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Abstract

Background: Children with severe asthma have frequent exacerbations despite guidelines-based 

treatment with high-dose corticosteroids. The importance of refractory lung inflammation and 

infectious species as factors contributing to poorly-controlled asthma in children are poorly 

understood.

Objective: To identify prevalent granulocyte patterns and potential pathogens as targets for 

revised treatment, 126 children with severe asthma underwent clinically-indicated bronchoscopy.

Methods: Diagnostic tests included BAL for cell count and differential, bacterial and viral 

studies, spirometry, and measurements of blood eosinophils, total IgE, and allergen-specific IgE. 

Outcomes were compared among 4 BAL granulocyte patterns.
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Results: Children with pauci-granulocytic BAL were most prevalent (52%), and compared to 

mixed granulocytic BAL, had less post-bronchodilator (BD) airflow limitation, less blood 

eosinophilia, and less detection of BAL enterovirus. Children with isolated neutrophilia BAL were 

differentiated by less blood eosinophilia than mixed granulocytic BAL, but greater prevalence of 

potential bacterial pathogens compared to pauci-granulocytic BAL. Children with isolated 

eosinophilia BAL had features similar to mixed granulocytic BAL. Children with mixed 

granulocytic BAL took more maintenance prednisone, and had greater blood eosinophilia and 

allergen sensitization compared to pauci-granulocytic BAL.

Conclusions: In children with severe, therapy-resistant asthma, BAL granulocyte patterns and 

infectious species are associated with novel phenotypic features which can inform pathway-

specific revisions in treatment. In 32% of children evaluated, BAL revealed corticosteroid-

refractory eosinophilic infiltration amenable to anti-Th2 biological therapies, and in 12%, a 

treatable bacterial pathogen.
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Introduction

Most children with asthma treated daily with low- to medium-dose inhaled corticosteroids 

attain symptom control with few exacerbations 1. In contrast, children with problematic 

asthma have frequent symptoms and exacerbations despite treatment with high-dose inhaled 

and systemic corticosteroids 2–5. A rigorous approach to the child with problematic asthma 

includes referral to a specialty center for a staged assessment to confirm the diagnosis, and 

address remediable factors including co-morbid diagnoses and mitigation of adverse 

environmental conditions 6–7. Controller therapies are then adjusted accordingly, and the 

child is followed by an asthma specialist before a diagnosis of “severe” asthma is made 8. 

Those children with frequent symptoms and exacerbations despite these steps have “poorly-

controlled, therapy-resistant asthma.” However, the extent to which such children have 

therapy-resistant lung inflammation and detectable lower respiratory infectious species is not 

well understood. Although sputum, BAL, and blood granulocyte counts have been studied in 

children with therapy-resistant asthma 9–11, quantitative correlation among those 

compartments is unreliable, and limits their utility in guiding treatment. Nonetheless, studies 

of inflammatory markers in BAL and endobronchial biopises have been safely conducted in 

children with problematic asthma 12. These investigations demonstrate heterogenous 

patterns of lung fluid and bronchial wall inflammation, including eosinophilic and 

neutrophilic infiltration, type 2 innate and diverse helper Th1/Th2/Th17 responses, increased 

production of reactive chemical species, characteristic BAL cytokine clusters, and impaired 

macrophage phagocytic function 13–26.

These original reports provide insight into the pattern of lung inflammation in severe asthma 

of childhood. However, they are based on relatively small samples, with limited information 

as to whether prevalent inflammatory patterns correspond to specific clinical features. 

Furthermore, the role of lower respiratory pathogens in informing the lung inflammatory 

milieu and clinical features in severe asthma has received only limited study 16, despite the 
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clear importance of infection in the pathobiology of asthma of childhood 27. Thus a broader 

understanding of prevalent lung inflammatory patterns and potential infectious species and 

how they might inform clinical features in children with poorly-controlled, therapy-resistant 

asthma is necessary. Published guidelines which contain algorithms to advance treatment in 

childhood asthma are based on studies focused primarily on children with relatively mild 

asthma 28–29. Henceforth these algorithms may not be appropriate for children with severe 

asthma with alternate patterns of inflammation. Therefore, we conducted a prospective study 

in a well-characterized sample of children referred from community providers with poorly-

controlled, therapy-resistant asthma to identify prevalent BAL granulocyte patterns and 

infectious species and describe the clinical features associated with individual patterns.

Methods

Children with poorly-controlled asthma were referred from a 35-county region in central 

Virginia to a university-based specialty clinic (Figure 1). These children had an initial 

assessment (see E-supplement, Methods) based on modification of an evidence-based 

approach published by the Brompton group 6–7 that included: a) confirmation of the 

diagnosis of asthma, b) correction of remediable factors, c) evaluation of adherence and co-

morbid diagnoses, d) identification of allergen sensitization and appropriate avoidance 

measures, and e) measurements of lung function with bronchodilator response. After these 

steps, controller treatment was adjusted according to severity classification 8 and symptom 

control measures in accordance with standard guidelines 28–29. Combination high-dose 

inhaled corticosteroid /long-acting beta agonist therapy was prescribed based on symptom 

control status, but in some cases denied by the child’s payor of care. Children with severe, 

recurrent exacerbations and poor symptoms were treated with alternate day prednisone 0.5 

mg/kg per dose. The children were then followed longitudinally in a specialty clinic by 

pediatric pulmonologists and allergists. Symptom control was assessed by measures 

recorded at the first clinic visit and repeated at follow up visits, with poor control defined by 

a composite index of symptom scores, exacerbations, adherence estimates 30, and lung 

function results (Figure 1 and E-Supplement).

Children with severe, therapy-resistant, poorly-controlled asthma were offered a diagnostic 

bronchoscopy with BAL and assessment of blood inflammatory markers. Samples were 

shared between the clinical and research laboratories through protocols approved by the 

University of Virginia Institutional Review Board (UVA HSR # 17555, UVA HSR# 10905, 

and UVA HSR# 10634). Informed consent was provided by the parents or legal guardians, 

and children > 7 years provided assent. Details of the asthma definition criteria, assessment 

of remediable factors, adherence, co-morbid diagnoses, exclusion and inclusion criteria, 

bronchoscopy, BAL, bronchial brushings, and peripheral blood markers are provided in the 

E- Supplement.

Data Analysis.

The analysis was limited to children age 6 to 17 years with confirmed asthma, demonstrable 

adherence, with exacerbations and poor control (Figure E1). BAL granulocyte categories as 

the basis for comparison of phenotypic features were modified from published studies in 
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adults with asthma 31–33. Cut points for BAL eosinophilia and neutrophilia (Figure 2) were 

derived from tables published in the ERS Task Force on BAL in Children 34 and earlier 

investigations in healthy children 35. The analytic approach was exploratory as described in 

the E-Supplement.

Results

2,800 children with poorly-controlled asthma were referred to a regional asthma specialty 

clinic for assessment and treatment over a 9 year span (Figure 1). Among this sample, 311 

children treated with high-dose inhaled and/or systemic corticosteroids with poor symptom 

control at follow up underwent diagnostic bronchoscopy. 126 of these children, 6 to 17 years 

of age, with confirmed, therapy-resistant severe asthma are the subject of this report. The 

features of children who had bronchoscopy but are not included in the analysis are provided 

in Figure E-1.

General Sample Features

The sample had significant asthma-related morbidity, over 2/3 had been admitted to the 

hospital in the past year despite treatment with three or more controller medications, with a 

median daily ICS dose of 800 μg per day fluticasone equivalents (Table E1). The proportion 

of children treated with daily ICS/LABA was approximately 2/3, lower than expected due to 

medication costs and non-coverage by the child’s payor of care. Co-morbid diagnoses were 

common, led by gastro-esophageal reflux disease (GERD), obesity, and type IB laryngeal 

clefts (Table E2).

Features Compared According to BAL Granulocyte Categories

Pauci-Granulocytic.—This was the most prevalent granulocyte category (52%). BAL 

total cell count was significantly lower in this category compared to the isolated neutrophilia 

category (Table I). Children with pauci-granulocytic BAL were significantly older than 

children with BAL isolated neutrophilia, and were less likely to be treated with maintenance 

prednisone compared to children with isolated eosinophilia or mixed granulocytic BAL 

(Table II). Children with pauci-granulocytic BAL had greater pre-bronchodilator (pre-BD) 

FEV1%, and greater pre-BD FVC% compared to children with isolated eosinophilia (Table 

III). The proportion of children with post-BD airflow limitation (based on an FEV1/FVC < 

90%) was significantly less than it was in children with mixed granulocytic BAL. Blood 

eosinophil percentage and absolute blood eosinophil counts were significantly lower in 

pauci-granulocytic BAL compared to the mixed granulocytic category (Table IV). With 

regards to detection of potential pathogens in BAL, children in the pauci-granulocytic 

category had significantly lower prevalence of positive enterovirus/HRV transcripts 

compared to the mixed granulocytic category (Table V).

Isolated Neutrophilia.—16 % of the children fit the isolated neutrophilia BAL category. 

Compared to children with pauci-granulocytic BAL, children with isolated neutrophilia had 

significantly higher BAL total cell counts (Table I), and a lower proportion of non-white 

minorities and lower median age at bronchoscopy (Table II). Children with isolated 

neutrophilia had significantly greater pre-BD FEV1 % compared to isolated eosinophilia, 
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and higher Pre-BD FEF25–75 % compared to mixed granulocytic BAL (Table III). With 

regards to inflammatory markers, children with isolated neutrophilia had significantly lower 

blood eosinophil %, lower absolute blood eosinophil counts, and lower blood total IgE 

values compared to children with mixed granulocytic BAL (Table IV). Detection of any 

microbe was most prevalent in children with isolated neutrophilia, and specifically detection 

of potentially pathogenic bacteria was more prevalent in children with isolated neutrophilia 

compared to children with pauci-granulocytic BAL (Table V).

Isolated Eosinophilia.—9.5% % of children had BAL Isolated eosinophilia. This BAL 

category was differentiated by the highest prevalence of non-white children (90%), the 

highest prevalence of hospitalization in the past year (100%), the highest prevalence of past 

ICU admissions (60%), and the highest prevalence of omalizumab (20%) and 

antileukotriene treatments among the four categories (p < .05, Fisher’s exact test, Table II). 

The pre-BD FEV1 % was lower in this category than in children with isolated neutrophilia 

and pauci-granulocytic BAL, and the pre-BD FVC % was lower than isolated neutrophilia 

(Table III). Isolated eosinophilia was not associated with significant differences in values of 

any inflammatory markers or prevalence of potential pathogens.

Mixed Granulocytic.—This was the 2nd most prevalent BAL category, 22% of the total. 

Children with mixed granulocytic BAL had signficantly lower median BAL macrophages 

(43%) compared to the pauci-granulocytic category (Table I), and significantly greater 

prevalence of treatment with maintenance prednisone (Table II). Mean pre-BD FEV1% was 

significantly lower in mixed granulocytic BAL compared to isolated neutrophilia (Table III). 

The prevalence of children with post-BD persistent airflow limitation was significantly 

higher in mixed granulocytic BAL. The mixed granulocytic category was also differentiated 

by a relatively higher absolute blood eosinophil count (480 cells/μl; p < 0.05 versus isolated 

neutrophilia and pauci-granulocytic groups; Table IV), and the highest prevalence of 

children with peripheral blood eosinophils > 300 cells/μl (p = 0.002). Furthermore children 

with mixed granulocytic BAL had the highest blood total IgE (322 IU/ml, p < 0.05 versus 

isolated neutrophilia and pauci-granulocytic groups), and significantly greater sensitization 

to four or more allergens (58%, p = 0.02). With regard to detection of BAL potential 

pathogens, children with mixed granulocytic BAL had the highest prevalence of 

enterovirus/HRV transcripts (Table V).

Correlations Between Inflammatory Markers in Blood and BAL—The % of 

eosinophils in the blood had a significant (p < 0.001) positive correlation with % of 

eosinophils in BAL, but the coefficient was low (r = 0.32). To test whether maintenance 

prednisone treatment might impact the correlation between systemic and lung eosinophils, 

we did a secondary analysis excluding children treated with oral prednisone. In this 

secondary analysis the correlation between blood and BAL eosinophil % remained low at 

0.36.

ROC curve analysis to depict sensitivity and specificity of the absolute blood eosinophil 

count as a predictor of BAL eosinophilia was poor, with an area under the curve of 0.66 

(Figure E-2). Overall, the sensitivity of an absolute blood eosinophil count > 300 cells/μl 

blood for BAL eosinophilia was fair, 71% (Table VI), with a positive predictive value of 
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50%. Likewise the specificity of an absolute blood eosinophil count for BAL eosinophilia 

was low, 65%, with a negative predictive value of 82%.

Other systemic markers of inflammation, including the total blood neutrophil count and 

serum C-reactive protein performed poorly as predictors of BAL granulocyte numbers. The 

sensitivity and specificity of the total blood neutrophil count to predict BAL neutrophilia 

depicted by ROC curve analysis was not significant with an area under the curve = 0.59. 

Likewise the serum C-reactive protein performed equally with a low ROC curve area of < 

0.60 ROC for both BAL neutrophilia and eosinophilia.

Safety

Bronchoscopy with BAL and bronchial brushing was well tolerated and safe. Post-

establishment of general anesthesia, the median time to do a complete examinaton and 

collect samples was 12 minutes. Minor adverse events included brief laryngospasm (6.5%), 

wheeze (4.9%), cough (3.3%%), and transient hypoxemia during BAL (1.6%). Two children 

(1.6%) were admitted electively post-bronchoscopy. No child had a major unexpected 

adverse event as a result of the bronchoscopy or shared sample procedure. The distribution 

of individual adverse events was no different according to age category, sex, race, asthma 

control status, granulocyte pattern, or the presence of pre-BD or post-BD airflow limitation. 

However obese children had a significantly higher (p = 0.02) prevalence of any adverse 

event (44%) compared to non-obese children (19%).

The lowest recorded SpO2 was < 90% in 2 children, 1.5% of the sample. The median SpO2 

upon discharge from the post-anesthesia recovery unit was 98% (97.0–99.0) and no child 

was discharged with an SpO2 < 93% in room air. Permissive hypercarbia during emergence 

from anesthesia was common, 62% of the sample had peak end-tidal CO2 - values > 45 mm 

Hg and the highest recorded end-tidal CO2 was > 60 mm Hg in 14%. Adverse events were 

no more prevalant in children with permissive hypercarbia > 45 mm Hg compared to those 

with end-tidal CO2 < 45 mm Hg.

Discussion

We found that the phenotypic features of children with severe, therapy-resistant asthma are 

informed by BAL granulocyte categories and detection of potential respiratory pathogens 

(Figure 2). The two categories with the highest degree of clinical morbidity were mixed 

granulocytic and isolated eosinophilia, and had in common increased BAL eosinophils 

despite relatively high prevalance of treatment with systemic prednisone. Although 

bronchoscopies were postponed in children with symptomatic colds and recent lower 

respiratory infections, respiratory viruses and/or pathogenic bacteria were detected in 31% 

of the sample. Our study is novel in so far as most studies of lung fluid or sputum 

granulocytes in adults and children with severe asthma do not include broad assessment of 

lower respiratory potential pathogens. Pathogenic bacteria were most prevalent in children 

with isolated neutrophilia, and rhinovirus/enterovirus transcripts were greatest in the mixed 

granulocytic category. Children with any respiratory pathogen detected had greater BAL cell 

counts and neutrophil percentages, were relatively younger, had fewer hospital admissions, 

shorter duration of asthma, and higher mid-expiratory flow rates (Table E-3). Detection of 
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pathogenic bacteria could represent colonization or indolent survival in biofilms, and 

likewise viral detection can correspond to a carrier state, viral replication in the absence of 

organ involvement, or true infection. Whereas blood granulocyte numbers poorly correlated 

with their counterparts in BAL, we submit that a diagnostic bronchoscopy is helpful in the 

care of children with severe, treatment-refractory asthma so as to precisely guide treatment.

We found a considerable number of children adherent to treatment with high-dose 

corticosteroids had increased BAL and systemic eosinophils. Does this mean these children 

were corticosteroid-resistant 36? Glucorticoids decrease lung eosinophilic infiltration 

through inhibition of epithelial-derived chemotactic cytokines 37, direct induction of 

eosinophil apoptosis, and they further impede eosinophil production and survival through 

inhibition of IL-5 38. To test whether prednisone treatment might alter the study results, we 

analyzed the sample features after removing 33 children treated with maintenance 

prednisone. This did not change in a significant way the distribution of the granulocyte 

categories nor their salient phenotypic features (Table E-5). Corticosteroid-resistance may 

occur more frequently than realized in children with asthma. For example in a recent SARP 

investigation, stable adults and children with asthma given intramuscular triamcinolone had 

only minor improvements in clinical features and the adults had no significant decrease in 

sputum eosinophils 39. Mechanisms of corticosteroid-resistance in asthma are varied and 

range from impaired drug delivery to the lung per se, glucocorticoid receptor down-

regulation, tobacco smoke exposure, and infection 40–43. Overall second-hand smoke 

exposure in the sample was not measured directly but is estimated at 46% 44.

This would be the first study to suggest chronic rhinovirus infection may be a factor in 

poorly-controlled asthma in so far as detection of rhinovirus RNA requires active 

intracellular replication. Enteroviradae transcripts were detected in 36% of children with 

mixed granulocytic BAL and may have contributed to corticosteroid resistance. Human 

rhinovirus infection opposes the anti-inflammatory effects of corticosteroids through 

promotion of eotaxins and mucosal type 2 inflammatory cytokine production including Il-4, 

IL-5, and IL-13 45, and disruption of lung epithelial barrier function 46. The current 

observations are similar to published observations following hematopoietic stem cell 

transplants where persistent human rhinovirus type C infection in the lower respiratory tract 

has been reported 47 and, in the setting of decreased T and NK cell expression, single strains 

may persist over months 48.

The present study supports a fundamental role of eosinophilic infiltration into the air spaces 

as an important feature in approximately one-third of children with severe asthma. We would 

point out that the numbers of children with isolated BAL eosinophilia were relatively few; 

BAL eosinophilia more often was accompanied by BAL neutrophilia in the sub-group with 

mixed granulocytic inflammation. In the past decade, an adult-onset “eosinophilic” asthma 

endotype has been described differentiated by nasal polyps, airflow limitation, and frequent 

exacerbations 49. Children with difficult asthma accompanied by corticosteroid-refractory 

airway mucosal eosinophilia were described by Payne and colleagues over a decade ago 50. 

Detection of airway eosinophilic activation best differentiates adults with asthma in 

complete remission versus those with clinical remission and current asthma 51. Accordingly, 

we found that children with BAL eosinophilia with or without neutrophilia had considerable 
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asthma-related morbidity, despite treatment with maintenance prednisone, and therefore 

might be considered candidates for anti-eosinophil biological therapies even in the absence 

of peripheral blood eosinophila. However, although blood eosinophil counts are widely 

touted as useful markers for initiating biological therapies in asthma, we found blood 

eosinophils did not reliably predict lung fluid eosinophil counts.

Children with isolated BAL neutrophilia had unique features, with overall less morbidity 

compared to children with the other granulocyte patterns. They were younger, had more 

laryngeal clefts, greater detection of BAL bacteria, and relatively higher lung function 

(Figure 2). Our results are similar to those reported in a sample of children with severe 

asthma and airway mucosal neutrophilia by Andersson and colleagues 24. Various 

mechanisms have been proposed to account for lung neutrophilia in asthma including 

corticosteroid treatment 36 , adipocyte-mediated IL-6 inflammation 52, and respiratory viral 
53–55 and bacterial 56- 58 infections. Corticosteroid treatment not only does not diminish 

neutrophilia, but by inhibiting apoptosis, increases the presence of neutrophils and augments 

neutrophilic inflammation. We did a secondary analysis limited to 20 children with isolated 

BAL neutrophilia to see if children without BAL potential pathogens had different features 

from those with pathogens detected. Children with BAL neutrophilia and no detected 

pathogens were older with longer duration of asthma and trended towards less allergen 

sensitization than children with BAL neutrophilia and potential pathogens present (Table 

E-4).

Over one-half the children we studied had pauci-granulocytic BAL with relatively fewer 

morbid clinical features. This result is different from findings in a previous study of children 

with severe asthma wherein pauci-granulocytic BAL was found in only 11% 59. Thirty-six % 

of adults with asthma in the SARP cohort reported by Hastie et al. had pauci-granulocytic 

sputum 32. In an earlier study based on sputum granulocyte categories that included both 

adults and children with stable asthma, the pauci-granulocytic category was most prevalent 

regardless of age 60. Adult asthmatics with pauci-granulocytic sputum had relatively lower 

IL-5 and IL-13 cytokine levels compared to asthmatics with raised sputum eosinophils 61. 

Comparable to our results in children with eosinophilic BAL, a large cohort of adults with 

asthma and eosinophilic sputum had significantly greater total serum IgE than adults with 

pauci-granulocytic and neutrophilic sputum 62. We speculate that children with pauci-

granulocytic BAL may represent a sub-group that was originally “Th2 high” 63, but became 

corticosteroid-resistant, and thus the morbid features we observed in this category were 

likely driven by non-Th2 and/or non-eosinophilic inflammatory pathways. Thus, children 

with pauci-granulocytic inflammation already treated with high-dose corticosteroids may be 

candidates for nonsteroidal therapies and although confirmatory studies are indicated, might 

even be less responsive to anti-Th-2 biologics including mepolizumab, benralizumab, and 

dupilumab 64.

The results of our analysis are based on a community-referred sample and thus might be 

applied to clinical practice. The proportion of children treated with combination ICS/LABA 

was low in comparison to proportions reported in the European U-BIOPRED cohort (4), but 

higher than the proportions found in the U.S. SARP III pediatric cohort (5). Thus the study 

sample has better generalizability for a U.S. compared to a European pediatric severe asthma 
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population. Hence, a sensitivity sub-analysis was done limited to 88 children who received 

ICS/LABA treatment (Table E-6). As shown the differentiating features among the 

granulocyte categories did not change in an important way in the sub-analysis. The 

granulocyte categories are cross-sectional “snap shots” of a heterogenous inflammatory 

process, and thus are subject to changes according to treatment, stress, and environmental 

exposures. In particular constituents of the large conducting airways, which admix with 

alveolar constituents in BAL, interface closely with the external environment. Thus we 

found and would expect that the granulocyte patterns are highly prone to variations imposed 

by environmental exposures including microbes, inhaled irritants, and allergens. BAL 

granulocyte patterns could have added value in informing adjustments to therapy. Anti-

microbials, particularly the macrolides, may have a role in children with lower respiratory 

bacteria. Children with eosinophilic and mixed granulocytic patterns could be considered for 

biologicals with the added benefit that these might facilitate a reduction in corticosteroid 

dosing. Children with isolated neutrophilia in the absence of infection could be treated with 

novel anti-neutrophil therapies including anti-IL-1β, anti-IL-17, and anti-IL-6. Pauci-

granulocytic severe asthma is perhaps the most challenging category, potentially treated with 

therapies targetting the bronchial epithelium such as macrolides and evolving non-Th-2 

novel biologics. Finally, we found important differences in counts of blood and BAL 

eosinophils, thus assessment of BAL granulocytes via bronchoscopy we suggest could 

improve selection of biological therapies over utilization of blood alone.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BAL Bronchoalveolar lavage

BD bronchodilator

EoE Eosinophilic esophagitis
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FEV1 Forced expired volume in one second

FVC Forced vital capacity

FEF Forced expiratory flow

LABA Long acting beta agonists

ROC Reciever operating characteristic

RSV Respiratory syncytial virus

SARP Severe asthma research program

SpO2 Peripheral capillary oxygen saturation

Th1 T helper one

Th2 T helper two

Th17 T helper seventeen
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Highlights Box

What is already known about this topic?

Severe asthma, despite treatment with high-dose corticosteroids, has varied phenotypic 

features, but the characteristic patterns of lung granulocytic inflammation and infectious 

species are not well studied in a community-based setting.

What does the article add to our knowledge?

In children with severe asthma, BAL granulocyte categories and detection of lower 

respiratory microbes correspond to phenotypic differences in morbid outcomes, airflow 

limitation, eosinophilia, and degree of allergen sensitization.

How does the study impact currrent management guidelines?

BAL is a safe and effective means to identify corticosteroid-refractory lung eosinophilia 

and potential bacterial pathogens amenable to revised treatment in children with severe 

asthma.
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Figure 1. 
Consort plot and schematic of the geographic source and clinical assessment, treatment, 

characterization procedures, and indications for diagnostic bronchoscopy in the study 

sample.
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Figure 2. 
Prevalent BAL granulocyte patterns and corresponding clinical features
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Table I

Prevalent BAL Granulocyte Patterns and Constituents in 126 Children with Poorly-Controlled Asthma

Isolated Eosinophilia Isolated Neutrophilia Mixed Granulocytic Paucigranulocytic

Sample n (%) * 12 (9.5) 20 (15.9) 28 (22.2) 66 (52.4)

Total Cell Count 
β

 (X 106 cells)
1.78 (0.96–2.25)

1.79 
Ϯ

 (1.22–5.51)
1.61 (0.57–2.92) 1.08 (0.52–2.20)

Differential Cellular Constituents n (%) 
π

Macrophages 72 (59–82) 61 (38–82) 43 α (15–64) 76 (64–90)

Neutrophils 1 (0–2) 12 (7–38) 23 (11–56) 1 (1–3)

Eosinophils 4 (1–6) 0 (0–0) 3 (2–9) 0 (0–0)

Lymphocytes 3 (2–7 3 (1–6) 3 (1–8) 2 (1–5)

Ciliated epithelial cells 16 (8–30) 10 (4–14) 11 (4–20) 15 (5–28)

Aspiration Marker
ϴ

Lipid-laden macrophage index 0 (0–0) 0 (0–2) 0 (0–1) 0 (0–1)

*
row percentages

β
 median (25th–75th percentile)

Ϯ
 p = 0.02 vs pauci-granulocytic

π
expressed as median ± IQR % cells per smear

α
p < .05 vs pauci-granulocytic

ϴ
nominal scale, range 0–4 in intensity.
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Table II

Demographic Features, Asthma Severity, and Treatment According to BAL Granulocyte Patterns

Isolated Eosinophilia n=12 Isolated Neutrophilia n=20 Mixed Granulocytic n=28 Pauci-Granulocytic n=66

Age (years) 10 (8–13)
8 
Ϯ

 (6–12)
9 (7–12) 12 (8–15)

Male sex n (%) 6 (50) 12 (60) 21 (75) 34 (53)

Non-white n (%) 9 (75) * 4 (20) 12 (43) 29 (45)

Body Mass Index (kg/m2) 19.8 (17.3–22.5) 18.4 (15.6–25.8) 20.6 (15.9–23.9) 21.7 (17.2–27.2)

Asthma Severity Indicators

Age at Symptom Onset 
(months)

12 (6–12) 12 (7–24) 12 (12–36) 12 (6–36)

Asthma duration (months) 98 (78–144) 73 (63–102) 78 (57–126) 107 (68–166)

ACT/cACT scores 13 ± 3 16 ± 8 13 ± 7 16 ± 5

Hospitalized in past year 
n (%) 12 (100) 

• 10 (50) 21 (75) 46 (70)

ICU admission n (%) 6 (60) 4 (21) 8 (29) 19 (30)

Treatment

Number of daily 
controller meds.

4 u (3–4) 2 (2–3) 2 (1–4) 3 (1–3)

Daily ICS dose (μg 
fluticasone equiv.)

800 (160–800) 400 (227–800) 800 (400–920) 800 (320–800)

Prednisone Rx n (%) 5 (42) 2 (10)
12 (43) 

Δ 14 (22)

Omalizumab Rx n (%)
2 (16) 

κ 1 (5) 3 (11) 2 (3)

Mepolizumab Rx n (%) 2 (16) 0 2 (7) 1 (2)

ICS/LABA Rx n (%) 7 (58) 13 (65) 15 (54) 41 (62)

Anti-leuk. n (%)
10 (83)

ϴ 9 (45) 11 (39) 41 (62)

Scaled results are median (25th–75th %ile)

Ϯ
 p = 0.02 versus pauci-granulocytic

*
 p =0.01

•
 p= 0.04

u
 p = 0.03 versus isolated neutrophilia

Δ
 p = 0.01

κ
p = 0.02

ϴ
 p = 0.004
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Table III

Pre- and Post-Bronchodilator Spirometry According to BAL Granulocyte Pattern

Isolated Eosinophilia n=12 Isolated Neutrophilia n=20 Mixed Granulocytic n=28 Pauci-Granulocytic n=66

Pre-BD FEV1 % * 70 ± 21
Ϯ 98 ± 19

79 ± 24 
α 91 ± 18

Post-BD FEV1 % 82 ± 20 103 ± 19 89 ± 20 98 ± 24

 FEV1 BD % change 
Δ 25 ± 14 7 ± 10 17 ± 23 12 ± 11

Pre-BD FVC %
81 ± 14 

u 102 ± 19 91 ± 22 101 ± 16

Post-BD FVC % 94 ± 11 105 ± 22 99 ± 18 106 ± 18

FVC BD % change
16 ± 12 

κ 4 ± 8
10 ± 11 

μ 3 ± 4

 Pre-BD FEV1/FVC % 84 ± 13 95 ± 12 86 ± 14 89 ± 10

 Post-BD FEV1/FVC % 87 ± 12 96 ± 9 90 ± 11 94 ± 8

Pre-BD FEF25–75 % 56 ± 43 93 ± 35
59 ± 34 

π 73 ± 30

Post-BD FEF25–75 % 66 ± 43 100 ± 30 73 ± 30 89 ± 31

Pre-BD airflow 
limitation (%)

62% 31% 56% 50%

Post-BD airflow 
limitation (%)

50% 22%
59% 

£ 22%

*
mean± SD

Δ
at the pre-bronchoscopy visit

Ϯ
p < 0.05 versus isolated neutrophilia and pauci-granulocytic

α
p = 0.03 versus isolated neutrophilia

u
 p = 0.02 versus pauci-granulocytic

κ
p < 0.05 versus isolated neutrophilia and pauci-granulocytic

μ
p = 0.03 versus pauci-granulocytic

π
p = 0.02 versus isolated neutrophilia

£
p = 0.03.
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Table IV

Blood and Breath Markers of Inflammation According to BAL Granulocyte Pattern

Isolated Eosinophilia n=12 Isolated Neutrophilia n=20 Mixed Granulocytic n=28 Pauci-Granulocytic n=66

Blood eosinophil 

% 
β

7 (0–10) 2 (1–4) 6 * (3–11) 3 (1–8)

Absolute blood 
eosinophils 
(cells/ul)

395 (0–662) 170 (90–460) 480 * (300–850) 180 (90–495)

Peripheral blood 
eosinophilia n (%) 

π

6 (50) 5 (25)
20 

Ϯ
 (71)

24 (37)

Absolute blood 
neutrophils 
(cells/ul)

2830 (1760–3930) 3680 (2945–7470) 3370 (2175–5475) 3145 (2110–4387)

Geometric mean 
total blood IgE 

(IU/ml)

297 (97–1378) 55 (16–342)
322 

α
 (170–1091)

194 (56–700)

Number + 
allergenspecific 
IgE tests (of 16 

tested)

4 (0–12) 1 (0–3) 4 (0–11) 3 (0–7)

Proportion with 
no allergens n (%)

3 (25) 7 (35) 8 (29) 20 (30)

Proportion ≥ 4 
allergens n (%)

6 (50) 3 (19)
15 

γ
 (54)

28 (42)

Serum C-reactive 
protein (mg/dl)

0.42 (0.16–0.62) 0.73 (0.19–1.61) 0.39 (0.15—1.69) 0.43 (0.20–1.86)

C-reactive protein 
≥ 0.25 n (%)

6 (50) 14 (70) 15 (54) 41 (62)

Expired NO (ppb) 51 (24–51) 9 (5–8) 27 (6–27) 14 (6–14)

Results are median and IQR

β
% eosinophils reported in blood count

*
p < 0.05 versus isolated neutrophilia and pauci-granulocytic

π
≥ 300 eosinophils per μl blood

Ϯ
p = 0.002

α
p = 0.05 versus isolated neutrophilia

γ
p = 0.02.
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Table V

Potential Respiratory Pathogens in BAL According to Granulocyte Pattern

Isolated 
Eosinophilia n 

(%)*

Isolated 
Neutrophilia n (%)

Mixed Granulocytic 
n (%)

Pauci-Granulocytic n (%)

+ Any Microbe n=39 (31%) ** 1 (8)
13 (65) 

Ϯ 15 (54) 10 (15)

+ Any Respiratory Virus n=29 (24%) 0 9 (45)
13 (46) 

Ϯ 7 (11)

+ Any Bacteria n=18 (14%) 1 (8)
7 (35) 

β 5 (18) 5 (8)

+ Virus and Bacteria n=8 (6%) 0 3 (15) 3 (11) 2 (3)

Potential Viral Pathogens Identified n (%)

Enterovirus/human rhinovirus 0 4 (20) 10 (36) u 5 (8)

Human metapneumovirus 0 2 (10) 0 1 (2)

Influenza A 0 1 (5) 1 (4) 0

Influenza B 0 0 1 (4) 0

RSV A 0 1 (5) 0 0

RSV B 0 0 1 (4) 0

Parainfluenza 1 0 1 (5) 0 0

Parainfluenza 2 0 0 0 1 (2)

Adenovirus 0 0 0 0

Potential Bacterial Pathogens Identified n (%)

Streptococcus pneumoniae 0 2 (10) 3 (11) 1 (2)

Moraxella catarrhalis 1 (10) 1 (5) 0 2 (4)

Hemophilus influenzae 0 3 (15) 0 1

Pseudomonas aeruginosa 0 1 (5) 0 0

*
column %

**
sample %

Ϯ
p < 0.001

π
n=121 cultures

β
p =0.02

μ
p = 0.004.
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Table VI

Diagnostic Performance of the Absolute Blood Eosinophil Count to Predict BAL Eosinophilia in Children 

with Poorly-Controlled, Treatment-Resistant Asthma

True Negatives
Absolute Blood Eosinophil Count

< 300 cells/ul and BAL Eosinophils < 1%
N = 54

(43.5% of total)

False Negatives
Absolute Blood Eosinophil Count

< 300 cells/ul and BAL Eosinophils ≥ 1%
N = 12

(9.7% of total)

True Positives
Absolute Blood Eosinophil Count

≥ 300 cells/ul and BAL Eosinophils ≥ 1%
N = 29

(23.4% of total)

False Positives
Absolute Blood Eosinophil Count

≥ 300 cells/ul and BAL Eosinophils < 1%
N = 29

(23.4% of total)

Performance Indicators of Absolute Blood Eosinophils > 300 cells/ul for BAL Eosinophilia Sensitivity 71% Specificity 65% Positive Predictive 
Value 50% Negative Predictive Value 82%
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