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Abstract

Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in

the US each year. There is an increasing interest in both clinical and pre-clinical studies to
discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes,
and monitor its progression especially in the developing brain. In humans, the heterogeneity of
TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the
many challenges associated with finding unifying diagnosis, treatment, and management practices.
In addition, findings from adult human research may have little application to pediatric TBI, as
age and maturation levels affect the injury biomechanics and neurophysiological consequences
of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI

seen in human by isolating the causation and mechanism of injury in reproducible manner.
However, a gap between the pre-clinical findings and clinical applications remains in TBI research
today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as
biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that
have been explored in both clinical and pre-clinical studies and have shown potential diagnostic,
prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following
TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between
animals and human outcomes because they involve effort-independent and non-verbal tasks.
Especially conspicuous is the fact that these biomarkers and techniques can be tailored for
infants and toddlers. However, translation of preclinical outcomes to clinical applications of these
tools necessitates addressing several challenges. Among the challenges are the heterogeneity of
clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and
possible variation between temporal profiles of biomarkers in human and animals. Conducting
parallel clinical and pre-clinical research, in addition to the integration of findings across species
from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a
path toward overcoming some of these challenges. This effort is possible through large scale
collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic
deficits in multiple domains, and thus, a panel of biomarkers combining these measures to
consider different deficits is more promising than a single biomarker for TBI. In this review,
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each of these tools are presented along with the clinical and pre-clinical findings, advantages,
challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
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1. Introduction

In the United States, children ages 0—4 years had the highest estimated annual rates of
TBI-related emergency room visits, followed by adolescents ages 15-19 years of age (Faul
et al., 2010). The most common causes of TBI are falls and assaults in young children

and motor vehicle accidents and sport related injuries in elementary school children and
adolescents (Faul et al., 2010). Among pediatric and adolescent, most TBIs are classified

as mild, however, there are still many TBI hospitalizations categorized as moderate to
severe TBI (Rivara et al., 2011; Asemota et al., 2013). TBI has devastating acute effects
and in many cases seems to initiate long-term neurodegeneration (Johnson et al., 2010).

It is estimated that 145,000 children and adolescents (ages 0-19 years) are living with
lasting cognitive, physical, or behavioral effects of TBI (Zaloshnja et al., 2008). Due to the
long-term and potentially detrimental effects of TBI on the young brain, there is increasing
interest in both pre-clinical and clinical studies to discover diagnostic tools to accurately
identify TBI especially concussion/mild TBI in the developing brain. The nature of TBI is
complex, often a number of injury mechanisms are simultaneously at play presenting diverse
spatial and temporal pathophysiology and injury severities. The heterogeneity in human
TBI is an important factor from the clinical perspective in predicting outcomes and injury
trajectories which has led to the absence of relevant and validated outcome measures in TBI
and are the primary reason for discouraging results from neuroprotective and therapeutic
clinical trials over the last four decades (Yue et al., 2013).

Animal models of TBI mimic the neurological deficits of human TBI and offer a

unique opportunity to reduce the heterogeneity seen in humans. As such animal studies
allow researchers to isolate and investigate the pathological and behavioral changes
associated with brain injury in a consistent and reproducible manner. The use of animal
models provides a means to explore the underlying reasons for a given outcome, to
accelerate preclinical therapeutic findings, and evaluate the efficacy of clinical treatment
and management of TBI. In addition, animal models can help to improve correlations with
different severities of TBI and to refine the mechanisms of injury involved to develop
reliable, efficient and valid classification systems to link specific patterns of brain and
neurovascular injury with the appropriate therapeutic interventions. However, there is still
a gap between preclinical findings and clinical applications. To take a step toward bridging
this gap, in this paper we first present several validated animal models of TBI. We then
discuss translatable metrics as potential TBI diagnostic tools including biofluid biomarkers,
electroencephalography (EEG), actigraphy, eye tracking, and balance tests. We include
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metrics that have been explored in both clinical and laboratory studies and can be translated
between humans and animals. We will also detail the challenges and research opportunities
toward development and evaluation of effort-independent and clinically translatable TBI
metrics to advance our understanding and management of TBI in the developing brain.

2. Pre-clinical animal models of TBI

Animal models have been developed that produce different types of TBI such as

contusion, diffuse or focal axonal injury, hematomas, and subarachnoid hemorrhage(Pitt

and Leung, 2015). Utilizing idealized animal models make it possible to conduct a thorough
investigation of pathophysiological mechanisms of TBI, the validation and prognostic value
of TBI biomarkers, and the assessment of treatments in a setting of a reproducible phenotype
with a known pre-injury exposure. Here we briefly present four specific models that are
widely used in animal TBI research: controlled cortical impact (CCI) injury, rapid non-
impact rotational injury (RNR), weight-drop impact injury (WDI), and fluid percussion
injury (FPI) mainly focusing on pediatric models.

2.1. Controlled cortical impact TBI model

Controlled cortical impact (CCI) TBI models are developed to produce a purely focal
cortical/subcortical contusion injury with direct focal damage to the exposed, open or intact
dura of the subject and no inertial motion of the head. Contusion injury is one of the

most common types of brain injury in children caused by events such as falls, vehicular
accident, sport injuries and child abuse (Graham et al., 1989). The CCI model utilizes

a blunt indentation device driven by either a loaded spring, a pneumatic piston, or an
electromagnetic coil to create a rapid displacement of the cortical surface (Margulies et al.,
2015). The severity and functional deficits of CCI injury in animal models can be adjusted
by the impact velocity, duration of impact, depth of deformation, and size of the impactor
tip. CCI models of infant/pediatric TBI have been developed in the rat (Raghupathi and Huh,
2007; Robinson et al., 2016; Schober et al., 2014), mice (Mannix et al., 2011), rabbit (Zhang
etal., 2015), and piglet (Baker et al. (2018); Duhaime et al., 2000; Missios et al., 2009)
typically focusing on moderate to severe injury outcomes.

2.2. Rapid non-impact head rotation TBI model

Rapid non-impact head rotation (RNR) TBI models produce a purely inertial head
movement with no head contact, similar to levels experienced in motor vehicle or high
velocity trauma that result in unconsciousness, sustained cognitive dysfunction, bilateral
diffuse axonal and hemorrhagic injury (Margulies et al., 2015). RNR consists of a pneumatic
device that moves a thrust column at controlled acceleration and deceleration levels
employing a shaft that is externally coupled to a custom-built linkage assembly to produce
the desired kinematics (often rotational motion). The RNR injury model has been mostly
studied on pigs (Kilbaugh et al., 2015; Margulies et al., 2015) and primates (Gennarelli et
al., 1982), however, there have been limited studies on rats (Xiao-Sheng et al., 2000) and
rabbits (Gutierrez et al., 2001). Among those, only the pig studies (Kilbaugh et al., 2015;
Margulies et al., 2015) were focused on infant/pediatric TBI.
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2.3. Weight drop impact TBI model

Weight drop impact (WDI) injury model consists of a falling weight on the skull to induce
focal cerebral contusion and diffuse axonal injury and used to simulate concussion to severe
TBI. The diameter, velocity and dwell time of the impactor are adjustable to alter the
severity of injury. In Marmarou’s WDM (Marmarou et al., 1994), which mainly results in
diffuse TBI, a stainless steel disc is mounted to the midline the animal’s skull to distribute
the force of the impact and prevent skull fracture. Later, WDI was modified to produce
disruption in the blood—brain barrier, cerebral edema, and neuronal cell death below the
contusion site and remotely in the hippocampus by dropping the weight onto one side

of an unprotected skull while resting on a hard surface (Shohami et al., 1988). Another
modification to WDI was to support the animal on a fragile aluminum foil support which
allows post impact rapid acceleration of the free-moving head and torso (Kane et al., 2012).
WDI has been utilized in small animals such as rat (Mychasiuk et al., 2014; Semple et al.,
2016) and mouse (Adelson et al., 1996; Chhor et al., 2017) to model pediatric TBI.

2.4, Fluid percussion injury TBI model

The fluid percussion injury (FPI) model employs a rapid fluid pressure pulse delivered to
the open dura of an animal causing graded severities of brain injury including contusions,
intracranial hemorrhages, brain swelling, grey matter damage, concussion and traumatic
axonal injury (Mclntosh et al., 1989; Xiong et al., 2013). Injury severity is controlled by
the magnitude of the fluid pressure pulse and the location of the craniotomy determines the
clinical and pathological effects of injury (O’Connor et al., 2011). Due to the nature of FPI
models requiring an opening in the skull, translation of mechanisms and interventions to
human head injury is often difficult because the majority of human head injuries involve
closed head injury mechanisms (O’Connor et al., 2011). FPI model of TBI have been
primarily studied in animals, such as the cat (Stalhammar et al., 1987), sheep (Millen et al.,
1985), swine (Fritz et al., 2005), mice (Carbonell et al., 1998; Folweiler et al., 2018; Ogino
etal., 2018), and rat (Gorse and Lafrenaye, 2018; Katz and Molina, 2018; Mcintosh et al.,
1987). Many of these studies typically represent the adult brain, however those employing
rats (Prins and Hovda, 2003) and piglets (Fritz et al., 2005; Lafrenaye et al., 2015) have been
used to model the newborn and juvenile brain.

3. Translatable metrics

In this section, we reviewed metrics including biofluid biomarkers, electroencephalography
(EEG), actigraphy, eye response, and balance tests that have been explored in both clinical
and preclinical studies and can be translated between humans and animals. The possible
cellular origin, causation and interactions of these biomarkers are illustrated in Fig. 1. In
addition, a summary of pediatric clinical and pre-clinical TBI studies that examined the
diagnostic and prognostic utility of these translatable biomarkers for TBI is given in Table
1. The main focus of this table was to summarize the literature on the utility of a single

or a panel of biomarkers to: (1) detect intracranial lesions to identify patients in need

of computed tomography (CT) scan; (2) assess injury severity and prognosis, (3) predict
short- or long-term neurological outcomes of TBI; (4) diagnose injured patients (especially
concussion/mild TBI) from healthy or non-TBI trauma controls; and/or (5) distinguish
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between mechanisms of injury, for example, differentiating between inflicted (iTBI) from
non-inflicted (nTBI) where abusive head trauma is prevalent in infants and toddlers.

3.1. Biofluid biomarkers

TBI can cause disruption at cellular and sub-cellular levels such as neurons, astrocyte

and microglial cells, vasculature and extracellular matrix. These disruptions can initiate a
variety of neurotransmitter, metabolomic, mitochondrial, and ionic dysregulations which
have been shown to be reflected in affected brain tissues as well as biofluids such as

serum, cerebrospinal fluid, saliva and urine (Baker et al. (2018); Gazzolo et al., 2003; Giza
and Hovda, 2014; Kilbaugh et al., 2016; Margulies et al., 2015; Smith et al., 2013). The
reflections in different biofluids showed to be dynamic, interactive, and dependent on type,
severity, and progression of injury. Therefore, biofluids are treasure trove of injury related
information and are valuable surrogates to be used as potential diagnostic, prognostic, or
monitoring, and even therapeutic efficacy assessment tools for TBI. Biofluid biomarkers

are non/minimally invasive and effort-independent techniques that can be studied in both
animals and humans, and thus, they are of great value to serve as a bridge between
pre-clinical and clinical findings and advance diagnosis, management and treatment of

TBI. Biomarker discovery are particularly invaluable for pediatric and especially neonatal
population as radiation from routine CT imaging can be harmful for this group (Brenner and
Hall, 2007; Thelin et al., 2017b). Although CSF is in direct contact with the extracellular
space of the brain and can more prominently reflect biochemical alternations in brain

due to TBI, blood-based biomarkers are less invasive, cost effective, and more feasible

and acceptable for patients especially in the pediatric population. Therefore, serum TBI
biomarkers have been studied more extensively than CSF biomarkers. There are also limited
studies available on the utility of biomarkers in urine (Pickering et al., 2008) and saliva
(Hicks et al., 2018) for pediatric TBI. However, it is challenging to utilize urine and saliva to
diagnose TBI due to the fact that biomarkers have to cross a number of barriers to appear in
these biofluids. In this section, we will mainly focus on TBI biomarkers in serum and briefly
review TBI biomarkers in urine and saliva.

To date, numerous clinical and pre-clinical TBI studies have examined several brain-related
and injury sensitive biofluid biomarkers that are linked to dynamic changes in metabolism,
extracellular matrix, glial, axonal or neuronal damages, and/or neuroinflammation over time
following TBI. Among those are S100p and glial fibrillary acidic protein (GFAP) that

are related to glial damage; Hyperphosphorylated neurofilaments (NFs: NF-L and NF-H)
and Tau that are related to axonal damage; Ubiquitin Carboxy-terminal Hydrolase L1
(UCH-L1) and Neuron-Specific Enolase (NSE) that are related to neuronal cell damage;
Interleukins (IL-1pB, I1L-6, IL-8, IL-10) and Tumor Necrosis Factor-a (TNFa) that are related
to inflammation, and amino acids and other metabolites that are related to energy deficits
following TBI.

3.1.1. S100B—S100p is a small calcium binding protein expressed mainly in astrocytes
and certain neuronal cell types and is the most frequently explored biomarker for TBI
diagnosis (Babcock et al., 2012; Bouvier et al., 2012; Castellani et al., 2009; Hallén et al.,
2010; Manzano et al., 2016; Pickering et al., 2008) and prognosis (Babcock et al., 2013;
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Park et al., 2018; Park and Hwang, 2018; Piazza et al., 2007; Spinella et al., 2003; Zurek
and Fedora, 2012) in pediatric clinical studies (Table 1). Serial serum sampling in clinical
studies showed that S100p elevates and declines quickly following TBI and is present for

a short time in serum with a half-life of an hour to a day (Park et al., 2018; Thelin et al.,
2017b; Zurek and Fedora, 2012). Pre-clinical studies using different models of TBI such as
CCI (Cardinell, 2017), WDI (Ma et al., 2018), and blast (Ahmed et al., 2015) also reported
significant alternation of S100p serum concentration following TBI. These studies focused
on adult animals and, to our knowledge, none of the pre-clinical studies investigating S1008
focused on infant/pediatric TBI.

For diagnostic purposes, most pediatric studies (Table 1) focused on investigating the
capability of S100p to detect intracranial lesions as evidenced by abnormal CT scans.
Higher serum concentration of S1008 were found in patients with abnormal CT scans
compared to control cohorts or patients with normal CT. Therefore, it is suggested that
serum S100B is a potential diagnostic tool for predicting intracranial lesion and abnormal
CT in children with TBI (Babcock et al., 2012; Bouvier et al., 2012; Castellani et al., 2009;
Hallén et al., 2010; Manzano et al., 2016). Although S100p serum concentration is limitedly
in clinical use for adults as a general screening tool to identify those in need of CT scanning
(Thelin et al., 2017b), it has not yet been studied and validated extensively enough to be
recommended for clinical use in the pediatric population (Lumba-Brown et al., 2018). The
literature on S100p serum biomarker in pediatric TBI is not as rich as it is for adult and the
cut-off values for abnormal S100p are diverse in the pediatric literature (0.006-0.35 pg/L,
Table 1). These diverse results may be explained by the fact that brain tissue and biofluid
expression of S100p are highly age-dependent, particularly in the very young age due to the
ongoing central neurodevelopmental process (Modi and Kanungo, 2010; Park et al., 2018;
Portela et al., 2002). The large age variation in most current pediatric TBI studies (Babcock
etal., 2012; Castellani et al., 2009; Geyer et al., 2009; Lugones et al., 2018; Manzano et

al., 2016) (Table 1) is another factor that contributes to the diverse cut-off value results

in the literature. Another explanation is that S100p is not a brain-specific biomarker and
may be derived from extracranial sources such as musculoskeletal injury and bone fracture
(Agoston et al., 2017; Rothermundt et al., 2003). Some of the pediatric TBI studies used
healthy subjects as control while some others used patients with limb or fracture injury as
control cohort. The S100B threshold value associated with TBI detection is still debated
even for adults (Kovesdi et al., 2010) in whom S100p were shown to be less sensitive with
age (Modi and Kanungo, 2010). Non-brain specificity and high age dependency of S100p in
the young brain make it difficult to determine an optimal cut-off value sensitive and specific
enough to reliably diagnose TBI in infant and pediatric populations. The utility of S1008
serum biomarker to distinguish iTBI from nTBI has also been investigated in a few pediatric
studies (Beers et al., 2007; Berger et al., 2005) and did not find significant difference
between peak serum concentration of S1008 or NSE in children from either cause. However,
Beers et al. (2007) and Berger et al. (2005) found significant longer time to peak for iTBI
patients compared to nTBI patients and therefore, suggested time to peak of S100p and NSE
as potential tools for discriminating iTBI from nTBI in pediatrics.

For prognostic purposes, many pediatric studies investigated the peak or temporal profile
of S100pB concentration following TBI to determine the severity of injury and/or predict
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short- or long-term outcomes of TBI (Babcock et al., 2013; Berger and Kochanek, 2006;
Park et al., 2018; Park and Hwang, 2018; Piazza et al., 2007; Spinella et al., 2003; Zurek
and Fedora, 2012) (Table 1). The results of these studies are sometimes conflicting, with
some showing correlation between S100p levels early after TBI (within a day) (Berger and
Kochanek, 2006; Spinella et al., 2003; Zurek and Fedora, 2012) or 1-week post-TBI (Park
et al., 2018; Park and Hwang, 2018) and the long-term TBI outcomes while others did not
find any correlation especially in the presence of extracranial injury (Babcock et al., 2013;
Piazza et al., 2007). The conflicting results may be explained by the fact that S100p is

not a brain specific marker. The elevation of serum S100p following TBI has been shown
to be an indication of blood-brain barrier (BBB) disruption, which has a critical role in
pathophysiology outcomes of TBI even years later (Blyth et al., 2009; Kanner et al., 2003)
that may explain the correlation of serum S100p and the long-term post-TBI outcomes.
Studies demonstrated that the rate of decline of serum S100p inversely correlates with
severity of TBI, with a slower decline for more severe TBI in both pediatrics (Zurek and
Fedora, 2012) and adults (Thelin et al., 2017a).

In addition to serum, S1008 urine concentrations has been investigated as diagnostic

and/or prognostic TBI biomarker in a few pediatric studies (Berger and Kochanek, 2006;
Hallén et al., 2010) but the results are inconclusive. Hallén et al. (2010) found no
significant difference in urine S100p concentrations between pediatric TBI patients with
and without intracranial complications while they found a significant difference in serum
S100pB concentrations between these two groups. Contrarily, Berger and Kochanek (2006)
found an increase in both urinary and serum S100B concentrations in children with TBI.
They reported that peak urinary S1008 concentrations occurred significantly later than peak
serum S100pB concentrations.

In summary, although S100p is the most widely studied biomarker in pediatric TBI, the
non-brain specificity and high age-dependency attributes in the young brain suggest that
S100p is not an appropriate biomarker to be used as a sole tool for diagnosis of TBI in
pediatric population. However, due to its rapid release into blood following TBI, it is a
valuable biomarker to be combined with other biomarkers and tools in clinical practice today
for early diagnosis of TBI especially in the absence of extracranial injuries.

3.1.2. Gilial fibrillary acidic protein (GFAP)—GFAP, a marker of astroglial injury, is
another well studied TBI biomarkers explored in many pediatric clinical studies (Fraser et
al., 2011; Mannix et al., 2014; Mondello et al., 2016b; Rhine et al., 2016; Zurek and Fedora,
2012) as well as infant/pediatric pre-clinical studies (Robinson et al., 2016) (Table 1) and
has been shown to be dramatically elevated in serum following TBI. GFAP showed a rapid
influx, but slower than S100p, in serum following TBI and remained elevated for a longer
time in comparison to S100p (Thelin et al., 2017b; Zurek and Fedora, 2012), which provides
a wider time window for this biomarker to diagnose TBI, and thus, reduces the probability
of missing detection due to late blood sampling. Although serum GFAP and S100p are

both linked to glial injury, GFAP performs better than S100p in detecting head trauma and
predicting intracranial lesions on head CT in pediatric TBI especially in young children (< 5
years) and in presence of extracranial injuries (Papa et al., 2016). This enhanced predictive
performance may be attributed to the fact that GFAP, in contrast to S100p, is a CNS
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specific protein (Mondello et al., 2016b; Papa et al., 2015). Several studies recommended
serum GFAP to be used as a diagnostic marker of TBI specially for detecting intracranial
hemorrhage (Kou et al., 2013; Mondello et al., 2011; Mondello et al., 2016b). Serum GFAP
also found to be capable of discriminating between focal and diffuse TBI in adults as its
elevation was shown to be significantly higher in focal and/or hemorrhagic injury than in
non-hemorrhagic and/or diffuse brain injury (Kou et al., 2013; Mondello et al., 2011).

On the prognostic applications, serum GFAP concentration was shown to be predictive of
TBI-induced brain pathology (Huang et al., 2015; Mondello et al., 2016a), injury severity
and poor long-term post-TBI outcomes (Fraser et al., 2011; Mondello et al., 2016b). All
the pediatric studies explored GFAP (Table 1) except one (Rhine et al., 2016) reported that
GFAP peak values within 24 h correlated with severity of injury and long-term post-TBI
outcomes. Although both acute disintegration of astrocytes and reactive astrogliosis underlie
circulating GFAP in serum and CSF after TBI, tissue pathology assessment of pre-clinical
TBI models revealed that the acute disintegration of astrocytes is the dominant source of
GFAP elevation in serum and CSF following TBI (Huang et al., 2015). This mechanism

is consistent with the rapid and high elevation of serum GFAP which peaks within hours
to a day following TBI (Fraser et al., 2011; Luoto et al., 2017) and has been attributed to
early astrocyte damage that occurs within hours after injury (Huang et al., 2015; Zhao et
al., 2003), whereas reactive astrogliosis occurs days post-TBI (Hellewell et al., 2010). A
secondary peak in serum GFAP that has been observed a few days post-TBI (Fraser et al.,
2011; Zurek and Fedora, 2012) may be due to the increase in reactive microglia.

The brain specificity of GFAP, its rapid and high elevation in serum following TBI, and the
consistency of the finding in the literature (Table 1) suggest that serum GFAP is a suitable
biomarker to be used as a TBI diagnostic and/or prognostic tool in pediatric population,
especially if it combines with other biomarkers with different cellular origins and temporal
profiles. However, more studies need to be done to better determine its predictability and
characteristics to support the use of it in clinical practice.

3.1.3. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1)—UCH-L1 is a neuronal
injury marker and similar to S100p and GFAP showed a rapid influx and short time
availability following TBI; however, UCH-L1 has a faster decline in comparison to GFAP
(Huang et al., 2015; Kou et al., 2013; Mondello et al., 2011; Thelin et al., 2017a).

Serum UCH-L1 has been explored in several pediatric clinical studies (Berger et al., 2012;
Mondello et al., 2016b; Papa et al., 2017; Rhine et al., 2016) (Table 1) and adult pre-clinical
studies (Huang et al., 2015; Mondello et al., 2016a) as a potential biomarker of TBI.
Mondello et al. (2016b) and Papa et al. (2017) found serum UCH-L1 capable of identifying
TBI patients with intracranial lesions as evidenced by abnormal CT from TBI patients

with normal CT, uninjured (Mondello et al., 2016b) or non-TBI trauma control subjects

for mild to severe TBI and suggested serum UCH-L1 as a potential diagnosis biomarker

of intracranial lesions. However, Rhine et al. (2016) and Berger et al. (2012) did not find
significant difference in serum UCH-L1 levels between pediatric patients with mild TBI and
uninjured/non-TBI trauma controls.
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On the prognostic application, Mondello et al. (2016b) and (Berger et al., 2012) found
correlation between early elevation of UCH-L1 in serum and injury severity and long-term
post-TBI outcomes. Pre-clinical studies using different models of TBI also showed direct
relation between lesion volume, neuronal degeneration and astrocyte damage of brain tissue,
and temporal profile of GFAP and UCH-L1 biomarkers in serum and CSF post-TBI (Huang
et al., 2015). Studies that compared GFAP and UCH-L1 and/or S1008 showed that GFAP

is a better diagnostic biomarker for TBI in comparison to UCH-L1 and S100p especially in
the presence of extracranial lesions as it is a CNS specific protein while UCH-L1 and S1008
are not (Huang et al., 2015; Kou et al., 2013; Lewis et al., 2017; Papa et al., 2016; Rhine
etal., 2016). For example, serum UCH-L1 showed to be elevated for sham-TBI animals in
the presence of anesthesia and surgical procedure while no elevation was observed for GFAP
(Huang et al., 2015). However, GFAP and UCH-L1, have different temporal profiles and
cellular origins, therefore, multivariate analysis may enhance the predictability of each of
them individually.

The utility of UCH-L1 in urine as a biomarker of brain injury has been also explored in adult
TBI and no significant difference between controls and patients with white matter lesions in
UCH-L1 levels in urine were reported (Li et al., 2015). To date, no study has been explored
urine UCH-L1 for pediatric TBI.

3.1.4. Neuron-specific enolase (NSE)—NSE is a glycolytic enzyme which is
localized predominantly in the cytoplasm of neurons. Following TBI, NSE releases
passively into the extracellular compartments under pathological conditions during neuronal
cell destruction (Kévesdi et al., 2010) and then leaks into CSF and serum following neuronal
cell death secondary to traumatic injury (Berger et al., 2002; Zurek and Fedora, 2012). This
mechanism makes serum NSE a great biomarker candidate for monitoring ongoing injury
after TBI (Park et al., 2018) and have been examined as TBI biomarker in many pediatric
(Beers et al., 2007; Berger et al., 2005; Berger et al., 2007; Berger et al., 2012; Fridriksson
et al., 2000; Park et al., 2018; Park and Hwang, 2018) and adult clinical studies (reviewed
in (Thelin et al., 2017b)) as well as adult pre-clinical studies (Gyorgy et al., 2011). NSE
like GFAP has a prolonged serum elevation post-TBI, however, serum NSE elevation has

a longer time to peak and slower decline profile especially for more severe cases or cases
with poor outcomes (Park et al., 2018; Thelin et al., 2017b; Zurek and Fedora, 2012). NSE
with a serum half-life of 24-72 h has a longer temporal profile in comparison to S100,
UCH-L1 and GFAP (Beers et al., 2007; Thelin et al., 2017b; Zurek and Fedora, 2012) which
makes it a better prognostic biomarker for possibly predicting outcomes and monitoring
treatment effects. Slower elevation to peak NSE values, and appearance of a secondary
peak in NSE temporal profiles in patients with progressing injury may also be attributed

to delayed neuronal death following TBI (Bandyopadhyay et al., 2005; Park et al., 2018;
Zurek and Fedora, 2012). Serial sampling in several pediatric studies showed that peak and
time to peak of NSE concentrations correlate with short and long-term post-TBI outcomes
in children with varying severity (Bandyopadhyay et al., 2005; Beers et al., 2007; Berger et
al., 2007; Park et al., 2018; Zurek and Fedora, 2012). One of these studies showed stronger
correlation of peak NSE concentration with outcome in children < 4 years of age (Berger

et al., 2007). Many pediatric studies demonstrated the capability of NSE as predictor of
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intracranial injury and poor outcome following TBI (Bandyopadhyay et al., 2005; Beers
etal., 2007; Berger et al., 2007; Park et al., 2018). Like UCH-L1 and S1008, NSE is not
CNS specific and is also present in red blood cells and platelets which limits its utility as a
predictor of TBI in multi-trauma cases (Johnsson et al., 2000). Although NSE is a marker
of neuronal injury, histopathology of damaged brain tissue showed that NSE can also be an
effective marker of axonal injury in its early stages (Ogata and Tsuganezawa, 1999). It is
reported that after axonal injury, NSE is upregulated to maintain homeostasis, and thus, NSE
can be detected in cytoplasm surrounding the disrupted axons (Ogata and Tsuganezawa,
1999; Yokobori et al., 2013). NSE serum levels in children with diffuse brain injury were
twice as high as those with focal brain injury (Lo et al., 2009), and thus, this biomarker
can discriminate these two types of TBIs. NSE has been shown to be age-independent in
the pediatric population (Berger et al., 2005). Zurek and Fedora (2012) reported that NSE
serum concentration was much higher and remain elevated for longer time after severe TBI
in children compared to adults which may be an indication of more neuronal cell death and
higher susceptibility of developing brains to TBI in compare to adults.

3.1.5. Neurofilaments (NFs)—NFs are the most abundant protein components of the
axonal cytoskeleton and consists of three subunits NF-L (light), NF-M (medium), and NF-H
(heavy) containing 543, 916 and 1020 amino acids, respectively (Petzold, 2005). NFs play
an important role in the maintenance of axon caliber, growth of axons during development,
and conducting of electrical impulses along axons (Yuan et al., 2012). NFs are proved
markers of axonal injury that have been shown to accumulate in discrete regions of the axon
following cytoskeleton damage resulting in swollen bulbs, disconnection and additional
neuropathologic changes (Smith and Meaney, 2000). However, there are presently a limited
number of studies that have examined serum level of NFs as biomarkers of TBI in adult

(Al Nimer et al., 2015) and pediatric clinical studies (Zurek and Fedora, 2012) as well as
adult rat pre-clinical studies (Anderson et al., 2008; Shaw et al., 2005). Serum NFs remained
elevated days after TBI in mild to severe cases but rose faster in severe cases or those with
poor outcomes, suggesting that NFs may be of good prognostic value (Anderson et al.,
2008; Zurek and Fedora, 2012). More studies are needed to evaluate the utility of NFs as
biomarkers of TBI and to characterize their temporal profile.

3.1.6. Neuroinflammatory and metabolomic biomarkers—Besides biomarkers
such as S100pB, GFAP, UCH-L1, NSE, NF-L, NF-H that are linked to primary injury
because of neuronal, glial, and/or axonal damages, there are biomarkers that are linked to
the sequalae of metabolomic and inflammatory events following TBI which lead to energy
deficits, brain tissue damages and atrophy evolving over hours, days, months, and even
years. Therefore, metabolomic and neuroinflammatory biomarkers are linked to secondary
pathology after TBI and underlie some of the acute and chronic neuropathological outcomes
of TBI (Nizamutdinov and Shapiro, 2017).

Among neuroinflammatory biomarkers are cytokines that can be released by a wide variety
of cells such as microglia, macrophages, and endothelial cells and play an important role

in repair and maintenance of brain function after TBI, and thus, influence the secondary
injury (Sordillo et al., 2016). Cytokines including TNFa, IL-14, IL-6, IL-8, IL-10, and
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L-selectin are some of the common neuroinflammatory biomarkers that explored in a
few pediatric clinical TBI studies (Buttram et al., 2007; Chiaretti et al., 2005; Park and
Hwang, 2018) and pediatric pre-clinical studies (Robinson et al., 2016). These cytokines
showed to be elevated in injured brain tissue, CSF and serum following TBI. IL-1p and
IL-6 (Lo et al., 2009) and combination of S100p and IL-6 or L-selectin (Castellani et

al., 2009) were found to be corelated with severity of injury and was predictive of poor
long-term outcomes. From a therapeutic point of view, pre-clinical studies have illustrated
that blockade of these cytokines can reduce brain injury (Sordillo et al., 2016). Given the
role of neuroinflammatory cytokines in the secondary injury and long-term pathological
outcomes of TBI, more studies are needed to evaluate these biomarkers for pediatric TBI
and assess their possible age dependency.

Serum metabolite and metabolomic pathways have also shown to be significantly altered
after TBI (Bahado-Singh et al., 2016; Hajiaghamemar et al., 2017; Louin et al., 2007;

Yi et al., 2016), and their alternations are shown to be correlated with post-TBI
neurodegeneration, neurological and cognitive impairments (Louin et al., 2007; Yi et

al., 2016). Among metabolites, amino acids are shown to have an important role in
neuronal survival, growth and differentiation as well as neuronal circuitry development
and maintenance (Kurbat and Lelevich, 2009). Their role is even more significant in the
developing brain as they are crucial to provide energy for all cellular processes required for
brain development and function. Hence, the additional high metabolic demands following
TBI have a synergistic effect and can intensify the outcomes of TBI in the pediatric
population (McKenna et al., 2015). Despite the important role of metabolite biomarkers

on post-TBI outcomes in pediatric, to our knowledge, these biomarkers have not yet
investigated in any pediatric clinical TBI study. In adult TBI population, Yi et al. (2016)
investigated the utility of metabolite biomarkers for diagnosis of TBI and identified a panel
of nine serum metabolite biomarkers (serine, pyroglutamic acid, phenylalanine, galactose,
palmitic acid, arachidonic acid, linoleic acid, citric acid, and 2,3,4-trihydroxybutyrate)
capable of discriminating between TBI patients with and without cognitive impairment,
and healthy controls. In a pediatric pre-clinical study, Hajiaghamemar et al. (2017) also
found a panel of three amino acids capable of diagnosis of focal and disuse TBI with

high sensitivity and specificity. In an adult pre-clinical study, plasma concentrations of the
amino acid proline were found to be correlated with post-TBI neurological deficit as a sign
of brain damage severity, and thus, it has been suggested as a potential TBI monitoring
biomarker candidate (Louin et al., 2007). The variety of metabolomic biomarkers and their
key roles in dysregulating the normal neuronal developmental process after TBI emphasize
their prognostic potentials to predict possible long-term neuronal deficits post-TBI, however
more studies to be done in pediatric TBI.

3.1.7. microRNA—MicroRNAs are short non-coding endogenous RNA molecules that
play key roles in the regulation of cellular processes such as cell signaling, proliferation,
differentiation, survival, and death post-trauma. MicroRNASs recently became of great
interest in the biomarker field due to their stability and abundancy in biofluids and their
tissue-specific expression patterns. So far over 2000 microRNAs have been identified

in the human and many studies have used microRNA profiling in different tissues and
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biofluids with the purpose of biomarker discovery for trauma and disease such as cancer,
cardiovascular diseases, diabetes, nervous system disorders, and TBI (Di Pietro et al., 2018).
Utility of microRNAs as TBI biomarkers is at very early stage. There are only handful of
studies that have examined serum microRNA signatures as biomarkers of TBI and none

of them are specific to children (Bhomia et al., 2016; Di Pietro et al., 2017; Redell et al.,
2010; Yang et al., 2016). In addition, a couple of studies have recently explored microRNAs
in saliva as TBI biomarkers for pediatric (Hicks et al., 2018; Johnson et al., 2018) and

adult (Di Pietro et al., 2018). Hicks et al. (2018) examined alternations of CSF and salivary
microRNAs after severe and mild TBIs. They found six microRNAs, functionally related

to neuronal development, including miR-182-5p, miR-221-3p, mir-26b-5p, miR-320c,
miR-29c¢-3p, and miR-30e-5p, that demonstrate similar alternation trends in CSF after severe
TBI and in saliva after mild TBI. They reported that downregulation of miR-320c were
directly correlated with attention difficulty post-TBI and it increased to baseline over time
after injury. In the other pediatric study, Johnson and collaborators found concentrations of
five salivary microRNAs including miR-320c-1, miR-133a-5p, miR-769-5p, let-7a-3p, and
miR-1307-3p capable of distinguishing patients with prolonged symptoms of concussion.
They also reported that concentrations of miR-320c-1 were correlated with memory
difficulty 4 weeks post injury (Johnson et al., 2018). In another study, 21 microRNAS in
saliva including two brain specific microRNAs (miR-27b and miR-142-3p) were reported
that can discriminate between concussed and non-concussed adult athletes (Di Pietro et al.,
2018). There are some pre-clinical studies that explored microRNA expressions in different
brain regions after TBI (Di Pietro et al., 2018). Due to the variety of microRNAs that

are expressed uniquely within specific brain regions and cell types and their stability and
richness in biofluids, microRNAs have the potential to be ideal biomarkers for TBI. With
additional pre-clinical and clinical investigations, biofluid microRNAs may be potential
biomarkers for diagnosis and prognosis after TBI.

3.1.8. Biofluid biomarker considerations: clinical and preclinical—One of the
challenges in clinical and translational studies of serum biomarkers is the development of
baseline levels that represent the normal healthy population and the determination of a
cut-off value for TBI prediction. The baseline and cut-off values will be even more difficult
to determine when the biomarker is age-dependent. Many brain-related biomarkers such

as S100B, GFAP and UCH-L1 are shown to be age dependent in the pediatric population
and are significantly higher in younger children specially during the first year of age
(Mondello et al., 2016b; Sabbatini et al., 1999). Conversely, NSE serum biomarkers did
not show age dependency in children (Berger et al., 2006). Most current TBI pediatric
studies were conducted over wide range of ages (e.g. up to 18 years) which may explain
the diverse serum cut-off values of age-dependent biomarkers such as S100p reported in the
literature. Cut-off values of age-insensitive biomarkers such as NSE is more consistent in
the pediatric TBI literature, probably due to age insensitivity of this biomarker (Papa et al.,
2015). Overall, age-independent biomarkers have superiority over age dependent ones for
pediatric population. For age-dependent biomarkers, normal serum concentrations and TBI
cut-off values needs to be determined over a narrow age range to minimize age variability.
Age dependency of some serum biomarkers also emphasizes the importance of using age
appropriate pre-clinical models in translational biomarker pediatric TBI research to enable
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discovering compatible and sensitive biomarkers. Within this context, one of important
challenges for successful translation of serum biomarkers to clinical diagnostics is difference
of the concentration levels and validity of biomarkers cross-species which can be overcome
through a direct comparison between animal models and human data (Mondello et al.,
2016a).

Another challenge with TBI biomarkers is that many of them such as S100p8, UCH-L1,
NSE, amino acids and many others are not brain specific. These biomarkers are expressed

in other organs and cell types such as endocrine system, endothelial cells, smooth muscle
cells, erythrocytes, and peripheral nerves (Agoston et al., 2017) that limits the utility of them
as TBI biomarkers in multi-trauma scenarios (Castellani et al., 2009; Geyer et al., 2009;
Lugones et al., 2018). In that regard, brain specific serum biomarkers such as NF-L, NF-H
and GFAP may perform better in multi-injury events.

All biomarkers discussed in this section showed to pose a distinct temporal profile following
TBI which is also dependent on injury type, mechanism and severity. Moreover, many of
the biomarkers explored in the literature are not brain specific, however, the temporal profile
of these biofluid biomarkers may be different after TBI and injury to other organs. For
example, although biofluid S100pB elevation was observed in injuries other than TBI, S100p
released from an extracerebral origin showed a shorter temporal profile than S100p released
due to TBI (Savola et al., 2004). Therefore, coupling the biofluid concentration of these
biomarkers with their temporal profiles may enhance the capability of these biomarkers

in diagnosing TBI and monitoring the progression of TBI. For example, characteristics of
temporal profiles of NSE and S100p serum concentrations such as time to peak and possible
secondary peak after TBI were shown to be able to distinguish between children with iTBI
and nTBI in mild to severe TBIs (Beers et al., 2007; Berger et al., 2005; Berger et al.,

2006). Frequency and time domain of blood sampling have a critical role in determining

the accuracy of temporal signatures of biomarkers, especially in translational research where
different life spans of animal models and humans need to be taken into consideration.

Unfortunately, longitudinal studies assessing biofluid biomarkers of clinical and pre-clinical
pediatric TBI are severely limited, also the sampling frequency and the time points are
dispersed among studies (Beers et al., 2007; Robinson et al., 2016; Zurek and Fedora, 2012).
Late blood sampling and differences in the time point and frequency of sampling, in part,
may explain some of the conflicting results of biomarkers between studies. To overcome
these limitations, more longitudinal studies are needed with high frequency sampling in
order to characterize the temporal profile of biomarkers so that the underlying molecular and
pathological events following pediatric TBI can be elucidated.

3.2. Electroencephalography (EEG)

TBI can disrupt the functional neural processes of the brain resulting in altered
electrophysiological states (Rapp et al., 2015). Electroencephalography (EEG) provides a
measure of the electrical activity of the brain which can help to monitor the changes in
cognitive processing over the course of the TBI, informing on differences between healthy
and diseased populations and the time course of recovery (Schmitt and Dichter, 2015). EEG
in humans is typically collected non-invasively using surface scalp electrodes capturing the
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summation of synchronous activity of millions of post-synaptic potentials of the cerebral
cortex (Luck, 2014; Rapp et al., 2015). The electrical potential difference between two
electrodes establishes a channel. These channels are arranged in a montage that display
patterns of electrical activity across the scalp indicative of regional activity or inactivity
(Rapp et al., 2015). Due to the lack of structural abnormalities associated with mild
traumatic brain injury, EEG provides a non-invasive indicator of brain functional activity
on the millisecond scale. EEG research employs the recording of spontaneous activity or
evoked potentials in response to an external stimulus. Event related potentials (ERPs) are
segments of the continuous EEG signal that are time-locked with an external event stimulus
and have been considered a sensitive measure of brain activity after a concussion (Gosselin
et al., 2006).

Typical measurement variables associated with EEG are power frequency bands from
continuous measurement and amplitude and latency characteristics associated with ERP
waveforms. Power frequency bands include: Delta: 0.5-4 Hz, Theta: 4 — 8 Hz, Alpha:
8-12 Hz, Beta: 12-20 Hz, Gamma: 20-80 Hz, where common findings associated with
concussion are increased alpha, increased delta, and decreased theta (lanof and Anghinah,
2017; Kenzie et al., 2017; Nuwer et al., 2005; Oster et al., 2010; Sandsmark et al., 2017).
Common ERP components that have been studied for sports-related concussions in human
subjects include: N2, found at 200-350 ms with a frontal central distribution on the scalp
(Broglio et al., 2009; Gaetz and Weinberg, 2000; Ledwidge and Molfese, 2016; Moore et
al., 2015); the P3, found at 300-800 ms with a midline parietal distribution (Baillargeon et
al., 2012; De Beaumont et al., 2009; Dupuis et al., 2000; Gaetz et al., 2000; Gosselin et
al., 2006; Lavoie et al., 2004; Moore et al., 2016; Moore et al., 2014; Moore et al., 2017;
Nandrajog et al., 2017; Ozen et al., 2013; Parks et al., 2015; Theriault et al., 2009); the
error-related negativity (ERN) (De Beaumont et al., 2009; Pontifex et al., 2009), typically
occurring at 50-100 ms at the midline frontal and central scalp sites; and the error positivity
(eP), which occurs at 200-500 ms following the ERN, typically observed in the midline
central and parietal scalp areas (Brush et al., 2018; Lesiakowski et al., 2018). General
trends across research studies denote a decrease in amplitude and increase in latency for
ERP components associated with concussed cohorts in comparison with healthy controls,
furthermore the P3 or P300 is the most widely used for injury (Brush et al., 2018). A few
studies have suggested the use of a panel of EEG features as part of a multi-modal analysis
of concussion that include behavioral measures such as balance and gait to detect and
monitor concussion (Howell et al., 2018; Jacquin et al., 2018); however, more evidence is
needed to evaluate the robustness of including a collection of measures. The diverse findings
on ERP related components are attributed to variability in the type of cognitive tasks used
to elicit the ERP responses (i.e., auditory or visual stimuli). Due to the non-uniformity of
tests run across studies, a direct comparison is difficult. Small and heterogeneous study
samples are common across research studies, often age, injury mechanism, and outcomes
are factors that result in underpowered sample sizes that are susceptible to bias, false and
inflated effects (Brush et al., 2018).

To control for the variability in subject sample and characteristics, animal models of TBI are
a promising avenue to study the mechanisms of concussive injury from injury causation to
changes to neural function, intracranial injury mechanisms, and histopathological changes
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post mortem. Research employing animal models of TBI combined with EEG measures
have primarily used rats under lateral fluid percussion injury (Biswas et al., 2018), projectile
concussive impact (Leung et al., 2014; Mountney et al., 2017), high deceleration impact
system (Napoli et al., 2012), a weight drop model (Ucar et al., 2006), and mice under

blast loading (Liu et al., 2017) and also using the weight drop model (Sabir et al., 2015).
While differences observed in the power frequency bands between injured and non-injured
animals were demonstrated, the measurement of EEG in these studies involved opening

up the cranial vault and implanting electrodes directly on the brain. Due to the smaller

size of the rat and mouse brain and the invasive nature of electrode implantation in these
studies, translation to human TBI is difficult. In addition, EEG research employing rodent
models of TBI are not specific to the pediatric age range. Research employing a piglet model
of pediatric concussion has demonstrated promise in the utility of this model for clinical
measures of concussion using EEG. Large animal models better resemble the biomechanics
of brain tissue injury because the gross neuroanatomy and relative composition of white

and grey matter tissues are similar between the human and pig brain (Cullen et al., 2016).
Atlan et al. (2018) conducted a pilot study on 4-week-old piglets subject to two injury
conditions (CCl and RNR in the sagittal and coronal directions). EEG was captured using a
non-invasive 32 electrode array placed on the surface of the scalp of each animal to measure
responses from an auditory oddball paradigm. Unlike previous animal work employing
invasive measurement techniques for studying TBI, the piglet model provides a novel means
to capture EEG responses with potential translation to pediatric concussion. Atlan et al.
(2018) reported a reduction in the P60 amplitude and an increase in the N40 latency were
associated with injured animals.

These studies demonstrate the efficacy of EEG as a diagnostic tool able to detect differences
between injured and healthy brains in both human and animals. There is still a need to
identify relevant features of the EEG signal that consistently indicates an injured brain in
addition to those that are sensitive to differing severities and symptoms across species.
Human studies provide a subset of potentially relevant features with which to guide and
evaluate the experimental animal work, such as the N1 and P3. However, homologous EEG
features that represent similar cognitive processes and functioning between the human and
animal remains elusive. Such works that have attempted to identify homologues between
human and pigs were examined by Arnfred et al. (2004); Arnfred et al. (2003). These
authors conducted auditory odd-ball paradigms to adult male pigs, attempting to describe
ERP homologues to human ERPs. The authors concluded that the pig P30 is equivalent to
the human P300a in distribution and latency, showing promise of the pig model of TBI for
studying injury mechanisms in the human.

3.3. Actigraphy

Mild traumatic brain injury has been documented to result in abnormal sleep and activity
patterns in humans and animals (Sandsmark et al., 2017). In the pediatric population,
disruptions in the sleeping and waking hours can lead to problems with cognition, chronic
pain, and psychological distress, normal neurocognitive development and impaired learning
(Tham et al., 2015). The gold standard for measuring sleep quality is through the use of
polysomnography (PSG). Patients are often required to stay at a sleep laboratory fitted with
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a series of electrodes (EEG, electrocardiographic and video) to record physiological patterns
during sleep. While these studies provide the ideal laboratory environment with which to
observe and take measurements of the patient throughout the stages of sleep, it takes place in
an unfamiliar environment (not at home in their own bed), often requiring sophisticated and
expensive equipment. A promising alternative to polysomnography is actigraphy to capture
sleep disturbances inferred from changes in activity. Actigraphy employs an accelerometer-
based device (usually in the form of a watch worn on the non-dominant wrist) to capture
time-stamped perturbations in the acceleration signal (Allan et al., 2017).

Kaufman et al. (2001) compared sleep and activity in adolescent subjects whom

sustained a mild TBI approximately 4 years prior in comparison with healthy controls.
Polysomnographic recordings taken in a sleep laboratory for one night, followed by
actigraphic recordings and a sleep diary at home for 5 nights. Both the PSG techniques and
the actigraphic recordings combined with sleep diaries were able to detect that the injured
group had poorer sleep quality, including lower sleep efficiency and more time spent awake
(Kaufman et al., 2001). Furthermore, this study demonstrates persistent sleep disturbances
in adolescent children years after head injury. In one study by Milroy et al. (2008) whom
compared actigraphic data in a sample of children with mild TBI (n= 18) in comparison
with a non-head injured, orthopedic injury control group (n7 = 30) using an actigraphic watch
for 5 nights. These authors reported no significant differences in sleep disturbances between
groups, however, Tham et al. (2015), using larger sample sizes of children with mild TBI
(n=150) and healthy controls (7= 50) found that actigraphy was able to detect poorer sleep
quality including shorter sleep durations and more active minutes during the night for the
injured group.

Animal research examining the relationship between brain injury with activity patterns and
sleep disruptions have primarily used invasive techniques with EEG data captured from

an implanted electrode on the surface of the animal brain (Petraglia et al., 2014; Sabir et
al., 2015; Sandsmark et al., 2017). Research employing non-invasive techniques used an
instrumented cage system that measured pressure on the cage floor to infer on activity in
rodents (Rowe et al., 2014a; Rowe et al., 2014b), as well as an accelerometer imbedded
harness in piglets (Olson et al., 2016). The animal TBI research employing rats and mice
mentioned above often involved invasive techniques either from the injury model itself (FPI
and CCI) or from the implanted EEG electrodes in addition to the cage system. In the piglet
model of TBI, Olson et al. (2016) instrumented 4-week old piglets with an accelerometer
embedded harness jacket to monitor the animal’s day and night time activity 4 days after
both CCI and RNR. In comparison with naive piglets, brain injured animals demonstrated
longer periods of inactivity during the day time and increased activity during the night time.
Overall, animal models of TBI have indicated altered sleep and wake disturbances that are
like those reported in humans with TBI (Wickwire et al., 2016).

Actigraphic measurements are a promising tool to non-invasively monitor active and inactive
periods in both humans and animals. Actigraphy provides an inexpensive alternative to

PSG, and while lacks specificity, it permits an understanding of the behavioral responses
affected in mild BT1 in comparison to healthy controls. Future research efforts employing
actigraphy in an animal model of TBI includes increasing the time points studied to provide
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an idea of the progression of sleep disturbances over time and their resolution. Correlation
of actigraphy with other measures of cognitive functional and behavioral tests, serum
biomarkers and EEG, can provide further insight on the interrelation between sleep quality
with on-going symptoms and behaviour states. A link between these objective measures
and subjective symptoms can inform clinical management and decisions on prognosis with
regarding rest and recovery after TBI.

3.4. Gait and balance assessments

Increase in postural instability and vestibulomotor impairment are frequently reported as
outcomes of TBI. Reliable balance assessments are essential to identifying balance problems
for both diagnostic and rehabilitation purposes. Several balance assessment techniques have
been introduced and their reliability have been investigated in the literature. Among those
are the Balance Error Scoring System (BESS) which is a low-cost balance assessment that
consists of single leg, double leg, and tandem stances on a firm and on a foam surface
while hands are on the hips. Errors are tallied to calculate a BESS score. Errors include
opening eyes, hands lifted off iliac crest, step, stumble, fall, moving hips > 30 degrees
abduction, lifting forefoot or hill and remaining out of test position > 5 s. The BESS has
been utilized in several studies as a diagnostic tool for TBI in pediatrics and adults and has
shown to detect significant difference between concussed and control groups. (Cushman et
al., 2018; Guskiewicz et al., 2001; Quatman-Yates et al., 2014; Riemann and Guskiewicz,
2000). Later, BESS was modified to improve its reliability to three stances on a hard surface
only. Modified BESS has also shown significant changes in postural stability for a TBI
group (Muir et al., 2014). In a few studies, it was shown that instrumenting BESS with
measurement tools such as accelerometers (King et al., 2014) and force plates (Chang et al.,
2014) can increase its reliability to evaluate balance improvements (Shetty et al., 2018). The
Berg Balance Scale and the Pediatric Balance Scale are other common balance assessments
that can be utilized for school-aged children (Franjoine et al., 2003). These assessments
consist of 14 items such as the time for sitting to stand, standing with eyes closed, standing
with feet together, turning 360 degrees, and reaching forward with outstretched arm. There
are also two simple balance performance assessments: the functional reach test (FRT) that
evaluates the reaching ability while standing and Timed Up and Go (TUG) that is the
recorded time for a task of standing from a chair, walking 3 m, turning around, walking
back and sitting down. Lower FRT values and higher TUG values in children post-TBI

in comparison with the controls were reported in the literature (Katz-Leurer et al., 2008).
Ghent Developmental Balance Test (GDBT) was developed for younger children from the
moment of independent walking until the age of 5 and it consists of 35 balance items

such as the time and the ability of bipedal standing, standing on a balance pad, kicking

a ball, and standing on a line with eyes closed. Each item is scored from 0, for the case

that the child cannot attempt the items, to 2 for the successful performance. The sum of

the scores on all items can be converted to a percentile score based on GDBT manual

for standardization (De Kegel et al., 2012). Use of force plates and wearable sensors

(e.g. accelerometer) have become a key advancement to develop more quantitative balance
assessment techniques. In one of the first studies, Lehmann et al. (1990) utilized force

plate to assess balance and found significant differences in all balance parameters such

as postural sway between TBI patients and controls. Computerized posturography testing
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(CPT) is a more advance quantitative technique to assess balance in human and has become
the gold standard of balance assessment. CPT utilizes moving force plate and provides 3

test protocols including: 1) “Sensory Organization Test” that assesses the patient’s ability

to make effective use of visual, vestibular, and proprioceptive information under three

visual conditions (eyes open, eyes closed, sway-referenced visual surrounding); 2) “Motor
Control Test” that assesses the patient’s ability to quickly and automatically recover from
unexpected external provocations; and 3) “Adaptation Test” that assesses the patient’s ability
to modify motor reactions and minimize sway when the support moves unpredictably in the
toes-up or toes-down direction. Eye closed tests in CPT assessments showed that patients
with severe TBI have more difficulty processing information from their vestibular system to
maintain balance in compare to controls (Pickett, 2007) that may be attributable to the fact
that TBI subjects are often over reliant on visual compensatory rather than vestibular system
strategies to compensate for vestibular dysfunction and maintain balance. Wearable sensors
have also been used to quantify clinical balance test results. Gera et al. (2018) quantified
postural sway of 38 athletes who had sustained a mild TBI and 81 control athletes using

a commercially available wearable inertial sensor that contains a tri-axial accelerometer, a
tri-axial gyroscope, and a tri-axial magnetometer. They observed higher postural sway and
increased postural sway in the mild TBI group compared to the control group due to a higher
dependence on visual cues to maintain balance.

Several studies have explored balance deficits in more dynamic settings (i.e. gait analysis
using motion capture systems). Katz-Leurer et al. (2008) performed gait analysis on children
diagnosed with severe closed head injury and healthy controls and found significantly
shorter step length, longer step time, higher hip abductor and knee extensor strength values
as well as higher variability of step length and time in children post-TBI in comparison

to controls. In another study, Basford et al. (2003) performed gait analysis using a motion
capture system and found lower walking velocity and stride length in adult TBI subjects
with complaints of instability in compare to healthy controls.

In pre-clinical research, several techniques have been developed to assess balance in
animals. One of the most common assessments of the vestibulomotor system in mice is
with the use of a beam balance. Mice are placed on a narrow beam and balance is scored
from 0, for no attempt to keep balance, to 5 for a steady posture. Another common balance
test used in mice and rats is the rotarod (Hamm et al., 1994). The rotarod consists of a
motorized rotating rod and two large plexiglas discs positioned on each side. The mice
walk on the rotating disks at various speeds and the latency until the animal falls is an
indicator of balance performance. Inclined plane is another assessment that measures ability
of rats to maintain its position at a given angle (Hamm, 2001). There are limited studies

in large animal balance assessment for TBI diagnosis. In one study an accelerometer and
video camera were used to measure postural sway of piglets subject to sham, CCl and RNR
TBI. A significant increase in the root mean square acceleration in the anterior-posterior
and medial-lateral directions in both CCI and RNR models in comparison to sham animals
(Jaber et al., 2015). In another study, gait parameters of sham and CClI injured piglets

were investigated using video analysis. A significant increase in percent stance time, a
significant decrease in stride velocity and 2-limb support were reported in the more severe
CCl injured animals (Baker et al. (2018)). By reviewing the literature, it is evident that
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quantitative balance and gait assessments are reliable low-cost tools for TBI diagnosis.
However, most of these assessment methods rely on instructional-based assessments rather
than non-instructional involuntary movements. A challenge in balance assessment that needs
to be addressed is the development of methods that rely on non-instructional involuntary
movements that can be implemented for non-verbal populations including animal models
and young children.

3.5. Eyeresponse

The cognitive symptoms such as deficits associated with concentration, attention, memory,
planning and decision making are associated with microstructural changes in the frontal
white matter in TBI (Maruta et al., 2010). These deficits may result from disruption of
cerebellar-cortical tracts due to diffuse axonal injury (Suh et al., 2006). On the other hand,
measuring eye response is a prominent, cost effective, quantitative diagnostic tool with

high reliability. Eye response assessments include a variety of measures such as pupil
response to light, fixation, smooth pursuit eye movements, saccades (rapid shifting of

gaze to a new area of interest), measuring the point of gaze and visual tracking. Among
these measures, visual tracking performance which is tracking of a moving target requires
integration of attention and planning. This measure includes smooth and saccadic elements
of eye movement (Heitger et al., 2009) that have been widely used to study the cognitive
symptoms associated with TBI in pediatrics (Ellis et al., 2015)and adults (Caplan et al.,
2015; Heitger et al., 2009; Maruta et al., 2010; Samadani et al., 2016; Samadani et al.,
2015). All eye tracking systems either measure the position of the eye relative to the head or
the orientation of the eye in space (Duchowski, 2007). In general, eye movement techniques
can be categorized into three groups: (1) Electro-OculoGraphy which is based on the electric
potential differences of the skin around the eye; (2) scleral contact lens that relies on a
search coil embedded in contact lenses; and (3) video-based methods that utilize combined
pupil and corneal reflection of the light source (typically infrared) and image processing
(Duchowski, 2007). There are numerous studies that have been conducted to investigate

the utility of these techniques to diagnose TBI in pediatrics and adults. Significant change

in saccade latency and fixation error and initial fixation error have been reported in eye
response in pediatric TBI (DiCesare et al., 2017). In an adult TBI studty, Caplan et al.
(2015) captured horizontal and vertical binocular gaze data for subjects with post concussive
syndrome (77 = 60) and asymptomatic control subjects (r7= 26). They reported significant
differences in a number of eye tracking components including saccades and smooth pursuit
eye movements for subjects with symptomatic mild TBI which can discriminate between
individuals with mild TBI and the control group. Similar findings were observed in another
study (Suh et al., 2006) on adult subjects with mild TBI (20 chronic and 6 acute) and
controls (n7= 26) using a circular pursuit target-blanking paradigm. Increased oculomotor
deficits during target blanking were reported for the TBI subjects, indicated by earlier
generation of saccades, increased oculomotor error, and increased intra-individual variability
compared to controls. In another mild TBI study, eye movement function with sensitivity
and specificity of nearly 100% was reported as the most effective metric in identifying

adult patients with post-concussion syndrome (Heitger et al., 2008). Samadani et al. (2016)
developed an eye tracking algorithm to assess eye movements of the adult subjects watching
a video clip rather than following instruction. They investigated 89 eye tracking measures
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and suggested a subset as the best predictor of brain injured subjects. They also reported that
the severity of disconjugate gaze in TBI and concussion patients were detectable with their
algorithm and was proportionate to the severity of concussion symptoms.

On the pre-clinical side, several eye tracking systems have been developed for animals for
different purposes such as peahens to study the process of mate choice (Yorzinski et al.,
2013), dogs to measure canine visual behavior (Williams et al., 2011) and rats to study

the response to sensory stimuli (Schriver et al., 2018). However, there is a paucity of
preclinical studies using eye response in animals as a TBI diagnostic biomarker which is

a critical gap in the literature worthy of future consideration in TBI pre-clinical studies.
Another area that has not been adequately studied is the effect of TBI on non-voluntary
eye response that brings insight to potential biomarkers based on non-voluntary movement
and non-instructional cognitive tasks. Therefore, the pursuit of non-voluntary eye response
measures of particular interest in translational TBI research.

4. Translational challenges and pathways for exploration

TBI biomarkers are valuable tools for diagnosis of TBI and monitoring its progression

as well as evaluation of therapeutic efficacy in TBI patients. In the process of biomarker
discovery, animal models are extremely valuable as they can provide unique opportunities

to closely explore molecular and cellular pathology in the brain tissue, which is not easily
possible in the clinical setting. TBI biomarker studies in animals also play an important

role in the development of new therapies, and to quantitate the therapeutic efficiency.
However, translation of preclinical outcomes to clinical applications face several challenges.
In this section, we review the advantages, challenges and prospects of translating pre-clinical
knowledge into the human clinical setting.

4.1. Heterogeneity

Heterogeneity remains the main challenge in the field of clinical TBI. Mechanisms of
injury, injury severity, spatial and temporal pathophysiology, and clinical outcomes are
just a few examples contributing to variability in clinical data. One approach to address
the heterogeneity of human TBI into pre-clinical studies is to integrate several preclinical
models to find the biomarkers that are applicable to a spectrum of TBI mechanisms

and severities (Hajiaghamemar et al., 2017; Margulies et al., 2015; Shultz et al., 2017).
Conducting studies across species and over variety of TBI models is also an important
step toward identifying preclinical-clinical compatible panel of biomarkers which can help
to achieve more translational success. This effort would be possible through large scale
collaborative research initiatives between multiple centers.

4.2. Age equivalency of humans and animals

The selection of an appropriately aged animal model to reflect the desired human population
under study is based on the stages of development of the animal that closely resembles

the human stage of maturation and is not simply based on age after birth (Finnie, 2012).
Researchers have proposed that rodent models at 7 days old, 7-11 days, 17-21 days, and
adult can be used to represent human birth, infants, and toddlers, and adults respectively
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(Hagberg et al., 2002; Kochanek et al., 2017). While rodents tends to be the most
commonly used species in research with a large number of published studies available
regarding pathophysiology, functional and behavior outcomes, these animals have smaller,
lissencephalic brains, composed of less white matter tissue than grey matter than those
typically seen in the human brain (Cernak, 2005; Finnie, 2001; Vink, 2018). Adult humans
have gryencephalic brains with a 2—4 mm thick grey matter ribbon enclosing the white
matter (Dahnke and Gaser, 2018). These characteristics play an important role affecting the
movement of the brain within the skull and subsequent patterns of localized mechanical
stress culminating on the neural tissues (Duhaime, 2006; Ho and Kleiven, 2009; Xiong

et al., 2013). Larger animal models, such as sheep and pigs have distributions of grey
matter and white matter tissues that are more similar to the human brain. Additionally,

the presence of well-formed gryi and sulci in these large animal models better resemble
the pathology of white matter injuries (Duhaime, 2006; Finnie, 2001). More recent efforts
employing magnetic resonance imaging techniques for longitudinal assessment of white
matter composition of the 3-month old piglet brain demonstrated similar trajectories to the
human adolescent brain (ages 10-19 years old), which further supports the piglet model for
studying pediatric concussion (Ryan et al., 2018a; Ryan et al., 2018b). Newborn piglets,
piglets at 1-5 days, and 3—4 weeks old resemble the newborn human, infant and children
brain maturations (Hagberg et al., 2002; Kochanek et al., 2017).

The age-dependency of some of the TBI biomarkers discussed in this review also emphasize
the importance of using age appropriate animal models in TBI studies especially with the
purpose to translate to the pediatric clinical setting. In addition, utilizing age-independent
metrics and/or narrow age groups in study designs are a good path to minimize age
dependency of tests and establish robust biomarkers.

4.3. Temporal profile

One of the challenges that prevents successful translation of clinical and pre-clinical studies
is the neglect of distinct biomarker temporal profile in human and animal models due to
different life span and time scale of biological process, metabolomic rate, pharmacokinetic,
pathophysiological responses. The proper selection of the sequential time points is necessary
to capture the dynamic progression of biomarkers. This selection is achievable through
parallel clinical/pre-clinical studies as well as more precisely characterizing the temporal
pattern of biomarkers by more frequent serial sampling. Direct comparison of the temporal
profile in pathophysiology response in animals and humans can help to identify appropriate
translating time scaling factors, which is an important parameter for the successful
translation of biomarkers. On the other hand, most animal TBI models have focused on
acute outcomes but the majority of clinical studies concentrate on long term outcomes

of TBI. This misalignment is a clear deficiency in the literature and more work needs

to be done to assess long term outcomes after TBI in preclinical studies. One of the
challenges with animal TBI studies is the difficulty to maintain and house severely injured
animals post TBI to mimic the intensive care settings of humans. Often, a human subject
diagnosed with TBI receives medication that can affect the assay and trajectory of serum
biomarkers as well as long-term outcomes of TBI measured using other indicators (Oli et
al., 2009). Overall, increasing the number of studies employing parallel clinical/pre-clinical
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longitudinal research designs provides the opportunity to directly compare biomarker
occurrence between preclinical models and human data and is a promising path toward
overcoming some of the challenges in translation of animal data into clinical practice.

4.4. Panel of multi-domain translatable metrics

Many TBI studies in the literature have assessed TBI diagnostic and prognostic capability of
one or a few targeted biomarkers individually. However, brain injury is a multifactorial
process involving complex linkage between metabolic evolution, molecular interaction
between brain tissue and biofluids, and neuropathological sequelae of injury that can

lead to many deficits such as neurodegeneration, neurological, functional and cognitive
impairments and many more. Given all the complexity and variation of TBI especially

in pediatric population, it is unlikely that a single biomarker will be able to predict TBI

with enough sensitivity and specificity. A panel of biomarkers considering different deficits
of TBI seems to be more promising to diagnose the diversity of injury and monitor its
progression. For example, in biofluid biomarkers, a panel of multiple glial, neuronal,
metabolism, inflammatory, and microRNA biomarkers seems to be a more appropriate
approach to identify and assess the severity, timing and pattern of injury. The concept

of using multivariate biofluid biomarkers for TBI is growing and several clinical studies
showed superiority of multivariate biofluid biomarker over single biomarker for TBI (Beers
et al., 2007; Diaz-Arrastia et al., 2014; Hajiaghamemar et al., 2017; Lo et al., 2009; Peacock
etal., 2017). In addition, a panel of different EEG features or scores have shown promise as
a potential tool to detect and monitor concussion (Jacquin et al., 2018; Kiefer et al., 2015).

Ideal translatable biomarkers should be accessible, non-invasive, nonverbal, effort-
independent, and rely on objective rather than subjective measures. For example, serum
biomarkers are minimally invasive and relatively objective measures and several biofluid
biomarkers showed good potential to be used as diagnostic and prognostic tools for TBI.
Actigraphy and EEG metrics are also non-invasive, both measure passive responses, and
thus require minimal effort from the studied subject. In addition, as discussed in this
review, both actigraphy and EEG measures have demonstrated promise in differentiating
between healthy controls and brain injured cohorts. Similarly, balance and eye response
assessment techniques that are based on involuntary movements also have a high potential
of translatability between animals and human outcomes. Especial, conspicuous is the fact
that these preclinical biomarkers and techniques can be tailored for nonverbal infants

and toddlers. Combining these clinical/pre-clinical translatable measures considering their
distinct temporal profiles seems to be a path toward development of comprehensive and
unbiased panel of biomarkers capable of diagnosis and monitoring the progression of TBI
from different deficit aspects. All of the reviewed metrics showed the capability to be
implemented in clinical as well as preclinical studies especially using large animal models
of TBI. Measuring multi-domain biomarkers at uniform time points across clinical and
preclinical allows for relationships to be established that relate cellular, functional and
behavioral processes and identify markers that are more sensitive and specific at different
post injury time windows that can relate to prognosis.
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5. Conclusion

A large proportion of TBI related emergency department visits are from young children

and adolescents where falls, assaults, motor vehicle accidents, and sport related injuries

are among the top events leading to injury. The acute and potential long-term effects

include cognitive, physical, and behavioral deficits, which may be exacerbated in the
developing brain affecting their productivity in academics, contributions to society, and

life at home with close family and friends. The nature of TBI is complex, with diverse
clinical presentations, causes and mechanisms of injury contributing to challenges associated
with diagnosis, treatment, and management practices. In efforts to minimize the detrimental
long-terms effects of TBI, an increase in pre-clinical and clinical research have sought to
determine translatable diagnostic and prognostic measures of TBI and especially concussion
in order to expedite injury resolution and reduce long term risks associated with TBI.
Animal models of TBI are necessary in addressing the heterogeneity of TBI by isolating

the mechanisms of injury in a reproducible manner, however translation to humans is
difficult due to inter-species differences such as brain anatomy, behavior, life-span and

time scale of biological process, metabolomic rate, pharmacokinetic, pathophysiological
responses. In this review, we presented the findings, advantages, challenges and prospects
of biofluid biomarkers, EEG, actigraphy, eye responses, and balance as potential tools for
diagnosis, prognosis and TBI monitoring. These tools are valuable for bridging the gap
between animal and human TBI outcomes because they involve effort-independent and
non-verbal tasks capturing specific deficits. In addition, they are easily accessible and are
non/minimally invasive. TBI causes dynamic, age dependent deficits in multiple domains,
and thus, combining a number of biomarkers into a panel may be more suitable to detect
these subtleties in deficits across age groups. These techniques can be used in parallel
clinical and pre-clinical studies involving both human and animals and help to overcome
some of the challenges associated with translation. Direct comparison of the temporal profile
in different pathophysiological responses and behavioral and functional deficits in animals
and humans can help to identify appropriate translating time scaling factors to enhance
translation of biomarkers. Multicenter collaborations and large-scale data sharing will help
to close this gap and promote advancements in therapies and interventions.
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