXD strains is not haplotype-dependent, then there are 
good chances that the finding is valid. These QTLs could 
be the consequence of inherited modulators in cis or trans 
(enhancers, suppressors, or other regulatory elements) that 
affect gene expression. Ultimately, if differential expression 
is confirmed by the RNA-seq data, then we can be more 
confident about a real change in gene expression that is 
allele-based.

Conclusions: Differential expression analysis of B6 and D2 
mice using RNA-seq provided a useful reference for better 
understanding of the biologic differences between these 
strains. Although the majority of expression differences is 
mirrored in the microarray data from BXD strains, RNA-seq 
complements these data sets. Any allelic difference between 
B6 and D2 mice should be verified with RNA-seq data to 
avoid false positive QTLs.

APPENDIX 1. FASTQC PLOT OF RETINA 
SAMPLES FOR RNA-SEQ ANALYSIS.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. RNASEQ_B6D2-ZSCALED_RETINA

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. ENRICHLIST_DB

To access the data, click or select the words “Appendix 3.”

APPENDIX 4. KEGG LIST OF DEGS

To access the data, click or select the words “Appendix 4.”

APPENDIX 5. DE GENES INVOLVEMENT OF THE 
PI3K-AKT SIGNALING PATHWAY.

To access the data, click or select the words “Appendix 5.” 
The differences of expression are calculated as B6 minus 
D2. In the figure, Red means a positive value of DE, which 

indicates that the gene is higher expressed in B6 than D2. 
Green means a negative value of DE, which indicates that the 
gene is higher expressed in D2 than B6.

APPENDIX 6. DE GENES INVOLVEMENT OF THE 
RETINOL METABOLISM PATHWAY.

To access the data, click or select the words “Appendix 6.” 
The differences of expression are calculated as B6 minus 
D2. In the figure, Red means a positive value of DE, which 
indicates that the gene is higher expressed in B6 than D2. 
Green means a negative value of DE, which indicates that the 
gene is higher expressed in D2 than B6.

APPENDIX 7. DE GENES INVOLVEMENT 
OF THE PENTOSE AND GLUCURONATE 
INTERCONVERSIONS PATHWAY.

To access the data, click or select the words “Appendix 7.” 
The differences of expression are calculated as B6 minus 
D2. In the figure, Red means a positive value of DE, which 
indicates that the gene is higher expressed in B6 than D2. 
Green means a negative value of DE, which indicates that the 
gene is higher expressed in D2 than B6.

APPENDIX 8. DE GENES INVOLVEMENT OF 
THE DRUG METABOLISM - CYTOCHROME P450 
PATHWAY.

To access the data, click or select the words “Appendix 8.” 
The differences of expression are calculated as B6 minus 
D2. In the figure, Red means a positive value of DE, which 
indicates that the gene is higher expressed in B6 than D2. 
Green means a negative value of DE, which indicates that the 
gene is higher expressed in D2 than B6.

APPENDIX 9. DE GENES INVOLVEMENT OF 
THE ALPHA-LINOLENIC ACID METABOLISM 
PATHWAY.

To access the data, click or select the words “Appendix 9.” 
The differences of expression are calculated as B6 minus 
D2. In the figure, Red means a positive value of DE, which 
indicates that the gene is higher expressed in B6 than D2. 
Green means a negative value of DE, which indicates that the 
gene is higher expressed in D2 than B6.

APPENDIX 10. DE GENES INVOLVEMENT OF 
THE ECM-RECEPTOR INTERACTION PATHWAY.

To access the data, click or select the words “Appendix 10.” 
The differences of expression are calculated as B6 minus 
D2. In the figure, Red means a positive value of DE, which 
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indicates that the gene is higher expressed in B6 than D2. 
Green means a negative value of DE, which indicates that the 
gene is higher expressed in D2 than B6.

APPENDIX 11. DE GENES INVOLVEMENT OF 
THE PROTEIN DIGESTION AND ABSORPTION 
PATHWAY.

To access the data, click or select the words “Appendix 11.” 
The differences of expression are calculated as B6 minus D2. 
In the figure, Red means a positive value of DE, which indi-
cates that the gene is higher expressed in B6 than D2. Green 
means a negative value of DE, which indicates that the gene 
is higher expressed in D2 than B6.

APPENDIX 12. RNASEQ_MICROARRAY_
COMPARISON_B6D2_RETINA

To access the data, click or select the words “Appendix 12.”

APPENDIX 13. RNASEQ_MICROARRAY_ONE-
TO-MANY-COMPARISON_B6D2_RETINA

To access the data, click or select the words “Appendix 13.”

APPENDIX 14. FALSE POSITIVES CAUSED BY D2 
SNPS

To access the data, click or select the words “Appendix 14.”

APPENDIX 15. DE GENES INVOLVEMENT OF 
THE STAPHYLOCOCCUS AUREUS INFECTION 
PATHWAY

To access the data, click or select the words “Appendix 15.” 
The differences of expression are calculated as B6 minus D2. 
In the figure, Red means a positive value of DE, which indi-
cates that the gene is higher expressed in B6 than D2. Green 
means a negative value of DE, which indicates that the gene 
is higher expressed in D2 than B6.
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