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Abstract

In the context of neurodegeneration and aging, the cerebellum is an enigma. Genetic markers of 

cellular aging in cerebellum accumulate more slowly than in the rest of the brain, and it generates 

unknown factors that may slow or even reverse neurodegenerative pathology in animal models of 

Alzheimer’s Disease (AD). Cerebellum shows increased activity in early AD and Parkinson’s 

disease (PD), suggesting a compensatory function that may mitigate early symptoms of 

neurodegenerative pathophysiology. Perhaps most notably, different parts of the brain accumulate 

neuropathological markers of AD in a recognized progression and generally, cerebellum is the last 

brain region to do so. Taken together, these data suggest that cerebellum may be resistant to certain 

neurodegenerative mechanisms.

On the other hand, in some contexts of accelerated neurodegeneration, such as that seen in chronic 

traumatic encephalopathy (CTE) following repeated traumatic brain injury (TBI), the cerebellum 

appears to be one of the most susceptible brain regions to injury and one of the first to exhibit 

signs of pathology. Cerebellar pathology in neurodegenerative disorders is strongly associated with 

cognitive dysfunction. In neurodegenerative or neurological disorders associated with cerebellar 

pathology, such as spinocerebellar ataxia, cerebellar cortical atrophy, and essential tremor, rates of 

cognitive dysfunction, dementia and neuropsychiatric symptoms increase. When the cerebellum 

shows AD pathology, such as in familial AD, it is associated with earlier onset and greater severity 

of disease. These data suggest that when neurodegenerative processes are active in the cerebellum, 

it may contribute to pathological behavioral outcomes.

The cerebellum is well known for comparing internal representations of information with observed 

outcomes and providing real-time feedback to cortical regions, a critical function that is disturbed 

in neuropsychiatric disorders such as intellectual disability, schizophrenia, dementia, and autism, 
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and required for cognitive domains such as working memory. While cerebellum has reciprocal 

connections with non-motor brain regions and likely plays a role in complex, goal-directed 

behaviors, it has proven difficult to establish what it does mechanistically to modulate these 

behaviors. Due to this lack of understanding, it’s not surprising to see the cerebellum reflexively 

dismissed or even ignored in basic and translational neuropsychiatric literature.

The overarching goals of this review are to answer the following questions from primary literature: 

When the cerebellum is affected by pathology, is it associated with decreased cognitive function? 

When it is intact, does it play a compensatory or protective role in maintaining cognitive function? 

Are there theoretical frameworks for understanding the role of cerebellum in cognition, and 

perhaps, illnesses characterized by cognitive dysfunction? Understanding the role of the cognitive 

cerebellum in neurodegenerative diseases has the potential to offer insight into origins of cognitive 

deficits in other neuropsychiatric disorders, which are often underappreciated, poorly understood, 

and not often treated.
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Introduction

Several observations have made the cerebellum a tantalizing subject of study with respect to 

cognition, particularly as it may relate to symptom etiology in neuropsychiatric and 

neurodegenerative diseases known to result in cognitive dysfunction. In addition to its 

traditional role in the regulation of movement, the cerebellum has parallel interactions with 

the limbic components of the brain essential for cognition and emotional regulation. From 

an evolutionary perspective, expansions in neocortical regions in the brain are matched only 

by expansions of regions of cerebellar cortex and white matter associated with cognitive 

functions in primate, and potentially even recent hominid, evolution [1-3]. Humans have 

cerebellar activation during fear, reward, unpleasant, and activating emotions [4-8], as well 

as cognitive discrimination and sensory acquisition [9-11]. Cerebellar volume and function 

is correlated with cognitive function, attention, language, memory, hallucinations, thought 

organization, and affect in humans with schizophrenia and Alzheimer’s Disease (AD) [12, 

13][14-18]. Focal lesions (e.g. strokes, tumors) in the cerebellum can cause non-motor 

cognitive and affective problems in the context of mild or no motoric abnormality [19]. 

These deficits include disturbances of executive function, impaired spatial cognition, 

anxiety, depression [20]. The cerebellar cognitive affective syndrome can also encompass 

personality changes with flattening of affect and disinhibited and inappropriate behavior, 

linguistic problems [21], and resemble clinical criteria of subjects presenting with autism 

and schizophrenia, diagnoses that are increasingly recognized as having associated cognitive 

deficits [12]. Two large-scale genome-wide association studies identified genetic loci 

associated with intelligence and cognitive function [22, 23]. Each study used methods to 

examine where in the brain these genes were expressed, and cerebellum was consistently at 

the top of the list for highest expression, rivalling only frontal cortex [22, 23].
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The role of the cerebellum in higher cortical processing can be described to certain extent on 

an anatomic level. Cerebellar output pathways arise from the cerebellar nuclei, with non-

motor efferents primarily arising from the dentate and interpositus nuclei. Cerebellar nuclei 

project to multiple regions of brainstem, midbrain, diencephalic nuclei involved in cognition, 

including the caudal tail of the ventral tegmental area (VTA) [24], laterodorsal tegmental 

nucleus, reticulotegmental nucleus of the pons[25-27]; and also basilar pontine nuclei, and 

multiple thalamic nuclei [28] [29]. Dentate nuclei also have prominent projections to the 

pedunculopontine nucleus [29, 30], and locus coeruleus [28], where it potentially modulates 

acetylcholine and norepinephrine release, respectively [29]. Electrical stimulation of 

different cerebellar regions results in increased electrical activity in multiple limbic areas, 

such as hippocampus [31, 32], anterior cingulate gyrus, and amygdala (though pathways 

between cerebellum and hippocampus or amygdala are not known) [33]. Stimulation of 

dentate nucleus of the cerebellum (DCN) increases release of dopamine in the medial 

prefrontal cortex (mPFC), via pathways through VTA, mediodorsal and ventrolateral 

thalamus [34]. The VTA projects to granule cells in Crus II of cerebellum [35] and also 

sends projections to the deep cerebellar nuclei, primarily the DCN and interpositus nuclei, 

but not the medial nuclei [35]. Lesions of the cerebellum result in increased dopamine D1 

receptor levels in medial striatum, and decrease in dopamine transporter expression in 

dorsolateral striatum, indicating cerebellar modulation of phasic dopaminergic 

neurotransmission in striatum [36]. Reciprocal pathways connecting cerebellum with 

striatum have been demonstrated in primates and rodents [37-39]. Despite substantial 

evidence supporting a role of the cerebellum in higher cognitive function, the cerebellum 

remains poorly understood. One striking observation that may shed some light on its role in 

development of cognitive dysfunction is that the pattern of cerebellar involvement differs 

significantly in age-related dementias such as AD (in which it may play a role in 

maintaining cognitive homeostasis) compared to early onset dementia in diseases such as 

TBI-associated dementia and CTE (in which cerebellar integrity may actually be 

compromised). Here we explore theoretical frameworks for understanding cerebellum’s role 

in higher cognitive function and pathogenesis of cortical dysfunction, and review the 

literature of cognitive cerebellum in aging and dementia.

Theoretical frameworks for understanding the role of cerebellum in cognitive behavior

The cerebellum is thought to regulate cognitive functions primarily through its interactions 

with different cortical regions, as a function of its role in different intrinsic connectivity 

networks [40]. Intrinsic connectivity analyses tell us which parts of the brain are active 

during specific tasks, machine learning tells us how components may work individually or in 

concert, and multiple parallel memory systems theory helps to predict what may happen if a 

particular system breaks down or becomes dominant relative to other systems. We propose 

that the key to the understanding of cerebellum’s contributions to cognition, particularly in 

neurodegenerative diseases, is through the synthesis of these conceptual frameworks relating 

cerebellum as a component in brain connectivity networks to machine learning, and Multiple 

Parallel Memory System theory.

Intrinsic connectivity mapping in humans has shown that cerebellum is connected with 

nearly all regions of neocortex (including visual [41-44] and auditory [45] cortex ) (reviewed 
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in [40]). Areas of cortex related to attention independently activate cognitive regions of 

cerebellum [46]. The cerebellar cortex has been shown in human studies to have specific 

patterns of activation related to specific functions and cortical regions [47, 48]. Cerebellum 

is activated in at least five different intrinsic connectivity networks [49]. These networks 

include the sensorimotor network, the default mode network, right and left executive control 

networks, and the salience network [49]. Specific connectivity networks appear to be 

vulnerable in specific neurodegenerative diseases [50], and cerebellar circuits which are part 

of these networks appear to be vulnerable, or at least show changes in activity, as well [16]. 

Cerebellar circuits in the default mode network show reduced activity in AD, and cerebellar 

circuits in the salience network show reduced activity in frontotemporal dementia [16].

Several observations at the circuit level support the idea that the cerebellum acts in this 

fashion in cognition, as cerebrocerebellar connections appear to be organized into long-

range loops [51-59]. The cerebellar nuclei have analogous subdivisions, and both cerebellar 

cortex and nuclei receive inputs from distinct cerebrocerebellar pathways [60]. The 

reticulotegmental nucleus of the pons relays inputs from motor and sensorimotor areas of 

neocortex to medial nucleus, anterior interpositus, and the mediodorsal region of the lateral 

nucleus, while the basilar pontine nuclei relay inputs from visual and auditory sensory, 

cognitive and associative areas of neocortex to the lateroventral part of the lateral nucleus 

and posterior interpositus nucleus, with little overlap [60]. Additionally, cerebellum has 

multiple reciprocal anatomic connections with midbrain dopaminergic nuclei and striatal 

system [35, 37-39], amygdala [61], hippocampus [62-64], and with regions of motor and 

association cortex via thalamic nuclei (reviewed in [40, 47, 65]). Neocortical network 

activity (local field potentials and multiunit recordings) appears to drive cerebellar network 

activity, and this cerebellar activity is abolished when neocortical activity is blocked (but not 

vice versa in this study) [66]. Activity in cerebellar cortex, particularly in granule cells, 

Purkinje cells (simple and complex spiking), and Golgi cells activity correlated with this 

neocortical activity [66]. Conversely, electrophysiological and optogenetic stimulation of 

lateral nucleus neurons in rats results in modulation of dopaminergic neurotransmission in 

frontal cortex and dopamine dependent timing behavior [34, 67]. In the generation of 

voluntary movements, there is sequential activation of cerebrocerebellar loops, starting with 

more cognitive regions (prefrontal cortex and lateral cerebellum), and ending with motor 

regions (motor cortex and midline cerebellum) [68].

Cerebellar modulation of cortically-based cognitive functions is thought to occur through 

detection of pattern changes and errors in thought, providing adaptive feedback to the 

cerebral cortex [69], and by encoding internal models that reproduce essential properties of 

mental representations in the cerebral cortex, which may underlie implicit thoughts and 

intuition [70, 71], At a circuit level, the cerebellum is known for efficient processing of 

‘efference copy’ or, corollary discharge signals [72, 73]. In motoric function, the efference 

copy is a copy of the self-generated motor (corticospinal) command. The cerebellum 

compares the expected feedback of this command to the actual state of the organism, which 

allows for short-latency feed-forward adjustments in real time to achieve optimal kinetic 

outcomes [71]. The cerebellar nuclei have feedback projections into cerebellar cortex [72, 

73], which allow for maintenance of amplitudes in specific, adaptive behavioral responses in 

the face of uncertain neural inputs, and thus reducing functional decline [74]. Expert motoric 
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function depends on a highly efficient comparator mechanism, to achieve corrections as 

quickly as possible. Sensory prediction error, that is, mismatch between ‘expected’ and 

‘actual’ outcomes typically results in a short-latency corrective behavior. In the context of 

cognition, the outcome of successful cerebellar efference copy processing would be to 

reduce cognitive load, and maintain adaptive functional responses in performance of 

predictive tasks requiring attention [74] [75]. The cerebellum has been shown to play a role 

in predictive timing of perceptual and cognitive events [76-78]. This function would 

facilitate efficient decision-making and attention to salient stimuli, especially when real-time 

attention demands are high such as engaging in social interactions, language, and 

discrimination of salient social and environmental stimuli [70, 79], functions that are highly 

relevant to dementia. The question remains, how does the cerebellum facilitate this in 

cognitive function?

The concept of the cerebellum as a neuronal machine was introduced in 1967, in which the 

precise geometry of the cerebellum’s modular microanatomical structure was described, 

with implications for its functions [80, 81]. This set the stage for cerebellar network 

modeling [81, 82], as well as the sensory-feedback machine learning model proposed by 

Kawato [83]. Machine learning is a field that aims to develop computer algorithms that 

improve with experience [84], and the concepts of different styles of machine learning are 

applicable to our understanding of different regional brain functions. Doya proposed a 

framework in which cerebellum, as a specific type of learning machine (supervised), 

interacts with other regions of the brain with different machine learning styles [79]. 

Supervised machine learning algorithms learn with data containing training examples, 

containing correct labels (in the case of the cerebellum, error coding by climbing fibers 

projecting to Purkinje cells) [71, 81-83, 85-87], and are good at learning continuous values 

or classifications and making certain kinds of predictions, but may require large amounts of 

training sets to be useful [84]. Advantages of supervised learning include fast response times 

and high performance after learning, but may have only limited transferability or 

generalizability, and thus a limited set of responses. The cerebral cortex and basal ganglia 

are specialized for unsupervised learning and reinforcement/reward learning, respectively 

[88]. Data processed by unsupervised learning algorithms is unlabeled, i.e., no training sets 

are provided, and algorithm learns how data is clustered or associated, similar to a principal 

component analysis [84]. In the mammalian brain, this type of learning is based on Hebbian 

plasticity in cortical neurons and reciprocal connections within and between cortical areas 

[79, 88]. Reinforcement learning does not occur with training examples, instead, there is a 

learning agent that learns from experience with the goal of maximizing reward (and/or 

minimizing punishment), and is encoded by dopaminergic fibers in the midbrain [79]. 

Model-free and model-based reinforcement systems are both present in the brain and play 

different roles in certain kinds of decision making processes [89]. Advantageous outcomes 

of reinforcement learning models include increasing the rate of learning via a process of 

updating (i.e., not requiring large sets of training examples for learning complex data), as 

well as mechanisms for temporal and probabilistic discounting that aid associative learning; 

flexible, relational learning and generalizability [89]. Houk and Wise proposed a model of 

these systems interacting in arrays of distributed processing modules, and proposed several 

functions for these systems acting in tandem [85, 90]. Similarly, these machine learning 
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styles likely collaborate in multiple domains, including motor function, sequence learning, 

timing and rhythm, and cognitive processing [79]. While this view of different components 

of the nervous system is likely oversimplified (e.g., prediction error processes are likely 

active in many regions of the cerebral cortex [91]), it is useful and illustrative of how the 

cerebellum, via its numerous reciprocal anatomical connections, participates in network 

function in different learning domains. Schmahmann has argued that the role of the 

cerebellum is likely similar in its interactions with all brain regions it interacts with “because 

cerebellar anatomy is essentially uniform throughout the structure, the basic work that 

cerebellum does in the nervous system should be constant as well. This we have referred to 

as the universal cerebellar transform, characterized as the cerebellar modulation of behavior, 

serving as an oscillation dampener maintaining function automatically around a homeostatic 

baseline and smoothing out performance in all domains” [21]. The analogies of specific 

brain structures (particularly cerebellum) to types of machine learning rely on reference to 

our understanding of local anatomical microstructure. But given the rich interconnections 

the cerebellum has with other regions of the brain, its role as recognized in Houk and Wise’s 

distributed processing model is particularly important [85, 90]. If the analogy to machine 

learning systems to brain networks is viable, then it stands to reason that multiple brain 

systems coordinating would result in a hybrid machine learning system. Thus, the 

cerebellum is perhaps best understood as a part of a larger hybrid machine learning system 

(or many hybrid learning machines), with reinforcement and unsupervised components. 

Hybrid machines benefit from advantages of each style of machine learning, and as such 

have high performance, generalizability and may show rates of learning over shorter time 

scales, with emergent abilities not available to each individual component [92]. Emergent 

abilities that hybrid machines have include anomaly and novelty detection, and making 

predictions [93]; which are functions classically associated with cerebellum [94].

What would it look like to lose the cerebellar supervised learning machine in cognition? 

This question in the context of cerebellar-basal ganglia-cortical network interactions is 

particularly important in the context of aging and neurodegenerative disease. Before we 

attempt to answer, we will place the question in the context of what is known about the 

cognitive cerebellum in aging.

Cognitive cerebellum in aging: morphology, physiology, and functionality

The cerebellum appears to have a specific pattern of aging. In a stereological study of human 

neocortex across age, neuron numbers declined by 9.5%, volume decreased by 12.3%, white 

matter volume decreased by 28%, total brain weight decreased by 12%, while other cortical 

volumes decreased by 28% [95, 96]. Cerebellum shows similar changes with age: total 

cortical volume decreased by 10.8% over the lifespan, total cerebellar volume decreased by 

16%, and total cerebellar white matter volume decreased by 25.9% [97]. Cerebellar 

subregions show differential losses in volume [97]. The posterior lobe (which is more 

associated with cognitive functions) only loses about 10.6% of its volume (and about 27% of 

its white matter volume), while the anterior lobe (a region more associated with motoric 

functions) loses almost 29% of its volume (and about 36% of its white matter volume) over 

the lifespan, much of it attributed to granule and Purkinje cell loss [97].
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Brain imaging studies show similar results, and offer the ability to look at cerebellar 

morphology throughout the lifespan. Cerebellar development shows close coupling with 

cerebral cortical development [98-101]. Changes in volumetric measurements of cerebellum 

vary regionally through the lifespan, with cognitive areas showing an “inverted U” like 

pattern from adolescence through late middle age [98]; total cerebellar volume peaks at 

about mid-adolescence [98, 101], with anterior and vermal regions peaking in adolescence, 

and cognitive areas showing a peak at about age 30 [98], similar to prefrontal cortex [102]. 

One study found that the cerebellar hemispheres and vermis lose approximately 2% of their 

volume per decade between the ages of 20 and 80 years of age [103]. Another study using 

diffusion tensor imaging found that microstructure organization of the superior cerebellar 

peduncles (the main output tract of the cerebellum) increased with age, and strongly 

correlated with IQ (as opposed to all other white matter tracts) [104].

Several observations in post-mortem tissue have led to the idea that the cerebellum ages 

more slowly than other parts of the brain, and may perhaps be resistant to developing 

pathological markers of neurodegeneration. These include changes in DNA markers of aging 

such as 1) that cerebellar cortical volume negatively correlates with age, but not cerebellar 

leukocyte telomere length [105], 2) cerebellum accumulates fewer mitochondrial DNA 

deletions [106], 3) has less oxidative damage to mitochondrial and nuclear DNA [107], and 

4) shows fewer changes in gene expression with age relative to cortex [108]. Furthermore, 

the cerebellum shows decreased expression of markers of metabolic and oxidative stressors, 

SIRT1 and SOD-1 [109], and has less age-related DNA methylation [110].

Imaging studies have also allowed characterization of cerebellar physiology as a function of 

aging. In young adults, cerebellum has the lowest amount of regional glucose metabolism (at 

approximately 70% of cortical regions), but also shows the lowest amount of change in 

glucose metabolism over the lifespan [111]. Cerebellum also shows relatively low amounts 

of aerobic glycolysis [112], an energetic process which supports development and 

synaptogenesis, but which may also put brain at risk for oxidative damage [113]. 

Interestingly, Crus of the cerebellum are part of a recently identified network identified 

which develops late in adolescence and shows accelerated degeneration in old age, and have 

heightened vulnerability in illnesses such as schizophrenia and Alzheimer’s disease, 

suggesting a link between developmental and neurodegenerative processes [114].

Age-related changes are found in classical cerebellar functions including timing, classical 

conditioning of eyeblink, vestibulo-ocular reflex, optokinetic reflex, and postural control 

(reviewed in [115]), however, there are very few studies looking at relationships between 

cognitive cerebellum and aging. In one study on the cognitive effects of aging, cerebellar 

gray matter volume (but not frontal cortical areas) completely accounted for general 

cognitive abilities (which include non-verbal reasoning, short- and long-term memory, and 

speed of information processing) with stronger correlations in males than in females [116]. 

Posterior and lateral changes may account for this, as another study showed no correlation 

between changes in cerebellar vermis volumes and cognitive changes with respect to age 

[117].
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Pathological changes in cognitive cerebellum in neurodegenerative diseases

One region of the cerebellum recognized to have cognitive function is the dentate nucleus of 

cerebellum. DCN activation increased 3 to 4 fold during attempts to solve a pegboard puzzle 

compared to movements only in a functional MRI study [118]. DCN regions related to 

cognitive function show evolutionary expansions mirroring those in cognitive regions of the 

cerebellar cortex and frontal cortex [3]. DCN shows specific connections and activations 

related to cognitive functions in monkeys and humans [119-122] [123]. Untargeted 

optogenetic stimulation and genetically-targeted chemogenetic inhibition experiments in 

rodents have shown sufficiency and necessity, respectively, of DCN cells for cognitive 

functions such as timing, working memory, spatial navigation memory, social recognition 

memory, and response inhibition [29, 67]. DCN is known to accumulate iron as a function of 

aging, though it is not clear if this correlates with changes in cognitive function [124, 125]. 

Several neurodegenerative diseases show pathological changes in DCN (which may account 

for associated cognitive deficits), including: changes in cell cycle marker expression in AD 

[126], Lewy bodies in Parkinson’s Disease Dementia and Dementia with Lewy Bodies [127, 

128]; cell death in frontotemporal dementia [129]; tau accumulation in progressive 

supranuclear palsy [130]; calcification in bilateral striopallidodentate calcinosis (‘Fahr’s 

Disease’) [131-133]; and pathological iron deposition in Friedrich’s ataxia [134, 135]. 

Studies investigating the role of the cognitive cerebellum in patients with cerebellar 

degeneration with event related potentials implicate the lateral cerebellum (which includes 

the dentate nucleus) in response preparation and selection, and cognitive processing speed 

[136, 137]. Other neurodegenerative diseases with more general cerebellar pathology, 

cognitive dysfunction and increased rates of dementia include Huntington’s disease [138], 

spinocerebellar ataxias [139], cerebellar degeneration [140]; and essential tremor [141-146]. 

DCN appears to be an understudied locus in studies relating cognitive function with aging or 

neurodegeneration.

Cerebellum in Alzheimer Disease: Resistant to AD pathology?

While it is clear that cerebellum has altered morphology and activation in AD, it is unclear 

whether these features are causal of symptoms or simply reflective of dysfunction elsewhere. 

Earlier research showed that amyloid deposition in cerebellum occurred late in the disease 

with rare occurrence of neurofibrillary tangles [147, 148]. Another study showed that 

cerebellum showed less synapse loss than hippocampus and frontal cortex [149]. These 

observations have led some to interpret that cerebellum may actually be protected from or 

resistant to developing AD pathology. For example, cerebellum is resistant to the neurotoxic 

effects of soluble amyloid-beta (Aβ) [150]. This may be mediated by a variety of 

mechanisms. The receptor for advanced glycation end products (RAGE), which when it 

binds Aβ, leads to microglial activation, is elevated in hippocampus and superior frontal 

gyrus of patients with AD relative to controls. Curiously, it shows no elevation in 

cerebellum, suggesting that this mechanism of Aβ–mediated toxicity is not as active there 

[151]. Microglia form a network of cells that spans the CNS, including the cerebellum, and 

express TREM2 [152]. TREM2 is a gene implicated in CNS resilency to AD pathogenesis, 

regulates neuro-immune mediated clearance of Aβ and is expressed in cerebellum [153]. 

Wild-type mice show increasing numbers of microglia in the cerebellum as a function of age 

(which is not seen in Trem2 knockout mice), suggesting Trem2-dependent neuro-immune 
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clearance capacity may be greater in the cerebellum than in other brain regions [154]. A 

Trem2 mutant associated with frontotemporal dementia has less age-dependent microglia 

activity in cerebellar white matter in mice [155]. Mitochondrial DNA deletion levels remain 

low in the cerebellum in AD, but are quite high in other brain regions in AD patients, earlier 

in the disease [156]. Microglia mediate synaptic remodeling via the complement system, 

which can be over-activated by Aβ production leading to neurotoxicity [157] and 

neurodegeneration [152, 158]. Curiously, complement factor C1q is lowest in expression in 

cerebellum relative to other brain structures in non-demented individuals, but is present in 

cerebellum of patients with AD [159], and full complement activation is not seen in AD 

cerebellum [160]. Metabolites derived from cultured cerebellar media, when infused into 

hippocampus and neocortex of a mouse with Aβ deposits, induce expression of the Aβ 
degrading enzymes, insulin degrading enzyme (IDE) and neprilysin (NEP) [161]. NEP and 

IDE decrease with age in hippocampus, whereas their levels stay the same or even increase 

in cerebellum with aging [162].

Aberrant protein deposition is affected in part by neurotransmitter signaling, and vice versa. 

Norepinephrine promotes degradation of Aβ via promoting microglia to upregulate 

expression of IDE [163]. When left unchecked, Aβ deposition reduces both DA and 

dopamine receptors in frontal and temporal cortex [164, 165]. Similarly, the principle site of 

norepinephrine synthesis, the locus coeruleus (LC), has also been implicated as one of the 

first sites of tau accumulation in AD [166, 167]. Norepinephrine levels are decreased in 

temporal cortex in AD, and correlate with cognitive impairment [168]. Cerebrospinal fluid 

concentration of norepinephrine increases with age, and inversely correlates with cognitive 

performance on tasks engaging attention and working memory [158]. The lowest amount of 

neuronal loss in LC in AD occurs in the caudal LC, where LC-cerebellar projections arise 

[169-173]. Taken together, these results suggest that cerebellum may not be affected by 

pathological Aβ accumulation until later in AD.

Cerebellum in Alzheimer Disease: Conferring resilience when AD pathology is present?

Given that the cerebellum is relatively unaffected in early AD and its involvement may 

accelerate disease progression, it begs the question of whether the cerebellum may also play 

a role in compensation for AD related deficits, maintaining brain resilience when other parts 

of the brain are challenged with AD-related pathology. Cerebellar activation changes have 

been monitored in studies looking at AD progression, and this subject was recently reviewed 

in detail elsewhere [174]. Low connectivity in the cerebellum is found in patients with mild 

cognitive impairment and AD [174-177], with increasing connectivity correlating with 

higher levels of cognitive function [178, 179]. Better memory was associated with increased 

cerebellar activity in a cohort of AD patients studied longitudinally [180]. Observations of 

increased fMRI activity in cerebellum in patients with Parkinson’s disease have led to a 

similar interpretation that the cerebellum may play a compensatory role in this 

neurodegenerative disease [128, 181]. These data suggest that while the cerebellum may be 

protected from AD pathology in early disease, the spread of degenerative changes to the 

cerebellum likely heralds late stage disease and may contribute to cause of death associated 

with AD. Furthermore, in cases where the cerebellum is spared, it may play an active role in 

neuroprotection.
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Cerebellum in AD and other dementias: Vulnerability to disease progression?

In this review we have so far primarily examined cerebellum in Alzheimer’s disease from 

the perspective of having homeostatic changes in disease progression in an age dependent 

manner. In later sections, we will contrast this with cerebellum in CTE, in which cerebellar 

tissue integrity is compromised, though not in an age-dependent manner. In this subsection, 

we compare and contrast role of cerebellum in AD (in which we are not sure whether there 

are age dependent changes in tissue integrity/function) and another dementia, frontotemporal 

dementia, in which cerebellum’s integrity and function is known to be affected in an age 

dependent manner.

Volume changes in two areas of cerebellum have been used to help differentiate genetic 

variants of frontotemporal dementia [182]. Tan et al. examined patients diagnosed on the 

amyotrophic lateral sclerosis (ALS) - behavioural variant frontotemporal dementia (bvFTD) 

spectrum with cognitive, neuropsychiatric and functional evaluations as well as structural 

imaging [183]. They found specific patterns of gray matter atrophy in ALS and bvFTD 

patients, specifically, that ALS patients had cerebellar atrophy in inferior lobules (correlating 

with changes in motor function) and bvFTD patients had atrophy in cerebellar crus and the 

superior lobule (and associated with cognitive and neuropsychiatric symptoms) [183]. 

Patients with both ALS and bvFTD symptoms had both patterns of atrophy [183].

It has long been noted that the AD pathology occurs in a cascade, with various disease 

markers occurring in a spatially and temporally ordered fashion (reviewed in [184]). It is not 

well understood how disease markers in specific brain regions correlate with specific 

cognitive and neuropsychiatric symptoms in the clinic [184]. When clinical symptoms are 

correlated with pathological changes in the entire brain, neurofibrillary tangles (NFTs) are 

more closely related to cognitive impairment than amyloid plaques [185, 186]. Furthermore, 

the appearance of pathological markers of AD such as amyloid plaques and NFTs in 

subcortical structures such as brainstem and cerebellum coincides with the overt clinical 

dementia syndrome, while earlier in the disease cortical deposition of these markers is 

present, but without clinically detectable behavioral changes [187]. However, 

neurodegeneration, as measured by neuron and synapse loss, is robustly related with clinical 

cognitive symptoms [188, 189]. AD patients with aggression were found to have increased 

expression of adrenergic receptors (particularly alpha-2 receptor) in cerebellar cortex, but 

not frontal cortex or hypothalamus [190]. Cerebellar cortex shows reduced tyrosine-

hydroxylase positive fibers relative to controls in AD [191]. In a study that carefully 

correlated neuropsychiatric symptoms with brain-region specific concentrations of 

monoamines and monoamine metabolites, concentrations of serotonin in cerebellum and 

temporal cortex, and concentration of 5-HIAA in hippocampus (and not several other brain 

regions) closely correlated with performance on the mini-mental status exam (MMSE) [192, 

193]. Furthermore, the most significant correlation in the study was between specific 

neuropsychiatric symptoms and cerebellar markers of catecholaminergic neurotransmission 

(and, surprisingly, none in cortical regions) [192]. In a study tracking 600 patients with mild 

cognitive impairment or AD over the course of developing delusions, gray matter atrophy 

was detected in several brain regions, including anterior cerebellum (culmen) and areas of 

frontal cortex [194]. Notably, a study utilizing data from the Alzheimer’s Disease 
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Neuroimaging Initiative has shown that changes in right cerebellar cortical volume is one of 

15 predictors of conversion from MCI to AD [195]. Other studies using Alzheimer’s Disease 

Neuroimaging Initiative data have shown that increases in cerebellar metabolism utilizing 

FDG-PET imaging is associated with conversion from MCI to AD [196], and that 

cerebellum shrinks in size in patients with AD, but not MCI, and is that AD-associated 

decrease in volume is not associated with education or APOEe4 genotype [197]. Significant 

reduction of total cerebellar volume by almost 13% has been observed in patients with AD 

compared to age-matched controls (but no significant reduction in numbers of granule cells 

or Purkinje Cells, nor white matter volume) [198]. In one small study, neuronal loss was 

seen in cerebellar cortex and inferior olive, as well as gliosis and atrophy, despite there not 

being any amyloid plaques or NFTs [199]. In another study, volume and cell losses were 

seen in all layers of cerebellar cortex, as well as presence of amyloid plaques [200]. Among 

biomarkers in living patients with AD, FDG-PET shows good correlation with synaptic 

dysfunction in dementia [184, 201]. The aging cerebellum shows about 12% loss of FDG 

uptake relative to younger subjects, while the aging supratentorial brain shows 

approximately a 23% loss in FDG uptake relative to younger subjects [202]. Atrophy 

patterns in cortical structures progress in a recognized pattern, which in turn correlate to 

measures of cognitive function [184, 203, 204]. However, FDG uptake in cerebellum also 

correlates significantly with measures of cognitive function including the MMSE and the 

Dementia Severity Rating Scale [205]. It is thus apparent that changes in cerebellar 

neurotransmission, particularly monoaminergic neurotransmission, are at least reflective of, 

if not causally related to, neuropsychiatric and cognitive symptoms in AD.

AD is a progressive, and ultimately fatal, neurodegenerative disorder. Cerebellar glucose 

metabolism shows significant decreases in severe/advanced Alzheimer disease (severity of 

illness determined by performance on MMSE) [206]. Observations of cerebellar 

vulnerability raise the possibility of cerebellar pathology playing a role in the ultimate 

outcomes of living with the disease. AD related deaths are often attributed to aspiration and 

pneumonia, suggesting brainstem dysfunction associated with swallowing and breathing in 

later stages. Cerebellar modulation of the musculature involved in swallowing is recognized 

[207]. In AD, the vestibulocerebellar system is particularly vulnerable. In the aging brain, 

the flocculonodular lobe, part of the vestibulocerebellar system, loses 22.5% of its total 

volume, and nearly 60% of its white matter volume [97]. A morphological analysis of the 

vestibulocerebellar system in AD compared with normal controls by Baloyannis and 

colleagues revealed extensive synaptic alterations in multiple components of the granule cell 

layer of the vestibulocerebellar system, including mossy fibers, granule cell dendrites, 

parallel fibers and Purkinje cell dendritic spines [208]. Furthermore, granule and Golgi cell 

numbers and mossy fiber-granule cell dendrite synapses were also decreased. Although 

pathologic examination revealed only a limited number of neuritic plaques and minimal 

NFTs, synapses containing limited polymorphous synaptic vesicles and numerous atypical 

mitochondria and dense bodies were observed mostly in the mossy fiber terminals. Loss of 

synapses and morphological alterations of the Golgi apparatus were also seen in medial and 

lateral vestibular nuclei neurons [208]. This pattern of neurodegeneration is reminiscent of a 

fatal breathing dysfunction attributed to vestibular nucleus dysfunction seen in a mouse 

model of Leigh syndrome (knockout of the gene Ndufs4, NADH dehydrogenase 
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(ubiquinone) iron-sulfur protein 4), a neurodegenerative disorder in humans that results in 

death in infancy [209]. Total knockout of Ndufs4 results in degeneration of the 

vestibulocerebellar system [209]. Selective inactivation of Ndufs4 in the vestibular nuclei 

(VN), one of the principle sites of gliosis, led to breathing abnormalities and premature 

death [209]. Vestibular nuclei get rich input from the cerebellum, and learning and plasticity 

in the reflexes that VN supports appears dependent on cerebellar input [210]. Conversely, 

Ndufs4 restoration in the VN corrected breathing deficits and prolonged the life span of 

knockout mice [209]. While these observations are not related to cognitive functions, they 

illustrate that cerebellum may still play a very important role in pathophysiological 

mechanisms in AD—though very few studies (as reviewed above) have looked at synaptic 

changes in different regions of the cerebellum, particularly in cognitive regions. It’s possible 

that even though cerebellum shows minimal expression of classical markers of AD, more 

subtle cerebellar neurodegenerative changes leading to synaptic and cognitive dysfunction 

could still be important in the clinical progression of the disease, especially in subtypes of 

Alzheimer’s disease, which may have various patterns of atrophy in various regions of the 

brain, including cerebellum [16, 211]. Elucidating this may reveal novel therapeutic targets 

for cognitive symptoms in various stages of AD. In order to clarify how it may be relevant as 

a vulnerable structure in age-related neurodegenerative diseases such as AD, we next review 

data from chronic traumatic encephalopathy literature, which has a more specific focus on 

cerebellar function.

Cerebellum in CTE and TBI: Accelerated dementia?

TBI can lead to chronic traumatic encephalopathy (CTE) and increases the risk of dementia, 

with the risk of AD increasing by as much as two-fold in patients with a history of TBI 

[212-216] and some studies showing the correlation with vascular dementia to be even 

stronger [217]. Risk of dementia has been shown to be closely correlated with increased 

severity [217, 218] and number of TBIs [217, 219] in a dose-dependent manner. TBI may 

also accelerate dementia onset, as reviewed in detail elsewhere [220]. While the correlation 

between TBI and dementia is well documented, mechanistic causality has yet to be 

elucidated. One observation that may provide some mechanistic clues lies in gross anatomic 

observations of the cerebellum in dementia patients. In contrast to age-related 

neurodegeneration where the cerebellum remains relatively untouched until late stages of 

disease, the cerebellum appears to be one of the first brain regions affected in CTE and other 

types of dementia following TBI. Cerebellar atrophy appears to be common in human 

patients post-TBI [221], even when the initial insult is not directed at the cerebellum itself 

[222, 223]. One of our goals with this review is to explore the literature behind cerebellar 

dysfunction following TBI to help us better understand whether and how the cerebellum 

may be involved in the pathogenesis of dementia, which may also provide clues behind the 

contribution of the cerebellum to overall cortical health and function.

Cerebellum in CTE and TBI: Observations in humans

Investigation of clinical brain structure and function using various imaging techniques 

reveals vulnerability of the cerebellum months to years following TBI. Axonal injury in the 

cerebellum was found in the blast-exposed veterans using diffusion tensor imaging (DTI), 

especially in the middle and superior cerebellar peduncle [224-226]. The middle cerebellar 
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peduncle carries projections from the pontine nuclei to the cerebellum; disruption of this 

tract in animals has been shown to result in deficits in motor learning tasks [227]. Cerebellar 

damage may very well be secondary to TBI-induced shear stress on these cerebellar input 

tracts. Decreased metabolic activity has been used as a marker for damaged brain regions, 

and indeed PET imaging of brains of blast-exposed veterans has also revealed that the 

cerebellum was less metabolically active compared to other brain regions following blast-

induced TBI, an observation that was consistent across two separate studies [224, 228]. 

Meabon and colleagues further demonstrated that there was an inverse dose-dependent 

relationship between number of blast exposures and metabolic activity [224]. As reviewed in 

detail elsewhere [229], evidence also suggests that axonal injury caused by TBI may lead to 

amyloid plaque formation, which may further contribute to cerebellar dysfunction. Recent 

data using PET imaging from Mohamed and colleagues revealed higher amounts of amyloid 

beta formation in the cerebellum of veterans exposed to TBI compared to controls, whereas 

little difference was seen across other brain regions [230]. These human data paint a picture 

that implicates the cerebellum in pathogenesis of post-TBI brain injury, with much of the 

evidence pointing toward axonal injury leading to downstream cerebellar damage with Aβ 
formation and decreased metabolism.

Cerebellum in CTE and TBI: Animal models and investigation of mechanism

Various animal models have been developed to further study mechanisms of brain injury 

post-TBI, reviewed in detail by Potts and colleagues [231]. These models have corroborated 

and expanded much of the clinical evidence for cerebellar vulnerability to TBI. Several 

animal studies of blast-induced TBI have demonstrated axonal degeneration [224, 232, 233], 

microglial activation [224, 234], Purkinje cell damage [224, 234, 235], and microvascular 

hemorrhages [236], and found these changes to be more pronounced in the cerebellum 

compared to other brain regions. In their mouse model of blast-induced TBI, Meabon and 

colleagues found cerebellar mechanisms of injury (axonal injury, amyloid precursor protein 

expression, microglial activation, Purkinje cell damage) that appeared dose-dependent, with 

increased markers of pathology correlating with increased number of blast exposures [224]. 

The time-course for changes on the cellular level were observed within hours to weeks. 

Regionally in the cerebellum, the ventral lobules appeared the most vulnerable to Purkinje 

cell loss. Interestingly, they also found that the blood brain barrier of the cerebellar 

molecular layer displayed prominent injury and microvascular extravasation into the 

parenchyma. These animal data reveal cerebellar pathology that confirm axonal injury as 

well as amyloid protein involvement observed in humans post-TBI, while also revealing 

mechanisms of further tissue injury and inflammation, including Purkinje cell damage and 

cell loss, microglial activation, and blood brain barrier compromise. Microglial activation 

may be particularly important, as deficits in cerebellar conditioned learning and fine motor 

coordination are observed after exposure to Tetrahydrocannibinol, and are dependent on 

microglial activation in cerebellar cortex [237].

Cerebellar Vulnerability after TBI

Based on these data, Meabon et al. proposed possible vulnerabilities particular to the 

cerebellum that may explain its particular susceptibility to damage from repeated TBI 

including anatomic weaknesses of its location in the posterior fossa, and on a cellular level, 
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the high metabolic demands of Purkinje cells [224]. Evidence suggests that excitotoxicity 

may also play a role in neuronal dysfunction. Bullock and colleagues analyzed cerebrospinal 

fluid samples of patients post-TBI and found that levels of excitatory amino acids increase in 

the days following injury [238]. Cerebellar Purkinje cells are particularly prone to 

excitotoxicity due to strong and overwhelming glutamatergic input of climbing fibers from 

the inferior olive in which a single climbing fiber forms hundreds of synapses on Purkinje 

cell dendrites. Mechanisms of Purkinje cell excitotoxicity are reviewed in detail elsewhere 

[239]. Computational modeling suggests that the cerebellum may be exposed to some of the 

largest amounts of shear stress during blast-induced TBI compared to other brain regions 

[240], which likely contributes to susceptibility of cerebellar tracts to axonal injury. It is not 

unreasonable to suspect that deafferentation may play a role in leading to cortical 

dysfunction following TBI-associated axonal damage; however further investigation is 

necessary to elucidate the relationship between cerebellar injury and specific effects on other 

brain regions.

Several studies in humans with specific neurodegenerative diseases further illustrate some of 

these relationships between cerebellum and other structures in the brain, and that losing 

cerebellar function can be particularly problematic for acquiring new information. 

Procedural learning is generally thought to be intact in AD [94, 241-243] but affected in 

patients with Huntington’s [244] PD [245-247] and cerebellar degeneration [248]. Using a 

serial reaction time task, Pascual-Leone et al., examined patients with either PD or cerebellar 

degeneration to test procedural learning and translation of procedural learning into 

declarative knowledge [140]. PD patients were able to achieve procedural knowledge and 

translation into declarative knowledge, but required more repetition relative to healthy 

controls to achieve this. Patients with cerebellar degeneration never achieved performance 

improvement in procedural learning or translation into declarative knowledge. They infer 

that basal ganglia (BG) are required for acquisition of procedural learning, and that 

cerebellum is essential for learning any cognitive function involving sequences. Both BG 

and cerebellum interact with the prefrontal working memory buffer; BG for acquisition, and 

cerebellum for proper temporal sequencing. Individuals with PD, both on and off 

medication, were found to have normal acquisition and short-term retention of a non-motor 

procedural learning task (mirror-reading of new words) [140]. The authors speculate that the 

basal ganglia may be more important for retention of learning in the motor rather than non-

motor domain [249]. Indeed, patients with AD have been found to have decreased 

performance relative to controls on learning sequences, with severity of dementia showing a 

direct relationship to the ability to acquire them [243].

Unraveling the role of the cognitive cerebellum in neurodegenerative disease

To summarize so far, we have discussed mechanisms for how the cerebellum participates in 

larger networks to facilitate cognitive function, and reviewed how cerebellum is affected in 

several cognitive disorders of aging: in some circumstances it appears either resistant or 

vulnerable to dementing processes. Multiple Parallel Memory Systems Theory describes 

how different memory systems, such as cerebellum (or the particular intrinsic connectivity 

networks in which it is part), can either facilitate or inhibit other memory systems in a 

cooperative or competitive manner [250-252]. Functionally, this results in parallel, 
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independent memory systems converging to produce either cooperative facilitation of similar 

behavioral responses, or competitive facilitation of different behavioral responses in the 

same situation, and is illustrated in experiments designed to dissociate contributions of 

different memory systems in specific behavioral tasks [252]. McDonald and White 

performed a triple dissociation experiment by lesioning hippocampus, dorsal striatum or 

amygdala in rats to identify contributions of these regions in performance on a radial arm 

maze task [253]. Similar experiments have been performed in the context of instrumental 

learning [254-256], and working memory [257]. Others have shown similar dissociations of 

specific cell types in hippocampus and striatum with pharmacologic and transgenic 

approaches in mice in spatial navigation tasks [258, 259]. Lee and Kim showed differential 

contributions of amygdala, hippocampus, and cerebellum to eyeblink conditioning in rats in 

a similar dissociation experiment [260]. McDonald and White argue that no task is purely 

dependent on one learning system, and that these parallel systems facilitate learning 

different aspects of learning several kinds of behaviors, as would likely be encountered in 

the wild [252]. Disabling one system would likely restrict learning of a particular task or 

aspect of a task in the case of damage to a particular parallel system that is cooperative with 

others. In the case of disabling a memory system that is competitive with other systems, the 

remaining functional, competitive learning system(s) would exert greater control over 

behavior, and perhaps even result in supernormal acquisition and performance of a specific 

task [252].

Behaviorally, most of these learning systems (including cerebellar-based learning) are to 

some degree dissociable, and their interactions facilitate both motor and reinforcement 

learning. Izawa and Shadmehr had human subjects learn a novel motoric task (a reach 

adaptation with a robotic arm) which could be learned with or without sensory feedback 

[261]. While adaptation of motor commands could be driven by reward prediction errors 

when sensory feedback was lost, only learning from sensory prediction errors appeared to 

generalize and resulted in remapping of the neural system which predicts consequences of 

motor commands [261]. Dissociating negative and positive reinforcement from a similar 

motoric adaptation task, Galea et al. found that negative feedback/reinforcement accelerated 

learning and relearning of a movement, while positive feedback resulted in increased 

retention of the motor memory when sensory feedback was withdrawn [262]. Increased 

activations of cerebellar cognitive regions were seen in learning the reversal of a reward-

based task with negative feedback (monetary loss) [263]. Initiating the correct or accurate 

action in operant tasks had a marked influence on dopamine release in the nucleus 

accumbens of rats, and varying the size of the reward elicited a significant statistical 

interaction between reward prediction error and action initiation [264]. In contrast, in a 

series of papers, sensory prediction error was found to have no significant effect on 

reinforcement learning in humans [265, 266]. Ablation of the hippocampus facilitates 

acquisition of eyeblink conditioning [260], while inhibition of the central nucleus of the 

amygdala during delayed eyeblink conditioning severely impaired acquisition of this 

cerebellar based learning [61,267]. Reversible inhibition of the interpositus nucleus 

abolishes retention of fear conditioned memory [268], and fear induces long term changes in 

synaptic strength in vermis Purkinje cells [269]. Using genetic tools to selectively impair 

long term depression (one of the primary mechanisms of cerebellar memory formation) in 
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Purkinje Cells, Rochefort and colleagues demonstrated the necessity of cerebellar cortical 

plasticity for generation of normal hippocampal place cell properties and pathway 

integration (dead reckoning) in a water maze without external visual cues [63]. Collectively, 

these studies show that cerebellum plays an intimate role in learning of several approach and 

avoidance behaviors classically associated with other, more “cognitive” regions.

While these examples support the idea that cerebellum is primarily a bidirectional 

cooperative player amongst other learning systems, it’s also possible that cerebellar 

modules, or rather, the intrinsic connectivity networks they reside in, may compete with 

other memory systems/connectivity networks. For example, in a small study of individuals 

with spinocerebellar ataxia type 14, affected individuals performed significantly better than 

intrafamilial controls in verbal learning and memory, despite having some executive 

functioning deficits, and relatively normal performance on others tests of cognition [270]. In 

a study with children with autism spectrum disorder (ASD), children with ASD were found 

to have much stronger association between motor commands and proprioceptive feedback 

after learning a novel motoric task (a robotic reach adaptation), and that the stronger the 

proprioceptive-driven generalization pattern of trained movements to novel movements, the 

greater the impairment in overall motor function, social interaction and responsiveness, and 

imitation behaviors [271]. This kind of imbalance between networks as a basis for disease is 

not without precedent. Take, for example, the default mode network (DMN). It plays an 

important role in perpetuating maladaptive ruminative thinking styles in depression, and 

appears to be overactive relative to another network, the “task-positive network” (prefrontal 

and parietal structures) which is less active, in depression patients vs. controls [272, 273]. A 

recent meta-analysis found brain regions with altered function and connectivity common to 

many psychiatric disorders, and that they support executive functions [274]. The authors 

found that gray matter loss converged across diagnoses in 3 regions: the dorsal anterior 

cingulate, right insula, and left insula [274]. These regions are part of the DMN, and formed 

a tightly interconnected network during tasks and at resting; lower gray matter in this 

network was associated with poor executive functioning [274], and altered connectivity here 

is associated with AD [16, 50, 275, 276].

The roles of different learning machine types in a given system are now potentially testable 

in silico, and may adequately model observations from humans with specific cerebellar 

deficits, in the context of their roles in intrinsic connectivity networks such as the DMN. For 

example, it may be possible to model such a hybrid network with supervised, unsupervised 

and reinforcement components. Techniques such as DropOut [277] or DropConnect [278] 

have been invented to prevent overfitting of data to machine learning models. They could 

potentially be used in the context of hybrid machines to see if specific combinations of 

network units (say, just the supervised or unsupervised units) can independently extract 

features from their inputs, and compare performance to an entire hybrid machine, or more 

finely test which features are extracted by which units in a hybrid machine.

It may be possible to conceptualize cerebro-cerebellar loops as hybrid learning machine 

arrays in the brain. We previously noted a study identifying at least 5 intrinsic connectivity 

networks that include parts of cerebellum [49]. This number may be conservative when 

considering how only relatively few cerebellar nuclear output neurons are required for 
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cerebellar modulation [279], thus potentially multiplying the number of possible hybrid 

learning machine arrays of which the cerebellum is part.

While higher level cortical processing tends to be thought of as a separate entity from motor 

learning and coordination, which tends to be viewed as taking place subcortically, there is 

much evidence that these entities are much more integrated than is generally appreciated. 

Specific anthropometric measurements, grip strength and walking speed, are well-known 

and practical phenotypic markers of aging, functional decline, and mortality (reviewed in 

[280]). Gray matter volume in cognitive cerebellum (but not vestibular cerebellum) was 

associated with faster gait speeds and information processing in a population-based study of 

aged adults [281]. Hand motor function is negatively associated with cognitive impairment 

and dementia, which is reviewed in detail elsewhere [282]. In a study looking at neurological 

correlates of grip strength in aging, activity in thalamus, putamen and cerebellum were 

higher in the aging group [283]. Notably, the posterior “cognitive” cerebellum had 

particularly high activation in the aged group [283]. Patients with Parkinson’s Disease 

develop abnormally high grip forces [284], suggesting that cerebellum may perhaps be more 

important in decreases of grip strength in cognitive decline and dementia. Decreases in grip 

strength are also observed in neuropsychiatric illnesses known to have cerebellar and 

cognitive abnormalities, including schizophrenia and autism [285-287]. As we continue to 

investigate neural circuitry involved in cognition and learning, it will be important to 

continue to recognize these complexities. The literature reviewed here highlights a role for 

the cerebellum in higher level cortical processing and suggest a potentially protective role 

from development of cognitive dysfunction. Further investigation of these complex circuits 

amongst brain regions at all levels will be essential in furthering our understanding of 

cognition and may allow us further insight into mechanisms behind cognitive dysfunction at 

the highest levels.
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Abbreviations:

All abbreviations are identified in their first instance throughout. Genes and proteins are 

given standard notations.

AD Alzheimer’s Disease

PD Parkinson’s Disease

CTE chronic traumatic encephalopathy

TBI traumatic brain injury

FTD Frontotemporal Degeneration

DCN Dentate Nucleus of the cerebellum
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LCN Lateral cerebellar nuclei

VTA ventral tegmental area

mPFC medial prefrontal cortex

BG basal ganglia

MMSE mini-mental status exam

Aβ amyloid-beta

NFT Neurofibrillary Tangles

DMN default mode network
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Highlights

• The role of the cognitive cerebellum in neurodegenerative disease is unknown

• We review cognitive cerebellar findings in aging and neurodegenerative 

disease

• Machine Learning and Memory Systems Theory inform cognitive cerebellar 

roles
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