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Systematic Functional Interrogation of Genes in GWAS Loci
Identified ATF1 as a Key Driver in Colorectal Cancer
Modulated by a Promoter-Enhancer Interaction

Jianbo Tian,1,5 Jiang Chang,1,5 Jing Gong,1,5 Jiao Lou,1,4 Mingpeng Fu,2 Jiaoyuan Li,1 Juntao Ke,1

Ying Zhu,1 Yajie Gong,1 Yang Yang,1 Danyi Zou,1 Xiating Peng,1 Nan Yang,1 Shufang Mei,1

Xiaoyang Wang,1 Rong Zhong,1 Kailin Cai,3 and Xiaoping Miao1,*

Genome-wide association studies (GWASs) have identified approximately 100 colorectal cancer (CRC) risk loci. However, the causal

genes in these loci have not been systematically interrogated. We conducted a high-throughput RNA-interference functional screen

to identify the genes essential for proliferation in the CRC risk loci of Asian populations. We found that ATF1, located in the

12q13.12 region, functions as an oncogene that facilitates cell proliferation; ATF1 has the most significant effect of the identified genes

and promotes CRC xenograft growth by affecting cell apoptosis. Next, by integrating a fine-mapping analysis, a two-stage affected-

control study consisting of 6,213 affected individuals and 10,388 controls, and multipronged experiments, we elucidated that two

risk variants, dbSNP: rs61926301 and dbSNP: rs7959129, that located in the ATF1 promoter and first intron, respectively, facilitate a

promoter-enhancer interaction, mediated by the synergy of SP1 and GATA3, to upregulate ATF1 expression, thus synergistically predis-

posing to CRC risk (OR ¼ 1.77, 95% CI ¼ 1.42–2.21, p ¼ 3.16 3 10�7; Pmultiplicative-interaction ¼ 1.20 3 10�22; Padditive-interaction ¼ 6.50 3

10�3). Finally, we performed RNA-seq and ChIP-seq assays in CRC cells treated with ATF1 overexpression in order to dissect the target

programs of ATF1. Results showed that ATF1 activates a subset of genes, including BRAF, NRAS, MYC, BIRC2, DAAM1, MAML2, STAT1,

ID1, and NKD2, related to apoptosis, Wnt, TGF-b, and MAPK pathways, and these effects could cooperatively increase the risk of CRC.

These findings reveal the clinical potential of ATF1 in CRC development and illuminate a promoter-enhancer interaction module

between the ATF1 regulatory elements dbSNP: rs61926301 and dbSNP: rs7959129, and they bring us closer to understanding the

molecular drivers of cancer.
Introduction

The global cancer burden is rising rapidly due to the ag-

ing of the population and the adoption of new, un-

healthy lifestyle behaviors.1 In China, colorectal cancer

(CRC; MIM: 114500) is the third most common cancer

diagnosed in adults and the fifth leading cause of death

from cancer.2 Genome-wide association studies (GWASs)

have become a powerful tool for uncovering genetic

susceptibility factors for complex diseases. To date,

approximately 100 CRC GWAS-identified risk loci have

been identified,3–14 and they explain a substantial pro-

portion of the genetic heritability of CRC. Efforts have

now focused on investigating the functional basis of

these associations in order to identify new prevention

and therapy targets.

Most GWAS-identified single nucleotide polymor-

phisms (SNPs) are in noncoding regions and are a long

distance from nearby annotated genes. It is believed

that causal SNPs are in linkage disequilibrium (LD) with

the corresponding tag SNP and are located in regulatory

regions that control gene expression through long-range

interactions. However, the functional characterization

of these causal variants through traditional fine-mapping
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analysis is a major challenges because there may be

multiple potential functional variants that need to

be tested.15–17 Therefore, first identifying the causal genes

in these loci might be a better way to elucidate targets for

prevention and therapy. Functional genomic screening

based on a high-throughput RNA interference (RNAi) or

CRISPR-Cas9 interrogation has been suggested to be a

powerful tool for unravelling cancer dependency genes

and gene interaction networks.18–21 This approach may

also be useful for systematically identifying causal genes

in the GWAS loci.

In the present study, we integrated a high-throughput

RNAi-based functional interrogation, a large-scale popu-

lation study, and a series of biochemical experiments in

order to elucidate the potential role of genes in the

CRC GWAS-identified risk loci. We demonstrated that

ATF1 (MIM: 123803), located in the 12q13.12 region,

functions as an oncogene by affecting cell apoptosis,

and two causal SNPs, located in the ATF1 promoter and

first intron, synergistically predispose to CRC risk

through a promoter-enhancer interaction mediated by

SP1 and GATA3 (MIM: 189906 and MIM: 131320), and

these findings will provide important clues for the etiol-

ogy of CRC.
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Material and Methods

A Functional Genomic Screen with a High-Throughput

RNAi Interrogation
We selected candidate genes on the basis of CRC GWASs, which

identified 15 loci associated with CRC risk (2016.12, Table S1) in

Asian (ASN) populations. To select candidate genes in each region

for functional screening, we performed fine mapping by extend-

ing 1 Mb upstream and downstream of the tag SNPs. After we

excluded microRNAs, noncoding RNAs, and pseudogenes on the

basis of their functional annotation in the National Center for

Biotechnology Information database, we ultimately selected a

total of 157 protein-coding genes (Table S2) for a proliferation

measurement of CRC cells by a large-scale RNAi interrogation.

The siRNA library was provided by ViewSolid Biotech, and

the repression efficiencies were guaranteed by the provider. Both

p < 0.05 and an n-fold change >1.1 or <0.9 were selected as the

threshold of significance.

Integrative Expression Quantitative Trait Locus (eQTL)

Analysis and Genotype Imputation
The LD SNPs (r2 R 0.2, ASN) of dbSNP: rs1169571 were down-

loaded from the Haploreg database. Individual genotypes and

ATF1 mRNA expression were downloaded from the TCGA (The

Cancer Genome Atlas) data portal. To increase the power for

eQTL analysis, we imputed the variants for all CRC samples

from TCGA with IMPUTE2, and we used 1000 Genomes Phase 3

as the reference panel. Then, we performed an integrative eQTL

analysis between those SNPs and ATF1mRNA expression by using

the TCGA CRC data and adjusting for the effect of copy number

variation, CpG methylation levels, population structures (prin-

cipal components), and clinical parameters (age, sex, and tumor

stage) on gene expression. The details of the genotype imputation

and principal components calculation can be seen in our previous

study.22

We performed a functional annotation for eQTLs with multi-

ple bioinformatic tools, including the Haploreg database,

ANNOVAR, rSNPBase, RegulomeDB, and CistromeDB, and this

annotation integrated multiple histone modification ChIP-seq

peaks, TFs ChIP-seq peaks, and DNase hypersensitive site data.

Finally, we selected functional variants with the highest poten-

tial in each LD block (r2 R 0.8) for further population and

experimental validation.

Cell Lines
HCT116, SW480, LoVo, HCT15, HT115, CoLo205, LS123, and

SNU-C1 cell lines were obtained from the China Center for Type

Culture Collection and were cultured in Dulbecco’s Modified

Eagle’s Medium (DMEM) supplemented with 10% fetal bovine

serum (GIBCO) and 1% antibiotics at 37�C in a humidified atmo-

sphere of 5% CO2. All cell lines that we used in this study were

authenticated by short tandem repeat profiling (Applied Bio-

systems) and tested for the absence of mycoplasma contamination

(MycoAlert).

Construction of Plasmids
DNA fragments totaling 1,100 bp and surrounding the SNP

dbSNP: rs61926301 G or T allele were subcloned into pGL3-Basic

vector (Promega). DNA fragments totaling 1,120 bp and surround-

ing the SNP dbSNP: rs7959129 G or T allele were subcloned into

pGL3-Promoter vector (Promega) in both forward and reverse ori-
30 The American Journal of Human Genetics 105, 29–47, July 3, 2019
entations. The full-length cDNAs of SP1, GATA3, and ATF1 were

subcloned into pcDNA3.1(þ) vector (Invitrogen), respectively.

All plasmids were commercially synthesized by Genewiz Biolog-

ical Technology.

Transient Transfections and Lentiviral Transduction
For transient transfections, we transfected all CRC cell lines with

lipofectamine 3000 (Invitrogen). For lentivirus production and

transfection, we subcloned the full-length cDNA of ATF1 into

pLVX-3FLAG-PGK-Puro vector (pLV-ATF1), and we used empty

pLVX-3FLAG-PGK-Puro vector (pLV-EV) as a control. We produced

the lentivirus in 293T cells by transfecting pLV-ATF1 or pLV-EV

plasmids with X-tremeGENE9 transfection reagent (Roche), and

we ultimately used it to infect HCT116 cells. We used the Lenti-

XTM concentrator to concentrate the lentiviruses, and we chose

puromycin (2 mg/mL) for antibiotic selection. We determined

the transfection effect by qRT-PCR and immunoblotting (Figures

2A, 2E, S7B, and S7D).

RNA Interference and CRISPR-Cas9-Mediated Genome

Editing
siRNA oligonucleotides targeting SP1, GATA3, ATF1, and a nontar-

geting siRNA control were purchased from RiboBio (Table S6). A

modified ATF1 knockout CRC HCT116 cell line was generated

by CRISPR-Cas9 technology (Genloci Biotechnologies). Single

guide RNAs (sgRNAs) targeting ATF1 were cloned into the

pGK1.1-CRISPR-Cas9 vector (cat# GP0134). The sgRNA sequences

targeting ATF1 sites are shown in Table S6, and the effects of ATF1

knockdown or knockout were determined via qRT-PCR and immu-

noblotting (Figures 2C, 2F, S7A, and S7C).

Cell Proliferation Assays
Cells were seeded and transfected in 24-well plates (5 3 104 cells

per well). After 24 h, the cells were harvested by trypsin digestion

and subsequently seeded in 96-well, flat-bottom plates; each well

contained 2,500 cells in 100 mL of cell suspension. After a certain

time in culture, cell viability was measured with CCK-8 assays

(Dojindo) according to the manufacturer’s recommendations.

Colony-Formation Assays
Cells were seeded into 6-well cell culture plates at a density of

2,000 cells per well. After 10 days, the cells were washed with

cold PBS twice, fixed with 3.7% formaldehyde, and were stained

with crystal violet. The colony number in each well was counted.

Xenograft Growth of CRC HCT116 Cells in Nude Mice
Female BALB/c nude mice at age 4–5 weeks, purchased from Bei-

jing HuaFuKang Bioscience, were allowed to acclimate to local

conditions for 1 week and maintained under a 12-h-dark/

12-h-light cycle with food and water provided ad libitum. The

mice (five in each group) were subcutaneously injected in the

back flank with 0.1 mL of cell suspension containing 1 3 106

CRC HCT116 cells. When a tumor was palpable, it was measured

every five days, and its volume was calculated according to the for-

mula: volume ¼ 0.5 3 length 3 width.2 Tumor tissue was fixed

with paraformaldehyde, and then it was subjected to hematoxylin

and eosin (H&E) staining, Ki67, and ATF1 immunohistochemical

analyses. All experimental procedures were performed in accor-

dance with the relevant institutional and national guidelines

and approved by the institutional animal care and use committee

of Huazhong University of Science and Technology.



Immunohistochemical Analysis
Formalin-fixed, paraffin-embedded xenograft tumor tissue mouse

samples were stained with H&E and analyzed under a light micro-

scope. Immunohistochemical staining was applied to further

determine the ATF1 or Ki67 expression in the mouse xenograft

tumor tissues, which were incubated with primary antibodies

against ATF1 or Ki67 (1:50, Abcam, ab181569 and ab15580,

respectively) at 4�C overnight and then detected with an ABC

kit (Thermo Fisher Scientific).

qRT-PCR and Immunoblotting
For the qRT-PCR assay, total RNAwas extracted from cells or tissues

with TRIzol reagent (Thermo Fisher Scientific). Reverse transcrip-

tion was performed with the SuperScript III First-Strand Synthesis

System (Invitrogen), and quantitative PCR was performed with

Power SYBR Green PCR Master Mix (Applied Biosystems). Target

gene expression was normalized to that of GAPDH. All specific

primers that were used for qPCR are listed in Table S6. For immu-

noblot analysis, total protein was harvested with RIPA lysis buffer

supplemented with the protease inhibitor PMSF (Beyotime). Pro-

teins were incubated with antibodies against ATF1 (1:1,000, Pro-

teintech, Cat#11946-1-AP), Flag (1:1,000, CST, Cat#14793), or

b-actin (1:1,000, Proteintech, Cat# 60008-1-Ig) at 4�C overnight.

Electrophoretic Mobility Shift Assays
Complementary DNA oligonucleotides that were centered on the

variant dbSNP: rs61926301 alleles or dbSNP: rs7959129 alleles

(Table S6) were commercially synthesized by Takara and labeled

with biotin at the 30 end. Nuclear extracts of cells were obtained

with the Nuclear and Cytoplasmic Protein Extraction Kit (Beyo-

time). Electrophoretic mobility shift assays (EMSAs) were per-

formed with the EMSA/Gel-Shift Kit (Beyotime) according to the

manufacturer’s instructions. Additionally, for the competitive

binding assay, unlabeled probes were added to the reaction mix-

tures at a 10-fold or 100-fold excess compared with the labeled

probes and incubated for 20 min prior to the addition of labeled

probes. For super-shift reactions, 2–3 mg of anti-SP1 or anti-

GATA3 antibody (Abcam, ab13370 and ab199428, respectively)

was incubated with reaction mixtures for 20 min at room temper-

ature before the addition of labeled DNA probes.

Chromatin Immunoprecipitation Sequencing or qPCR

(ChIP-seq or ChIP-qPCR)
ChIP assays were performed with a ChIP assay kit (Cat#10086,

Millipore) according to the manufacturer’s instructions. Cells

were crosslinked with 1% formaldehyde, and glycine was added

to stop fixation. Genomic DNA was extracted from the fixed-

chromatin cells and sheared by sonication. Antibodies against

SP1 (Abcam, ab13370), GATA3 (Abcam, ab199428), or Flag-ATF1

(CST, Cat#14793) and a nonspecific rabbit IgG (Santa Cruz) were

subsequently incubated with the cross-linked protein and DNA

overnight for immunoprecipitation with protein A/G magnetic

beads. DNA fragments were purified and collected by a Dr.GenTLE

Precipitation Carrier kit (Takara). The purified DNA library was

sequenced (BerryGenomics) or analyzed by qPCR. The primers

that we used for ChIP-qPCR are shown in Table S6.

Dual-Luciferase Reporter Assay
The luciferase reporter assay was performed with a dual-Luciferase

Reporter Kit (Promega) according to the manufacturer’s recom-

mendations. Reporter plasmids (PGL3-Basic or PGL3-Promoter)
The
and a constitutively active pRL-SV40 Renilla luciferase plasmid

(Promega) were co-transfected via Lipofectamine 3000 (Invitro-

gen) in SW480 and HCT116 cell lines. For each sample, luciferase

activity was determined by normalizing the luminescence value of

Renilla luciferase to that of firefly luciferase.
Chromosome Conformation Capture Assays
Chromosome conformation capture (3C) assays were performed

as previously described23 in CRC cell lines carrying different geno-

types of dbSNP: rs61926301 and dbSNP: rs7959129. Cells were

fixed with formaldehyde, which was stopped with glycine, and

lysed in lysis buffer (10 mM Tris-HCl [pH 7.5]; 10 mM NaCl;

5 mMMgCl2; 0.1 mM EGTA; and 13 complete protease inhibitor;

11836145001 Roche), then digested with Mbo-I enzyme (New

England Biolabs) at 37�C overnight. Ligation was performed

with T4 ligase (Thermo Fisher Scientific) at 16�C for 6 h. The

cross-linked DNA fragments were extracted by phenol/chloroform

and precipitated with ethanol. A bacterial artificial chromosome

(BAC) clone that covered the genome segment of the target re-

gions and that was applied to eliminate amplification efficiency

differences among different primers was treated with the same

procedures. In addition, cell background differences were normal-

ized with GAPDH. Physical interactions among anchor and test

primers were measured by qPCR. All 3C-qPCR primers (Table S6)

were synthesized by TSINGKE Biological Technology (Wuhan).
RNA Sequencing
Total RNAwas extracted with TRIzol reagent (Thermo Fisher Scien-

tific) according to the manufacturer’s instructions. RNA

sequencing (RNA-seq) libraries were constructed with the NEB-

Next Ultra Directional RNA Library Prep Kit for Illumina (New

England Biolabs) according to the manufacturer’s recommenda-

tions. After cluster generation, the libraries were sequenced, and

125 bp paired-end reads were generated (Novogene). For all cell

line studies, samples were done in triplicate.
Study Subjects
Two-stage affected-control studies were conducted to evaluate the

associations between eQTLs and CRC risk. The 1,524 CRC-affected

individuals and 1,522 cancer-free controls in the discovery stage

were recruited from the cancer hospital of the Chinese Academy

of Medical Sciences in Beijing, China. The 4,689 affected individ-

uals and 8,866 cancer-free controls in the replication stage were

recruited from the Tongji Hospital of Huazhong University of

Science and Technology (HUST), Wuhan, China. All cases were

histopathologically or cytologically confirmed by at least two local

pathologists, and the individuals had not had chemotherapy or

radiotherapy before blood collection according to the World

Health Organization classification. All controls were cancer-free

individuals selected from a community nutritional survey in

the same region where the affected individuals were recruited,

and they were matched to the affected individuals by gender

and age (5 5 years).16 At recruitment, peripheral blood samples

and demographic characteristics, including age, gender, smoking

status, and drinking status, were obtained from the medical re-

cords of these individuals. The detailed definitions of smoking

and drinking statuses have been previously described.24 Informed

consent was obtained from each subject, and this study was

approved by the Chinese Academy of Medical Sciences Cancer

Institute and the institutional review board of Tongji Medical

College, HUST.
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Figure 1. Functional Genomic Screening Reveals that ATF1 Is an Oncogene in CRC
(A) Functional genomic screening based on high-throughput RNAi interrogation was used to identify genes essential for cell prolifera-
tion in the CRC risk loci in Asian populations in HCT116 and SW480 cells. Both p < 0.05 and an n- fold change >1.1 or <0.9 were
selected as the threshold of significance and calculated by a two-sided Student’s t test.
(B) According to the data of a genome-wide CRISPR-Cas9-based loss-of-function screen, ATF1 is essential for cell growth; higher CERES
scores are found in CRC CL40 cells. Higher CERES scores demonstrate an elevated dependency of cell viability on given genes.

(legend continued on next page)
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Genotyping and Quality Control
Genomic DNA was extracted from blood samples with the Relax

Gene Blood DNA System Kit (Tiangen). SNPs were genotyped

with the TaqMan SNP Genotyping system in both stages. Quality

control was implemented as follows: (1) affected and control sam-

ples were mixed in the plates, and the persons who performed the

genotyping assay were unaware of the affected or control status;

(2) positive and negative (no DNA) samples were included on

every 384-well assay plate; (3) there were 5% duplicate samples

that had a concurrence rate of 100% in each 384-well plate; (4)

the SNPs had genotyping call rates > 95%; and (5) SNPs that devi-

ated from the Hardy-Weinberg equilibrium (HWE) in controls

were excluded.
Association and Interaction Analyses
For association analyses, unconditional logistic regression was em-

ployed to estimate odds ratios (ORs) and 95% confidence intervals

(CIs) for the associations between candidate SNPs and CRC risk,

with adjustments for gender, age group, smoking status, and

drinking status. Multiple genetic models, such as allelic, domi-

nant, recessive, and additive geneticmodels, were applied to assess

the genetic susceptibility of variants to CRC. P values < 0.05 were

considered statistically significant in SPSS (21.0).

For interaction analyses, gene-gene interaction were evaluated

by a bootstrapping test of goodness-of-fit for additive interaction

and by an unconditional logistic regression analysis formultiplica-

tive interaction after adjusting for gender, age group, smoking

status, and drinking status. P values < 0.05 were considered statis-

tically significant by Stata (11.0) or SPSS (21.0).
Statistical Analyses and Computational Analyses
For statistical analysis, we used a goodness-of-fit c2 test to assess

the Hardy-Weinberg equilibrium for the genotype distribution of

each SNP in the controls. Either Pearson’s c2 test or a two-sided

Student’s t test was applied to estimate the significance of the dif-

ferences in gender, age, age group, smoking status, and drinking

status between affected individuals and controls. For the func-

tional assays, in the relevant figures, the figure legends denote

the experiments’ statistical details, including the statistical tests

used, the numbers of replicates, and the data presentation type.

All statistical analyses were performed in R software (3.30) or

SPSS software (21.0).

For computational analyses, all the sequencing data were

aligned to the human genome (GRCh38/hg37) unless indicated

specifically. The quantification and differential expression of

RNA-seq genes were analyzed with Cuffdiff tools (v2.1.1), and a

false discovery rate (FDR) p value < 0.05 was considered signifi-

cant. ChIP-seq fastq files were generated with Illumina’s CASAVA

software andmapped to the human genome (hg38) with the Bow-

tie2 tool. ChIP-seq bedgraph files were generated with Bedtools,

and ChIP-seq peaks were called with the MACS1.4 software.

ChIP binding peaks were intersected with the promoter regions

of genes annotated by Gencode v24. The promoter is defined as
(C and D) ATF1 is significantly overexpressed in tumors compared to
GTEX datasets. Data were shown as themean5 SD and all *p< 0.05 a
Abbreviations are as follows: COAD ¼ colon adenocarcinoma and R
(E) ATF1 expression levels were measured in different tumor stages
database. P values were calculated by one-way ANOVA.
(F and G) ATF1 expression levels were evaluated in multiple tumor tis
cell lines from the CCLE database.

The
the region between two kb upstream and 100 bp downstream of

any transcription start site of a coding transcript gene.25 We

used a paired Student’s t test to test gene expression differences

between tumor tissues and matched, adjacent normal tissues.

Gene coexpression was tested by Spearman’s correlation, and

genes with p < 0.05 and jrj > 0.25 were considered statistically

significant.
Results

Functional Genomic Screens Based on High-Throughput

RNAi InterrogationRevealATF1 toBeanOncogene inCRC

We screened 157 protein-coding genes in Asian CRC

GWAS-identified loci (Table S1) for their effects on cancer

cell proliferation by using an RNAi-based on-chip

approach. A total of 78 genes have a significant effect on

cell proliferation in both HCT116 and SW480 cells (Table

S2 and Figure 1A). Among these genes, ATF1 has the

most significant effect in both cell lines (Figure 1A). The

essential role of ATF1 in cell proliferation is also verified

in the CRC CL40 cell line from the genome-wide

CRISPR-Cas9-based loss-of-function screening data19

(Figure 1B). The mRNA levels of ATF1 are significantly

higher in tumors than those in normal tissues from our

own CRC patients (Figure 1C) and from the TCGA,

GTEX, and Oncomine database data (Figures 1D, 1F, and

S1A). Data from the Cancer Cell Line Encyclopedia

(CCLE) also suggested that ATF1 is highly expressed in

CRC cell lines and that the high expression in these cell

lines ranks ahead of that among 1,036 human cancer cell

lines (Figure 1G). Moreover, ATF1 amplification also

frequently occurs across cancer types (Figure S1B). We

also examined the effect of ATF1 expression on the tumor

stages of CRC in the TCGA cohort and found that ATF1 is

overexpressed in advanced CRC (Figure 1E). Collectively,

these data illustrated that the upregulation of ATF1 expres-

sion correlates with the development of CRC, suggesting

that ATF1 may function as an oncogene in CRC.

We next examined the effect of ATF1 on cell phenotypes

and found that the overexpression of ATF1 in HCT116 and

SW480 cells substantially increases the CRC cell prolifera-

tion rate (Figures 2A, 2B, and S1C), whereas the knock-

down or knockout of ATF1 substantially reduces this effect

(Figures 2C, 2D, and S1D). The colony-formation ability of

CRC cells is markedly stimulated by the ATF1 overexpres-

sion but substantially attenuated by the ATF1 knockout

(Figures 2E–H). Furthermore, to assess whether ATF1 is

also a tumor oncogene in vivo, we overexpressed and

knocked out ATF1 in HCT116 cells and then injected these

cells subcutaneously into nude mice. The growth rate of
in the normal tissues from our CRC patients and the TCGA and
nd **p< 0.01 values were calculated by a two-sided Student’s t test.
EAD ¼ rectal adenocarcinoma.
of CRC. Data were presented as the mean 5 SD from the TCGA

sue types from the Oncomine database and in 1,036 human cancer
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Figure 2. ATF1 Promotes Cell Proliferation and Xenograft Tumor Growth in CRC by Affecting Cell Apoptosis
(A–D) The effect of ATF1 overexpression (A) or knockdown (C). The overexpression of ATF1 substantially promotes the rate of CRC cell
proliferation in the SW480 and HCT116 cell lines (B), whereas knockdown of ATF1 significantly inhibits the proliferation of SW480 and
HCT116 cells (D). Results were shown as the means 5 SEM from three experiments, each with six replicates.
(E–H) The effect of ATF1 overexpression by lentiviral transduction (E) or ATF1 knockout by CRISPR-Cas9 (F) on the colony formation
ability of CRC cells (G and H). The results present colony formation ability relative to control cells (set to 100%); data were shown as
the means 5 SEM from three experiments, each with three replicates.

(legend continued on next page)
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the xenograft overexpressing ATF1 is significantly higher

than that of the controls (Figure 2I). In contrast, ATF1

knockout results in a significant reduction in the growth

of xenografts compared to in control counterparts

(Figure 2J). Consistent with this finding, the levels of

Ki67 and ATF1 protein in the xenograft also present similar

trends (Figures S2A and S2B).

To test the ATF1 biological mechanism affecting CRC

cell proliferation, we further examined the effect of ATF1

on CRC cell apoptosis and cell-cycle progression. Flow

cytometry analysis showed that compared with control

counterparts, ATF1 overexpression significantly inhibits

apoptosis (Figures 2L and S2D), whereas the knockdown

of ATF1 results in a substantial increase in the number of

apoptotic cells (Figures 2K and S2C). However, the overex-

pression and knockdown of ATF1 do not have significant

effects on the cell cycle of CRC cells (Figures 2M, 2N,

S2E, and S2F), demonstrating that the promotive effect of

ATF1 on cell proliferationmay be mediated through inhib-

iting apoptosis rather than altering the cell cycle.
Fine Mapping Identifies Two Putative Functional

Variants Affecting ATF1 Expression

ATF1 is located in the 12q13.12 region; dbSNP:

rs11169571 is the tag SNP identified in Chinese popula-

tions,12 and dbSNP: rs11169552 is the tag SNP found in

European populations.13 Causal variants in this region

have not been systematically investigated. Thus, we first

performed an eQTL analysis between all SNPs in LD with

the tag dbSNP: rs11169571 LD (r2 R 0.2) and ATF1

mRNA expression. The results revealed that two LD blocks

(r2 R 0.8) present significant eQTLs with ATF1 expression

(Figures S3A–S3C). We then performed a functional anno-

tation for SNPs in these two blocks by using multiple

bioinformatic tools, including the Haploreg database,

ANNOVAR, rSNPBase, RegulomeDB, and CistromeDB. Var-

iants with the highest potential to be functional in each

LD block (r2 R 0.8) were selected as candidate causal vari-

ants. We found that the two SNPs, dbSNP: rs61926301 and

dbSNP: rs7959129, located in the ATF1 promoter and first

intron, respectively, are enriched in active histone modifi-

cation peaks (H3K4me1, H3K4me3, and H3K27ac) and

open chromatin accessibility (ATAC-seq peaks) (Figures

3A and 3B). Finally, we validated the correlation between

these two SNPs and ATF1 mRNA expression in our own

CRC samples, and the results are in line with the data

from the TCGA database, showing that carriers with the

dbSNP: rs61926301[TT] or dbSNP: rs7959129[TT] geno-

type have higher ATF1 expression than those with other

genotypes (Figures 3C–3E, S3D, and S3E). Notably, dbSNP:
(I and J) The image and growth curve of a xenograft tumor of HCT16
knockout (J) in nude mice. Results were shown as the means 5 SEM
derived from comparison with control cells were calculated via a tw
(K–N) The effect of ATF1 knockdown (K and M) and ATF1 overexpres
Data were a representative result from three repeated experiments, ea
controls via a two-sided Student’s t test in the apoptosis analysis and

The
rs61926301 is in independent LD with dbSNP: rs7959129

(r2 ¼ 0.22). Collectively, these results illustrated that these

two variants have allele-specific differences that affect

ATF1 expression.
SP1 and GATA3 Preferentially Bind to the Risk Alleles of

rs61926301 and rs7959129 at the ATF1 Promoter and

First Intron Region, Respectively

Having demonstrated that dbSNP: rs61926301 and dbSNP:

rs7959129 are associated with ATF1 mRNA expression, we

next sought to elucidate the underlyingmechanisms. SNPs

in regulatory regions can function by modulating TF bind-

ing. To identify which TFs bind to the regions containing

these two causal SNPs, we took a multipronged approach.

We first used the Cistrome database to predict potential

TF motifs by imputing the sequences around each candi-

date SNP, and it revealed that dbSNP: rs61926301 maps

within the binding motif of SP1, whereas dbSNP:

rs7959129 maps within the binding motif of GATA3

(Figure S3F). This observation was further supported by

ChIP-seq data of SP1 and GATA3 in CRC cell lines (Figures

3A and 3B).

Moreover, we validated the binding of SP1 and GATA3 to

these two regions with EMSA assays. The results showed

that the dbSNP: rs61926301[T] allele but not the dbSNP:

rs61926301[G] allele preferentially binds to nuclear ex-

tracts, and the binding signal is gradually attenuated in a

dose-dependent manner with the addition of the unla-

beled probe containing the dbSNP: rs61926301[T] allele

but not the dbSNP: rs61926301[G] allele (Figure 3F). An

additional super-shift EMSA showed that the dbSNP:

rs61926301[T] allele is significantly enriched for SP1

(Figure 3G). Similarly, the dbSNP: rs7959129[T] allele binds

more preferentially to nuclear extracts than does the

dbSNP: rs7959129[G] allele, and it is significantly enriched

with GATA3 (Figures 3H and 3I). These findings indicated

that dbSNP: rs61926301 and dbSNP: rs7959129 have an

allele-specific affinity for SP1 and GATA3 binding, respec-

tively, in CRC cell lines. Finally, we further validated this

observation in vivo by using ChIP-qPCR assays in three

CRC cell lines (SNU-C1[TT/TT], HCT116[GT/GT] and

LoVo [GG/GG]) with different dbSNP: rs61926301 or

dbSNP: rs7959129 genotypes. We found that a stronger

SP1 binding is enriched in the dbSNP: rs61926301 region,

whereas a stronger GATA3 binding is enriched in the

dbSNP: rs7959129 region in the SNU-C1 and HCT116 cells

compared with the LoVo cells (Figures 3J and 3K), suggest-

ing that SP1 and GATA3 preferentially bind to the dbSNP:

rs61926301[T] and dbSNP: rs7959129[T] alleles, respec-

tively, in an allele-specific manner. Intriguingly, these
cells; the tumor was treated with ATF1 overexpression (I) or ATF1
for five mice in each group. All *p < 0.05 and **p < 0.01 values

o-sided Student’s t test.
sion (L and N) on the apoptosis and cell-cycle process of CRC cells.
ch with six replicates. **p < 0.01, derived from a comparison with
Pearson’s c2 test in the cell-cycle analysis.
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Figure 3. SP1 andGATA3 preferentially bind to the dbSNP: rs61926301[T] and dbSNP: rs7959129[T] alleles at the ATF1 promoter and
first intron region, respectively
(A and B) Epigenetic annotation for the region surrounding dbSNP: rs61926301 (D) or dbSNP: rs7959129 (E) in CRC cell lines. Data
including ATAC-seq peaks, TF (SP1 or GATA3) peaks, and multiple histone (H3k4me1, H3K4me3, and H3k27ac) modification peaks
were obtained from the ENCODE database.

(legend continued on next page)
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binding signals are significantly attenuated when SP1 or

GATA3 is knocked down (Figures 3J and 3K), demon-

strating that SP1 and GATA3 bind to risk alleles of the

two variants in a mutually dependent manner.

SP1 and GATA3 are well-known transcription factors in

tumors.26–30 In both our CRC-affected patients and the

TCGA samples, SP1 and GATA3 are significantly overex-

pressed in tumor tissues compared with adjacent normal

tissues (Figures 4A, 4B, 4F, and 4G). This result is in line

with the data from the genome-wide CRISPR-Cas9-based

loss-of-function screens of CRC CL40 cells,19 revealing

that SP1 and GATA3 are essential for cell viability

(Figure 4C). Moreover, positive correlations between the

expression of SP1 or GATA3 and ATF1 expression are

observed in both our CRC-affected patient cohorts (Figures

4D and 4E) and the TCGA CRC samples (Figures 4H and

4I). Intriguingly, significant correlations occur only in car-

riers with the dbSNP: rs61926301[T] or dbSNP: rs7959129

[T] allele (Figures 4D and 4E). Furthermore, when SP1 or

GATA3 is overexpressed in the three cell lines with

different genotypes, ATF1 expression is increased in the

SNCU-1 and HCT116 cells with the dbSNP: rs61926301

[T] and dbSNP: rs7959129[T] alleles (Figures 4J and 4K),

but not in the LoVo cells lacking the two alleles

(Figure 4L). Analogously, when SP1 or GATA3 is knocked

down in these three cell lines, ATF1 expression is decreased

concomitantly in the SNCU-1 and HCT116 CRC cells, but

not in the LoVo cells (Figures S4A–S4C), further suggesting

that the regulatory effect of SP1 and GATA3 on ATF1

expression occurs in an allele-specific manner.

The Risk Alleles of Two Variants Facilitate a Promoter-

Enhancer Interaction Mediated by SP1 and GATA3 to

Upregulate ATF1 Expression

We then tested whether these two SNPs function in a

promoter-enhancer manner to affect ATF1 expression.

We performed luciferase reporter assays and found that

the construct containing the dbSNP: rs61926301[T] allele

exhibits higher promoter activity than that containing

the dbSNP: rs61926301[G] allele (Figures 5A and 5B).

Consistently, the construct containing the dbSNP:

rs7959129[T] allele exhibits higher enhancer activity

than that containing the dbSNP: rs7959129[G] allele in

both forward and reverse orientations (Figures 5C and

5D). In addition, when we overexpressed SP1 or GATA3

in SW480 and HCT116 cells at an increasing dose, the
(C–E) eQTL analyses of ATF1 expression with the dbSNP: rs61926301
both risk alleles from our CRC patient samples. Data were shown as
regression analysis.
(F–I) EMSAs and SP1 and GATA3 super-shift EMSAs with biotin-lab
rs7959129 (H and I) in HCT116 and SW480 cells. Arrows indicate a
‘‘I’’ represents the allele-specific binding band. ‘‘II’’ represents the sup
10-fold and 100-fold excess amounts of an unlabeled probe compared
and not added, respectively.
(J and K) The binding of SP1 and GATA3 to the region surrounding
ChIP-qPCR assays in the SNU-C1, HCT116, and LoVo cell lines, wh
as the mean 5 SD from three repeated experiments, each with three
with controls via a two-sided Student’s t test.

The
luciferase activity differences between the risk and non-

risk alleles of dbSNP: rs61926301 and dbSNP: rs7959129

are enhanced in a dose-dependent manner (Figures 5G,

5I, S4E, and S4G). In contrast, the differences in luciferase

activity between both alleles of dbSNP: rs61926301 and

dbSNP: rs7959129 are significantly attenuated when SP1

and GATA3, respectively, are knocked down (Figures 5H

5J, S4F, and S4H), suggesting the allele-specific differences

of the two variants in ATF1 transcriptional activity

are modulated by SP1 and GATA3. Remarkably, we

found that the construct containing both the dbSNP:

rs61926301[T] and the dbSNP: rs7959129[T] allele presents

the highest luciferase activity among all tested constructs

(Figures 5E 5F, and S4D), a finding in line with the eQTL re-

sults of the synergistic effects of these two variants,

showing that carriers with both the dbSNP: rs61926301

[TT] and dbSNP: rs7959129[TT] genotypes have the high-

est ATF1 expression levels among all tested groups

(Figure 4C). The synergistic effect is provoked when SP1

or GATA3 is overexpressed, but it is substantially attenu-

ated when SP1 or GATA3 is knocked down in CRC cell lines

(Figures 5K, 5L, and S4I–S4L), indicating that the synergis-

tic effect of these two SNPs is mediated by the TFs SP1 and

GATA3.

We further experimentally validated the interaction by

allele-specific 3C assays in multiple CRC cell lines with

different genotypes of these two SNPs. When anchored

at the ATF1 promoter containing dbSNP: rs61926301, the

region containing dbSNP: rs7959129 shows a stronger

interaction with the ATF1 promoter containing dbSNP:

rs61926301 than any of the other neighboring Mbo-I cut-

ting sites tested (Figure 6A). Notably, the interaction

frequency is more significant in the cell lines carrying

both the dbSNP: rs61926301[T] allele and the dbSNP:

rs7959129[T] allele (SNU-C1, HCT116, and SW480 cells)

than in the other cell lines lacking either the dbSNP:

rs61926301[T] allele or the dbSNP: rs7959129[T] allele

(HT115, LS123, HCT15, CoLo205, and LoVo cells,

Figure 6A). The genotype-specific ChIP-qPCR results also

showed that the binding peaks of SP1 not only overlap

the region containing dbSNP: rs61926301 but also overlap

the region containing dbSNP: rs7959129; they also showed

that the binding peaks of GATA3 also overlap these two re-

gions (Figures 6B and 6C). Interestingly, the binding of SP1

and GATA3 to these two regions is more significant in

SNU-C1 and HCT116 cells than in LoVo cells (Figures
genotype (A), the dbSNP: rs7959129 genotype (B), and number of
the mean 5 SD and all **p < 0.01 values were calculated by linear

eled probes containing dbSNP: rs61926301 (F and G) or dbSNP:
llele-specific bands that interact with nuclear protein in the cells.
er-shifted band. In addition, 103 and 1003 respectively represent
with the amount of the labeled probe. ‘‘þ’’ and ‘‘�’’ indicate added

dbSNP: rs61926301 (J) or dbSNP: rs7959129 (K) was measured by
ich carry different genotypes of both SNPs. Data were presented
replicates. All **p < 0.01 values were derived from a comparison
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Figure 4. Transcription Factors SP1 and GATA3 Correlate with ATF1 Expression in an Allele-Specific Manner
(A and B) SP1 (A) and GATA3 (B) are significantly overexpressed in tumors compared with the adjacent normal tissues from our CRC
patients. Data were shown as the mean 5 SD, and **p < 0.01 values were calculated with two-sided paired Student’s t test.
(C) SP1 and GATA3 are essential for cell growth; higher CERES scores are found in the CRC CL40 cells from the genome-wide CRISPR-
Cas9-based loss-of-function screen data.
(D and E) The correlations of SP1 and GATA3 expression with ATF1 expression were measured in our CRC patients. All P values and
r values were calculated with Spearman’s correlation analysis.

(legend continued on next page)
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6B–6D). Moreover, the binding signals are substantially

attenuated with the knockdown of either SP1 or GATA3

expression (Figures 6B and 6C), further supporting the

conclusion that the synergy of the TFs SP1 and GATA3

facilitates the physical interaction of these two regions in

an allele-specific manner.

The rs61926301 and rs7959129 Variants are Associated

with CRC Risk and Exhibit a Significant Interaction

To further strengthen the finding that these two SNPs are

associated with CRC risk, we performed a two-stage case-

control study, totally consisting of 6,213 affected individ-

uals and 10,388 controls. The demographic characteristics

of the study subjects are detailed in Table S3. As shown in

Table 1, dbSNP: rs61926301 and dbSNP: rs7959129 confer

genetic predisposition to CRC in both stages, after adjust-

ing for gender, age group, smoking status, and drinking

status. Furthermore, we combined the results from the dis-

covery and replication stages and found that the dbSNP:

rs61926301[TT] and dbSNP: rs7959129[TT] genotypes are

associated with an increased risk of CRC and have ORs of

1.18 (95% CI ¼ 1.13–1.24, p ¼ 7.97 3 10�12) and 1.16

(95% CI ¼ 1.11–1.22, p ¼ 1.17 3 10�10), respectively.

Intriguingly, significant interactions are found between

these two SNPs in both multiplicative (p ¼ 1.20 3 10�22)

and additive models (p ¼ 6.50 3 10�3, Figure 6E and Table

S4). Compared to the individuals carrying both non-risk

genotypes, the carriers heterozygous for both risk geno-

types display a stronger genetic predisposition to CRC

and have ORs ranging from 1.06 to 1.65, and the carriers

homozygous for both risk genotypes present the strongest

CRC risk (combined data OR ¼ 1.77, 95% CI ¼ 1.42–2.21,

p ¼ 3.16 3 10�7, Table S4).

ATF1 Activates a Subset of Genes Associated with

Apoptosis, Wnt, TGF-b, and MAPK Pathways and

Facilitates the Early Onset of CRC

The exact mechanism and downstream transcriptional

programs by which ATF1 provokes tumor activity are not

well understood. We performed ChIP-seq and RNA-seq in

HCT116 cells treated with either pLV-empty vector (con-

trol) or pLV-ATF1 (ATF1). Integrating RNA-seq and ChIP-

seq data, we identified 278 differentially expressed genes

regulated by ATF1 (Figure 7A and Table S5). KEGG pathway

analysis of the 278 genes showed that several pathological

pathways, including apoptosis, Wnt, TGF-b, and MAPK

pathways, that are associated with CRC are significantly

enriched (Figure 7B). We then tested the coexpression of

ATF1 and its target genes in the TCGA cohort and our

own CRC patients, and we validated this coexpression
(F and G) SP1 (F) and GATA3 (G) are significantly overexpressed in
GTEX datasets. Data were shown as the mean 5 SD, and all *p < 0.
(H–L) The correlations of SP1 andGATA3 expression and ATF1 expres
(SNU-C1 [J], HCT116 [K], and LoVo [L]) with different genotypes of db
all p and r values in Figures 4H and 4I were calculated by Spearman’s c
by a two-sided Student’s t test. Notably, in Figures 4J–4L, the left pane
the x axis, and the right panels show the expression of ATF1.

The
with real-time qPCR in CRC cells treated with either

siRNAs targeting ATF1 or pcDNA-ATF1. Ultimately, a total

of nine genes including BRAF,NRAS,MYC, BIRC2,DAAM1,

MAML2, STAT1, ID1, and NKD2 (MIM: 164757; 164790;

190080; 601712; 606626; 607537; 600555; 600349; and

607852, respectively) are significantly correlated with

ATF1 expression in three independent datasets (Figures

7C, 7D, and S5A–S5C), and interestingly, these genes

are closely involved in the pathological activation of

cell apoptosis, Wnt, TGF-beta, and MAPK pathways

(Figure 7B, marked in red). Collectively, these findings

illustrated that ATF1 could contribute to CRC tumorigen-

esis, which might be largely attributed to the pathological

activation of these oncogenic pathways.

To further gain insight into the potential roles ATF1 and

its target genes play in CRC susceptibility, we evaluated the

clinical significance of ATF1 and its regulated genes in our

CRC patients and the TCGA cohort. The age at CRC diag-

nosis is significantly younger in the patients with higher

ATF1 expression than those with lower ATF1 expression

(Figure 7E). We then devised a representative ATF1 activity

score based on the expression levels of ATF1 and its target

genes associated with apoptosis, Wnt, TGF-beta, and

MAPK pathways. The early onset of CRC occurs more

frequently in the patients with higher scores (Figure 7F).

Intriguingly, the age at CRC diagnosis gradually decreases

as the number of patients with high ATF1 target-gene

expression increases (Figures 7G and S6A). Consistent

with these findings, the analysis of data from the TCGA

CRC samples also presents similar results (Figures S6B

and S6C). Additionally, we also found that the carriers

with the dbSNP: rs7959129[TT] or dbSNP: rs61926301

[TT] genotype have a younger age at CRC diagnosis than

carriers with other genotypes (Figures 7H and 7I), and

the age at CRC diagnosis is gradually decreased when the

number of risk alleles for these two SNPs is increased

(Figure 7J). Together, these integrated analyses show that

the risk SNPs dbSNP: rs61926301 and dbSNP: rs7959129

and high ATF1 expression are associated with the early

onset of CRC, indicating that the synergistic effects of

ATF1 and its target genes are beneficial for preventing

early-onset CRC.
Discussion

Early twin studies have suggested that genetic factors

contribute to�35% of CRC risk,31 and GWASs have collec-

tively identified approximately 100 CRC risk loci.3,5–9,11

Despite the need to better understand CRC development,
tumors compared to adjacent normal tissues from the TCGA and
05 values were calculated with a two-sided Student’s t test.
sion were calculated in TCGA CRC samples (H and I) and CRC cells
SNP: rs61926301 and dbSNP: rs7959129. *p< 0.05 and **p< 0.01;
orrelation analysis, and all p values in Figures 4J–4L were calculated
ls show expression of these genes (SP1,GATA3, and SP1þGATA3) in
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Figure 5. rs61926301 and rs7959129 Synergistically Facilitate ATF1 Transcriptional Activity Mediated by the Transcription Factors
SP1 and GATA3
(A and B) Relative reporter gene activity of the constructs containing the dbSNP: rs61926301[G] or dbSNP: rs61926301[T] allele in CRC
SW480 and HCT116 cells.
(C and D) Relative reporter gene activity of the constructs containing the dbSNP: rs7959129[G] or dbSNP: rs7959129[T] allele in both
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(legend continued on next page)
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Figure 6. Risk Alleles of rs61926301 and rs7959129 Facilitate a Promoter-Enhancer Interaction Mediated by SP1 and GATA3 to
Upregulate ATF1 Expression
(A) Enrichment quantification of allele-specific 3C profiles in multiple CRC cell lines with different dbSNP: rs61926301 and dbSNP:
rs7959129 genotypes depicts the relative interaction frequencies between the ATF1 promoter region containing dbSNP: rs61926301
as the anchor and representative Mbo-I enzyme cutting sites indicated by a dot plot, including a region containing dbSNP:
rs7959129. Data were shown as the mean 5 SEM from three independent experiments, and each had three replicates. All **p < 0.01
values were calculated by a two-sided Student’s t test.
(B–D) SP1 and GATA3 ChIP-qPCR signals of DNA fragments spanning dbSNP: rs61926301 and DNA fragments spanning dbSNP:
rs7959129 in SNU-C1 (B), HCT116 (C), and LoVo (D) cells with different genotypes of the two variants. Results were presented as the
mean 5 SD from three experiments, each with triplicates. All p values were calculated by a two-sided Student’s t test.
(E) Two-stage case-control studies totally consisting of 6,213 cases and 10,388 controls were done to evaluate the interaction between
dbSNP: rs61926301 and dbSNP: rs7959129 in both multiplicative and additive interaction models.
an understanding of the functional mechanisms of these

genes or risk SNPs in loci remains largely elusive. Here,

through a high-throughput RNAi functional genomic

screen, a large-scale population study consisting of 6,213

affected individuals and 10,388 controls, and a series of ex-

periments at the functional level, we demonstrated for the

first time that ATF1, which is located in the CRC suscepti-
(E and F) Relative reporter gene activity of the combined constructs c
cell lines.
(G and H) Effect of SP1 overexpression or SP1 knockdown on the
rs61926301[G] or dbSNP: rs61926301[T] alleles in SW480 cells.
(I and J) Effect of GATA3 overexpression or GATA3 knockdown on the
rs7959129[G] or dbSNP: rs7959129[T] alleles in SW480 cells.
(K and L) Effect of SP1 and GATA3 overexpression or SP1 and GATA3 k
structs containing both dbSNP: rs61926301 and dbSNP: rs7959129
each had three replicates. Data were shown as the mean5 SD, and a
Student’s t test.

The
bility locus 12q13.12, is overexpressed in CRC tumors and

activates a panel of genes associated with apoptosis, Wnt,

TGF-b and MAPK pathways, which ultimately contribute

to cell proliferation and xenograft growth in CRC. At the

regulatory level, we illuminated that risk alleles of two

risk SNPs, dbSNP: rs61926301 and dbSNP: rs7959129,

which are located in the promoter and first intron of
ontaining both dbSNP: rs61926301 and dbSNP: rs7959129 in CRC

relative luciferase activity of constructs containing the dbSNP:

relative luciferase activity of the constructs containing the dbSNP:

nockdown on the relative luciferase activity of the combined con-
in SW480 cells. All experiments were performed in triplicate, and
ll **p < 0.01 and *p < 0.05 values were calculated with a two-sided

American Journal of Human Genetics 105, 29–47, July 3, 2019 41



Table 1. Association Analyses between Individual SNPs and CRC Risk in the Discovery, Replication, and Combined Samples

SNP Genotypes

Discovery Phase Replication Phase Combined Study

Affected/controls OR (95% CI) y P value z Affected/controls OR (95% CI) y P Value z Affected/controls OR (95% CI) y P value z

dbSNP: rs61926301 GG 538/649 1.00 (reference) 2,133/4,389 1.00 (reference) 2,671/5,038 1.00 (reference)

GT 787/712 1.30 (1.12–1.52) 8.05 3 10�4 2,003/3,567 1.16 (1.08–1.25) 9.08 3 10�5 2,790/4,279 1.24 (1.16–1.32) 6.46 3 10�10

TT 177/129 1.59 (1.23–2.06) 4.31 3 10�4 553/910 1.26 (1.12–1.42) 1.26 3 10�4 730/1,039 1.33 (1.19–1.48) 1.63 3 10�7

Dominant 1.35 (1.16–1.56) 9.06 3 10�5 1.18 (1.10–1.27) 4.01 3 10�6 1.25 (1.18–1.34) 3.33 3 10�12

Recessive 1.37 (1.07–1.74) 1.12 3 10�2 1.17 (1.05–1.31) 5.29 3 10�3 1.20 (1.08–1.33) 4.29 3 10�4

Additive 1.28 (1.14–1.43) 2.92 3 10�5 1.14 (1.08–1.20) 2.26 3 10�6 1.18 (1.13–1.24) 7.97 3 10�12

dbSNP: rs7959129 GG 505/630 1.00 (reference) 1,686/3,583 1.00 (reference) 2,191/4,213 1.00 (reference)

GT 753/668 1.38 (1.18–1.63) 7.46 3 10�5 2,208/3,965 1.17 (1.08–1.27) 7.31 3 10�5 2,961/4,633 1.21 (1.13–1.30) 9.03 3 10�8

TT 259/212 1.49 (1.19–1.85) 4.49 3 10�4 795/1,318 1.30 (1.17–1.45) 1.58 3 10�6 1,054/1,530 1.32 (1.20–1.46) 9.25 3 10�9

Dominant 1.40 (1.20–1.63) 1.54 3 10�5 1.20 (1.12–1.30) 1.05 3 10�6 1.24 (1.16–1.32) 3.00 3 10�10

Recessive 1.24 (1.01–1.51) 3.94 3 10�2 1.19 (1.08–1.31) 4.83 3 10�4 1.19 (1.09–1.30) 1.02 3 10�4

Additive 1.25 (1.13–1.39) 3.28 3 10�5 1.15 (1.09–1.21) 1.72 3 10�7 1.16 (1.11–1.22) 1.17 3 10�10

Abbreviations are as follows: OR ¼ odds ratio and CI ¼ confidence interval.
yThe calculation of ORs and 95% CIs was conducted under assumption that variant alleles were risk alleles.
zAll p values were calculated with an unconditional logistic regression model after adjusting for gender, age group, smoking status, and drinking status.
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Figure 7. ATF1Activates a Panel of Genes Associatedwith Apoptosis,Wnt, TGF-b, andMAPK Pathways and Facilitates the Early Onset
of CRC
(A) AVenn diagram and heatmap from RNA-seq and ChIP-seq data in HCT116 cells treated with ATF1 overexpression depict the differ-
entially expressed genes regulated by ATF1. An FDR of p< 0.05 was considered statistically significant and was calculated by a two-sided
Student’s t test.
(B) Pathway enrichment analysis of 278 ATF1 target genes revealed that the majority of these genes are involved in multiple oncogenic
pathways, such as apoptosis, Wnt, TGF-beta, and MAPK pathways (marked in red).

(legend continued on next page)
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Figure 8. Graphical Representation of the
Regulation and Function of ATF1 in CRC
Compared with the dbSNP: rs61926301[G]
and dbSNP: rs7959129[G] alleles, the CRC
risk variant dbSNP: rs61926301[T] and
dbSNP: rs7959129[T] alleles increase the
binding of TFs SP1 and GATA3 to the pro-
moter and first intron region of ATF1, respec-
tively, facilitating a promoter-enhancer
interaction that affects ATF1 expression,
and thus synergistically predisposing to
CRC risk. Furthermore, ATF1 activates a sub-
set of genes associated with cell apoptosis,
Wnt, TGF-b, and MAPK pathways; the genes
include BRAF, NRAS, MYC, BIRC2, DAAM1,
MAML2, STAT1, ID1, and NKD2, which ulti-
mately contribute to CRC cell growth
in vitro and in vivo and result in an increasing
risk of CRC.
ATF1, respectively, facilitate a promoter-enhancer interac-

tion mediated by the TFs SP1 and GATA3 to upregulate

ATF1 expression, thus synergistically predisposing to

CRC susceptibility (OR ¼ 1.77, 95% CI ¼ 1.42–2.21, p ¼
3.16 3 10�7; Figure 8).

ATF1 encodes a sequence-specific activating TF contain-

ing a bZIP DNA-binding domain, which plays critical roles

in driving gene expression programs that are related to

growth, survival, and other cellular activities. Previous

studies characterized that ATF1 often cooperates with

CREB (MIM: 123810) to nucleate constitutive heterochro-

matin.32,33 In addition, ATF1 has also been reported to be

fused with the Ewing’s sarcoma gene (EWS, MIM: 133450)

and to be associated with the development of clear cell sar-

coma (MIM: 612219).34,35 However, the exact mechanism

by which ATF1 acts in CRC is not well understood. In the

present study, we revealed that ATF1 is overexpressed in

CRC tumor tissues compared with their paired normal tis-

sues in two independent cohorts and that ATF1 amplifica-

tion also frequently occurs across multiple cancer types.

Moreover, ATF1 is more highly expressed in advanced

stages of CRC. Mechanistically, ATF1 overexpression could

provoke cell proliferation and xenograft growth in vitro
(C) The correlations of ATF1 expression with the expression of its target genes were evalu
p < 0.05 and jrj > 0.25 were selected as the threshold of significance and calculated by Pe
(D) The correlation relationships between ATF1 and the genes in the top 25 pathways of th
independent datasets, including the TCGA cohort, our CRC patient sets, and CRC cell line
lation analysis in the TCGA samples and our CRC patients and by a two-sided Student’s t
diagram indicates significance or non-significance, respectively.
(E–J) The associations between age at CRC diagnosis and ATF1 expression (E), ATF1 scores (F
genes (G), the dbSNP: rs61926301 and dbSNP: rs7959129 genotypes (H and I), and the num
patient sets. ATF1 activity scores were calculated on the basis of the expression of ATF1 a
shown as the mean 5 SD and all p values in Figures 7E and 7F were calculated by a two-sid
7G–7J were calculated by linear regression analysis.
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and in vivo by affecting cell apoptosis,

and a reduction in ATF1 expression

significantly attenuated this effect.

Together, these findings shed light on

the important role of ATF1 in the
development of CRC. However, noncoding RNAs, which

have been suggested to play important roles in cancers,

are not involved in this study.

In light of the crucial role of ATF1 in CRC, it is essential

to establish the precise regulatory mechanisms of ATF1-

enhanced tumor activity. Cell- and tissue-specific gene

expression programs in humans are generally controlled

by TF binding and gene regulatory elements called en-

hancers or promoters.36 Enhancer-promoter interaction,

which is one of the transcriptional regulation mecha-

nisms, has been illustrated to be a general feature of

mammalian gene control and essential for embryonic

and adult cell viability and tumor pathological activa-

tion.36,37 In this study, on the basis of allele-specific 3C

and ChIP-qPCR results, we found that the risk SNPs dbSNP:

rs61926301 and dbSNP: rs7959129, located in the ATF1

promoter and first intron region, respectively, facilitate a

promoter-enhancer interaction that modulates the expres-

sion of ATF1 and is mediated by SP1 and GATA3, and this

finding partly provides important clues as to how these

two polymorphisms confer susceptibility to CRC. This

finding is in line with the eQTL results showing that

ATF1 expression is gradually elevated as the number of
ated in the TCGA CRC samples. The values
arson’s correlation analysis.
e pathway enrichment analyses in the three
s. Results were calculated by Pearson’s corre-
test in the CRC cell lines. The red and blue

), the synergistic effect of ATF1 and its target
ber of risk alleles of both SNPs (J) in our CRC
nd a panel of ATF1 target genes. Data were
ed Student’s t test, whereas those in Figures



risk alleles of both variants increases for these two SNPs.

Intriguingly, we also found a significant interaction

between these two variants in a multiplicative model

(p ¼ 1.20 3 10�22) and in an additive model (p ¼
6.50 3 10�3) in the risk of CRC.

In addition, our results indicated that the TFs SP1 and

GATA3 bind to the SNPs dbSNP: rs61926301 and dbSNP:

rs7959129, respectively, to promote ATF1 expression, and

there is higher affinity at the risk alleles. Consistently,

SP1 is a well-known transcription factor that has been re-

ported to be important in cell growth, differentiation,

and the apoptosis of various tumors.26,27 GATA3 is

frequently mutated and functions as a pioneer TF that par-

ticipates in a cellular reprogramming event in breast cancer

(MIM: 114480).29,30 Here, we showed that both SP1 and

GATA3 are overexpressed in tumors compared with coun-

terpart normal tissues, not only in TCGA samples, but also

in our CRC-affected patients. Moreover, both of the TFs are

essential for CRC cell proliferation according to the data

from a CRISPR-Cas9-based loss-of-function screen.19

Notably, the binding of SP1 to the dbSNP: rs61926301[T]

allele and that of GATA3 to the dbSNP: rs7959129[T] allele

is significantly attenuated by the knockdown of either SP1

or GATA3. Therefore, it is possible that the synergy of these

two TFs facilitates the promoter-enhancer interaction of

ATF1.

Pathological activation of apoptosis, Wnt, TGF-b, and

MAPK pathways is closely involved in the initiation and

progression of various tumors, including CRC tumors, by

promoting programs, such as cell proliferation, inflamma-

tion invasion, and metastasis, that are essential for tumor-

igenesis.38–41 Hence, there are intense efforts to look into

these pathways for biomarkers and therapeutic tar-

gets.40–42 In this study, by integrating RNA-seq and ChIP-

seq data, we identified a subset of genes, including BRAF,

NRAS, MYC, BIRC2, DAAM1, MAML2, STAT1, ID1, and

NKD2, regulated by ATF1 and significantly enriched in

these above pathways. Notably, emerging evidence has

indicated that these ATF1 target genes, including MYC,

BRAF, NRAS, BIRC2, and ID1, play important roles in cell

apoptosis and proliferation in the progression of multiple

cancers, including CRC.39,43,44 Therefore, these findings

suggest that ATF1 can facilitate CRC development, and

most of that facilitation is due to the pathological activa-

tion of these oncogenic pathways.

In contrast to the decreasing trends in adults 50 years or

older, the incidence and mortality rates of CRC are

increasing among all age groups between 20 and 49

years.45 According to population-based projections, by

2030, colon and rectal cancer will increase by 90% and

124% among individuals aged 20 to 34 years, and by

28% and 46% among those aged 35 to 49 years.46 Early-

onset cancer is a hallmark of cancer predisposition.47

However, the drivers for the increases in the incidence of

early-onset CRC have not been well elucidated. Here, we

found that the synergy of ATF1 and its target genes related

to apoptosis, Wnt, TGF-b, and MAPK pathways is signifi-
The
cantly associated with the early onset of CRC in both the

TCGA cohort and our CRC-affected patients. Consistently,

the risk SNP genotypes are also associated with an increas-

ingly early onset of CRC. Altogether, these findings

indicate the potential of ATF1 and its regulatory ele-

ments dbSNP: rs7959129 and dbSNP: rs61926301 as risk

stratification markers for the management and prevention

of CRC.

In summary, through a high-throughput RNAi-based

functional interrogation, a large-scale population study,

and multipronged experiments, we revealed the mecha-

nism of ATF1 and its regulatory elements dbSNP:

rs61926301 and dbSNP: rs7959129 in the development

of CRC. These findings not only bring us closer to an

understanding of the molecular drivers of cancers, but

also highlight the potential use of ATF1 in the prevention

of CRC.
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