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Abstract

High-throughput next generation sequencing (NGS) is a shotgun approach applied in a parallel 

fashion by which the genome is fragmented and sequenced through small pieces and then analyzed 

either by aligning to a known reference genome or by de novo assembly without reference 

genome. This technology has led researchers to conduct an explosion of sequencing related 

projects in multidisciplinary fields of science. However, due to the limitations of sequencing-based 

chemistry, length of sequencing reads and the complexity of genes, it is difficult to determine the 

sequences of some portions of the human genome, leaving gaps in genomic data that frustrate 

further analysis. Particularly, some complex genes are difficult to be accurately sequenced or 

mapped because they contain high GC-content and/or low complexity regions, and complicated 

pseudogenes, such as the genes encoding xenobiotic metabolizing enzymes and transporters 

(XMETs). The genetic variants in XMET genes are critical to predicate interindividual variability 

in drug efficacy, drug safety and susceptibility to environmental toxicity. We summarized and 

discussed challenges, wet-lab methods, and bioinformatics algorithms in sequencing “complex” 

XMET genes, which may provide insightful information in the application of NGS technology for 

implementation in toxicogenomics and pharmacogenomics.
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High-throughput next generation sequencing (NGS) techniques have incorporated 

revolutionary innovations to investigate the complexities of genomes, thus becoming the 

most powerful approach for the generation of genomic data (Cao et al., 2017; Escalona et 

al., 2016). The advances of NGS have produced a tsunami of information rapidly, and have 

driven genetic discovery in human disease economically and efficiently. Besides, NGS also 

promises to help accurate diagnosis by using clinically relevant genetic variants to stratify 

subgroups of patients for optimal treatments and minimization of adverse drug reactions 

(Bahcall, 2015; Chen and Shi, 2013; Goodwin et al., 2016). Precision medicine integrates 

research disciplines and clinical practice to formulate a knowledge-based and personalized 

treatment plan that can better guide individualized patient care (Bahcall, 2015; Wang and 

Zhou, 2017). One of the most important steps for the effective practice of precision medicine 

is to decode the disease-causative, drug-effective and drugtoxic genes and their genetic 

variants; therefore, a massive genetic screening approach is critical for identifying these 

genetic variations from individual’s genome (Chen and Shi, 2013).

However, due to high percentage of GC (guanosine or cytosine) content, errors produced by 

sequencing-based chemistry, relatively short length of sequencing reads, and the poor quality 

of DNA samples, some genomic regions are difficult to sequenced, leaving un-identified 

gaps in genomic data (Figure 1). On the other hand, a fraction of complex genes is difficult 

to be sequenced accurately because these genes are either highly diversified or highly 

homologous (Lauschke and Ingelman-Sundberg, 2018). For example, genes encoding 

human leukocyte antigens (HLAs), and genes encoding T-cell receptors and B-cell receptors 

are highly diversified; genes encoding xenobiotic metabolizing enzymes and transporters 

(XMETs) are highly homologous and are associated with pseudogenes during their 

evolution. Herein, we refer these genes as “complex genes” since they possess challenges in 

the sequencing process.

Drug efficacy and safety, and the susceptibility to environmental toxicity are apparently 

different among individuals, which is largely caused by many genetic variants in genes 

encoding XMETs and drug targeted proteins (Evans, 1999; Evans and Relling, 2004; Ning et 

al., 2014). However, the full spectrum landscape of genetic variants in XMET genes and 

drug targeted genes has not been drawn. Hurdles, including highly homologous genes 

among the super-families or sub-families, functional variants distributed across entire genes, 

many pseudogenes with sequences highly similar to their corresponding functional XMET 

genes, make XMET genes difficult to be accurately mapped or genotyped (Lauschke and 

Ingelman-Sundberg, 2018). Similarly, HLA genes may also mediate adverse drug reactions 

(Daly et al., 2009; Guo et al., 2013; Liu et al., 2018). Genotyping of HLA genes with a high 

resolution by using NGS is an excessive challenge because that the large number of 

polymorphisms, the extensive allelic diversity of the gene loci, and the complexity of the 

dimerized molecules are the genetic characteristics among HLA genes (Erlich, 2012). In 
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addition, high GC content DNA fragments affect the DNA synthesizing efficiency and 

accuracy, resulting in miscalled variants from sequencing artifacts.

To improve the accuracy for sequencing these “complex” genes, challenges and strategies, 

including library preparation methods, gene capture approaches, and fragment mapping 

algorithms are summarized and discussed in this minireview.

Genes, xenobiotics, and beyond

XMETs in drug metabolisms

XMETs, often described as DMETs (drug metabolizing enzymes and transporters), include 

drug metabolizing enzymes (phase I/II) and transporters (phase III), playing central roles in 

the metabolism, elimination and detoxification of drugs (Xu et al., 2005). Comprised mostly 

of the Cytochrome P450 (CYP) enzymes, the phase I XMETs are of a high importance for 

drug metabolism (Lynch and Price, 2007). The Phase II drug conjugating or metabolizing 

enzymes, are usually categorized into super-families of enzymes, such as 

UDPglucuronosyltransferases (UGTs), sulfotransferases (SULTs), NAD(P)H:menadione 

reductase (NMO) or NAD(P)H:quinone oxidoreductase (NQO), N-acetyltransferases 

(NATs), glutathione S-transferases (GSTs) and epoxide hydrolases (EPHs) (Jancova et al., 

2010; Rushmore and Kong, 2002). Phase III proteins are transporters playing crucial roles in 

drug absorption, distribution, and excretion (Xu et al., 2005). Genetic variants in many 

XMET genes have been associated with responses to specific drugs, and susceptibilities to 

environmental toxicity and diseases and pharmacogenetic findings have benefited patients 

(Lee et al., 2016). The Clinical Pharmacogenetics Implementation Consortium (CPIC) has 

been making efforts to identify drugvariant interaction with high importance for clinicians; 

based on various patient genotype, CPIC suggests guidelines for usage of drug-dosing (Lee 

et al., 2016). In addition, the Pharmacogenomics Knowledgebase (PharmGKB) has been 

widely used in functional variants annotation (Ng et al., 2017). Similarly, XMETs account 

for metabolizing environmental toxicants, which is highly related to health risks.

XMETs are critical factors in response to environmental toxicants

Xenobiotic metabolizing enzymes are double edged swords with hazardous or beneficial 

effects on human health, through their critical roles in metabolizing many drugs and 

xenobiotics. Each XMET responds differently to exogenous chemicals due to its substrate 

specificity, which has significant influence on drug metabolism, procarcinogen activation, 

and toxicant detoxification. The hazardous effects of XMETs result from enhanced transport 

or production of toxic or carcinogenic agents (Sheweita, 2000). For example, CYP1A1 is a 

prominent enzyme responsible for the metabolic activation of polycyclic aromatic 

hydrocarbons (PAHs). XMETs convert PAHs into reactive intermediates that covalently bind 

to genomic DNA and produce DNA adducts—an essential event for chemical 

carcinogenesis. Similarly, CYP1A2 can activate a battery of procarcinogens, such as 

aromatic amines and amides, and heterocyclic amines, which are risk factors for bladder 

cancer and colon cancer (Koda et al., 2017; Sheweita, 2000). Some environmental 

carcinogens, such as aflatoxin B1, a highly mutagenic and carcinogenic agent that may 

cause hepatocellular carcinoma, can be activated by several cytochrome P450 isozymes such 
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as CYP1A2, CYP3A4 and CYP2E1 (Manson et al., 1997). The carcinogenic potency of 

procarcinogens is highly correlated with the activity and substrate specificity of the specific 

cytochrome P450 isozyme. Inter-individual variability in XMET expression is largely 

influenced by genetic variations (Koturbash et al., 2015; Yang et al., 2013). In contrast, the 

beneficial effects of XMETs in the detoxification of toxicants are attributed to the activity 

the phase II XMETs, such as glutathione S-transferase (GSTs), sulfotransferases (SULTs) 

and UDP-glucuronyl transferase (UGTs). These phase II XMETs can inactivate chemical 

toxicants by conjugation of a parent compound with a charged species resulting in less toxic 

or inactive metabolites that are exported more efficiently (Sheweita, 2000). For example, 

SULT1A1 catalyzes the detoxification process of a group of structurally diverse compounds, 

such as small phenols, iodothyronines, environmental estrogen-like compounds and 

heterocyclic and aromatic amines (Ning et al., 2005).

Genetic variants in XMET genes modulate susceptibilities to toxicity and diseases

The biological activities of XMETs are essential to maintain a proper balance between 

detoxification and activation reactions involving xenobiotics and drugs. This balance is 

largely determined by many variables including genetic background, sex, age, dietary and 

environmental factors. Genetic factors which modify the expression and activity of XMETs 

exert particularly important influences on an individual’s susceptibility to toxicity and 

disease. Therefore, XMET genetic polymorphisms may serve as molecular biomarkers 

providing predictive information relevant to drug efficacy, drug safety, and susceptibility to 

toxicity and disease, which constitute the fundamental components of precision medicine 

(Evans and Relling, 2004).

Well-done cooked red meat is a rich source of heterocyclic amines that can be activated 

metabolically to bind to DNA and create stable DNA adducts. The consumption of welldone 

red meat is considered an environmental risk factor for colorectal cancer for this reason 

(Aune et al., 2013). Phase I XMETs CYP1A2, CYP1A1, CYP1B1, and CYP2A6 catalyze 

N-oxidation of heterocyclic amines to produce hydroxylamine derivatives, and phase II 

XMETs, such as acetyltransferase (NAT1, NAT2) or SULT1A1, catalyze the formation of 

electrophilic N-acetyloxy or N-sulfonyloxy esters that react also with DNA (Nowell et al., 

2002; Turesky, 2007). In contrast, phase II XMETs involved in the conjugation of these 

intermediate metabolites, such as GSTA1 and UGT1A1, play protective roles against 

carcinogenesis. Therefore, the genetic variants that provide decreased catalytic activity for 

these enzymes responsible for the metabolic activation of heterocyclic amines are associated 

with increased risks for colorectal cancer (Hein et al., 2000; Lang et al., 1994; Nowell et al., 

2002). For example, genetic variants providing reduced activity for detoxification enzymes, 

such as GSTA1*B (Coles et al., 2001) and UGT1A1-3279 GG/TG, are associated with an 

increased risk for colorectal cancer (Girard et al., 2008). Exposure to benzene increases the 

risk for acute myeloid leukemia, acute lymphocytic leukemia, chronic lymphocytic 

leukemia, and other blood-related cancers. Upon exposure to humans, benzene is mainly 

oxidized by CYP2E1 to produce the toxic quinones that are further detoxified by GSTs. In a 

recent study, null alleles of GSTT1 and/or GSTM1 are identified as risk factors that 

increased hosts’ susceptibility to benzeneinduced hepatotoxicity (Nourozi et al., 2017).
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On the other hand, some specific mutations caused by mutagens/carcinogens can serve as 

diagnostic signatures. It has been demonstrated that some specific mutagens cause 

characteristic patterns of mutations in the DNA of tumor tissues, and these patterns are 

defined as mutation signatures. For example, exposure to heterocyclic amines can introduce 

G:C single base pair deletions, especially in the 5′-GGGA-3′ fragment, along with 

G:CàT:A transversions. These mutations can be identified within colorectal tumor samples, 

by comparison with normal adjacent tissues (Lynch et al., 1998), which are mutational 

signatures specifically associated with the exposure of hosts to heterocyclic amines.

Integration of environment-gene interaction into precision medicine

Genetic variations (genetics) and environmental modulators (epigenetics) both exert major 

influences on gene expression and enzyme activity phenotypes. A human may inherit a 

predisposition (genetics) to determine a phenotype (such as a susceptibility to toxicity, and 

efficacy/safety to a drug), but the magnitude of the phenotype is always a “product” of 

environment-gene interactions. Despite tremendous challenges, it is expected that the 

implementation of precision medicine, by integrating genotype, phenotype and the impact of 

gene-environment interactions, will become pivotal for improving effective human 

healthcare (Collins and Varmus, 2015; Hamburg and Collins, 2010). In practice, 

toxicogenomics and pharmacogenomics are the most important components of precision 

medicine. Applying genotype-guided technologies, toxicogenomics assesses environmental 

risk factors and provides personalized prevention of exposures to specific hazards, while 

pharmacogenomics evaluates drug efficacy/safety and to provide personalized treatments 

(Figure 2). Unfortunately, currently defined genetic variants do not represent the full 

spectrum of genetic components responsible for drug safety and disease susceptibility. 

Accurate genotyping of genetic variants in XMET genes is crucial for the implementation of 

toxicogenomics and pharmacogenomics.

Application and strategies in sequencing genes encoding XMETs

Microarray based XMETs genotyping

Microarray platforms have a proven track record spanning almost two decades with easier 

usage and low costs. With microarray-based methods, some well-defined genetic variants in 

XMET genes are genotyped; however, these tests identify only a limited number of genetic 

variants crossing XMET genes, between 22 (AmpliChip CYP450 test, Roche) and 1936 

(DMET™ Plus Premier Pack, Affymetrix), and missing over 90% of the CYPs variants 

(Brown et al., 2014; Lauschke and Ingelman-Sundberg, 2016; Londin et al., 2014). Although 

whole-genome single nucleotide polymorphism (SNP) arrays seemed to cover more variants 

than 1,936 SNPs in DMET Plus (Affimetrix) or 2,088 SNPs in OmniQuad (illumina) for 

XMETs, they often lack key markers for most XMET loci since SNP coverage for XMET 

genes is often poor (Brown et al., 2014; Peiffer and Gunderson, 2009). Phillips et al. 

developed an optimized and validated XMET genotyping panel based on the Illumina 

GoldenGate platform, encompassing approximately 3,000 variants, which contains an 

extensive list of genes with a broader applicability for genotyping XMET-related variants 

(Brown et al., 2014).
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Advantages and problems in genotyping XMETs using exome sequencing technologies

NGS techniques are gaining popularity, owing to their advantages in delivering faster, less 

expensive, and more detailed genomic information. The recent advances in NGS 

technologies, specifically in whole exome sequencing (WES), make it a practical method for 

detecting novel variants with lower costs and decreased time required (Lauschke and 

Ingelman-Sundberg, 2016; Londin et al., 2014; Sboner et al., 2011; Zou et al., 2017); 

therefore, genetic data acquisition no longer constitutes a major bottleneck for genome-wide 

association studies. Despite its benefits, some limitations are accompanied with the NGS 

technology. Notably, the power/ability of WES is highly dependent on the hybridization 

efficiency of PCR amplification primers or oligonucleotide probes to capture a targeted 

region. Therefore, some pharmacogenomically relevant variants may not be included in the 

specifically-designed target regions, resulting in missed coverage for novel variants (Londin 

et al., 2014). Actually, approximately 30% of variants in XMET genes are located in intronic 

and intergenic regions that are generally not covered by the exome sequencing technologies 

that are currently available. Additionally, poor coverage for some genes and regions is 

observed. For instance, genetic variants in the COMT gene and the VKORC1 promoter 

region had an average depth of coverage less than 20, compared to variants in other XMET 

genes with a coverage more than 30, which was reported in the same experiment using the 

same group of samples (Londin et al., 2014).

Fifty-seven genes located in different regions of the human genome encode the cytochrome 

P450 enzymes and numerous related pseudogenes. According to the sequence similarity of 

CYPs, they are grouped into 18 families and 44 subfamilies (Zanger et al., 2008). It is 

challenging that many sequences within a large fraction of CYP genes are classified as 

inaccessible by short-read NGS methodologies, and the inaccessible fraction of some 

important but highly complex genes, such as CYP2D6, with or without gene duplications 

(Gaedigk, 2013; Lauschke and Ingelman-Sundberg, 2016; Meijerman et al., 2007). Another 

limitation of WES is that the up-to-date technologies are unable to routinely and precisely 

characterize copy number variants (CNVs) (Londin et al., 2014). Besides CNVs, exome 

sequencing also does not provide any additional information into gene rearrangements 

unless such rearranged fragments are specifically generated for sequencing. The challenges 

discussed above may create substantial possibilities for false-negative pharmacogenomics 

findings. Thus, targeted sequencing approaches using specifically amplified PCR fragments 

or using enriched libraries (these are designed to capture specific fragments/genes) with 

further advanced NGS sequencing instruments are being pursued, which should eventually 

provide more sophisticated approaches with improved performance for sequencing difficult 

genes. Another possible approach to address analytical concordance for SNP identification 

involves combining data from both microarrays and NGS. Anticipated advances in NGS 

technologies may make higher read depth whole genome sequencing (WGS) more cost-

effective, which could overcome some limitations for targeted sequencing or exome 

sequencing (Londin et al., 2014).
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Advantages and problems in genotyping XMETs using whole genome sequencing 
technologies

High-depth of coverage in WGS is strongly recommended for DNA resequencing, by which 

the advantage is to interrogate all types of genetic variants including SNPs, indels, structural 

variants and CNVs in both coding regions and noncoding regions (Sims et al., 2014). Thus, 

compared with WES or XMET array, WGS provides increased power to identify more 

variants in XMET genes (Yang et al., 2016). WGS is able to sequence genes that have a 

large number of important rare variants, like DPYD and G6PD. However, due to its high 

cost, the median depth of WGS with the same cost of WEG is generally lower than that for 

WES (Yang et al., 2016). The lower coverage depth for WGS, compared to WES, is 

associated with reduced overall sequence accuracy (Sims et al., 2014), leading to a higher 

false-negative rate in variant calling. However, a greater depth of coverage does not 

necessarily solve all sequencing problems. Especially, it cannot resolve problems with 

assembling the gaps associated with repetitive sequences. Instead, the paired-end read with a 

known distance approach is utilized to place clearly repetitive regions that are smaller than 

the distance (Schatz et al., 2010; Sims et al., 2014).

Though strategies using WGS are good research approaches to identify genetic variants in 

XMET genes, WGS is not an economical technology for all clinical applications. The cost 

of genotyping using NGS is less than that of arraybased technology (Ng et al., 2017). 

Customized target sequencing has become a cost-effective, highly-efficient and high-

throughput methodology with reasonably higher depth (Gordon et al., 2016). Approaches, 

like PGRNseq, which employs customized capture probes targeting genes of interest, such 

as XMETs, provide economical tools to improve the pharmacogenomics studies in clinics 

(Yang et al., 2016). Accordingly, discovery of genetic variants for XMET genes by WGS 

and assessment of the variant distributions in patients/controls with customized NGS should 

be a more suitable strategy for pharmacogenomics studies.

Strategies for sequencing XMETs

Improving base accuracy and depth of coverage—The advances in NGS have 

greatly improved the cost of sequencing, throughput, and speed; however, individual NGS 

reads generally exhibit limited accuracy and shorter lengths compared to those from 

traditional Sanger sequencing. Different NGS sequencing platforms utilize alternative 

sequencing methodologies and data analysis, resulting in distinct tendencies for different 

types of sequencing errors (Fox et al., 2014). High sequencing accuracy is required for 

correctly distinguishing important variations in SNPs and indels and for detecting 

transcriptional modifications due to RNA-editing or alternative mRNA splicing. Two general 

strategies could be explored to improve NGS sequencing accuracy: (i) increase sequencing 

depth to reduce the error rate in determining bases; and (ii) improve the accuracy of base-

calling algorithms (Ledergerber and Dessimoz, 2011).

Improving pseudogene removal and specifically mapping homologous reads
—Mapping and aligning sequence reads to the appropriate reference genome is a basic and 

important step in analyzing sequencing data. However, many reference genomes for 

mammals contain large portions of homologous genomic regions, leading to a possibility 
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that homologous reads could be mapped to multiple different genomic places (multimapping 

reads). Pseudogenes are important sources of homologous sequences since they are highly 

similar to their parent genes in the genome. Pseudogenes may possess important regulatory 

functions, and the human genome harbors many pseudogenes (Pei et al., 2012). To 

accurately conduct variant (SNPs, indels, inversions, and CNVs) calling, splicing detection 

and gene/transcript expression quantification (Chen et al., 2017), correction of mapping bias 

in homologous regions is vital. If we only consider the uniquely mapped reads, we may miss 

some important information, such as the true read depth of homologous regions, which may 

lead to inaccurate CNV calling or expression estimation.

Currently, there are mainly three different strategies to resolve the problems introduced by 

multi-mapping reads: (i) simply ignore the multi-mapping reads, but this may distort gene 

expression data associated with the ignored reads; (ii) allow the reads to be mapped to all the 

possible genomic regions; however, it may increase the complexity of shortread mapping 

problems; and (iii) handle the multi-mapping reads with specific tools, such as mmquant 

(Zytnicki, 2017) and Rcount (Schmid and Grossniklaus, 2015). Consequently, the correction 

of mapping bias (e.g. multi-mapping reads) using the third strategy aforementioned would 

be necessary to precisely analyze the sequencing data (Chen et al., 2016; Roberts et al., 

2011).

Improving CNV algorithms—Copy number variations (CNVs) are an important type of 

genomic variation evolved from duplications, insertions or deletions of genomic sequences 

whose lengths may vary greatly. CNVs can cause individual differences in physiological 

phenotypes (Iafrate et al., 2004; Sebat et al., 2004) and may play important roles in the 

pathogenesis of diverse diseases/cancers (Hastings et al., 2009; Shlien and Malkin, 2009, 

2010). Furthermore, CNVs associated with CYP2D6 and glutathione S-transferase genes are 

well known to affect drug safety and efficacy (He et al., 2011).

WGS and WES technologies provide unprecedented opportunities for identifying CNVs 

with higher coverage and resolution. At present, many tools have been developed to detect 

and characterize CNVs; these tools can be used for CNV genotyping based on the features 

and information obtained from WGS or WES data. Different CNV calling tools may differ 

in terms of accuracy, types of CNVs detected, genotyping speed and computational memory 

cost, because distinct software packages use disparate algorithms to identify CNVs. 

Moreover, the length of reads and the type of reads (e.g. single-end and paired-end) can also 

influence their performance in CNV detection. Currently, the strategies for identifying 

CNVs can be grouped into five categories based on (i) read depth, e.g. CNVrd2 (Nguyen et 

al., 2014);(ii) paired-end mapping, e.g. commonLAW (Hormozdiari et al., 2011); (iii) split 

read, e.g. Gustaf (Trappe et al., 2014);(iv) de novo assembly, e.g. TIGRA (Chen et al., 

2014); and(v) combinatorial strategy based on more than one of the aforementioned 

approaches, e.g. Hydra-Multi (Table 1) (Lindberg et al., 2015). Zhao et al. (2013) provided a 

detailed summary on the available tools in each category for CNV detection. However, the 

read length for most NGS technologies is still short (<500 bp) and current CNV calling 

algorithms also present certain shortcomings. For example, each tool may only focus on 

certain types of CNVs, and none of them could systematically identify all kinds of CNVs. 

These limitations hinder the comprehensive detection of different CNVs especially CNVs 
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with very long length and/or the CNVs occurring in repetitive genomic regions. Therefore, 

continuous improvement of both sequencing technologies and CNV calling algorithms will 

help to facilitate the accuracy and performance of CNV identification.

Applying third generation sequencing technology in sequencing XMET genes
—Third-generation sequencing is providing new insights in genomic research and clinical 

applications. The comparison of advantages and disadvantages among the first, next-

generation and third-generation sequencing is shown in Table 2. In third-generation 

sequencing technologies, PCR is usually not needed before sequencing, thus shortening 

sequencing time and increasing length of sequencing reads (Liu et al., 2012). For example, 

the signal is captured in a real time manner during the extension step of adding nucleotides 

by enzymes, such as the single-molecule real-time (SMRT) strategy developed by Pacific 

Bioscience (Liu et al., 2012). Notably, the average read length of Pacific Biosciences PacBio 

RS is 2,500–3,000 bp, approximately 10 times longer than that of NGS technology. Besides, 

Oxford Nanopore Technologies (ONT) also developed a strategy to directly sequence DNA 

molecule by measuring electric currency variations as the bases in a single-stranded are 

threaded through the nanopore (Weirather et al., 2017). ONT sequencing produces the 

similar data features with PacBio, thus having the similar advantages and disadvantages as 

the PacBio system (Weirather et al., 2017). Therefore, the thirdgeneration sequencing 

technology can solve the problems generated by short-reads NGS in sequencing CYPs by 

increasing the accuracy of homologous sequencing mapping, providing enriched information 

for pseudogene removal, and accurately counting copy numbers and genomic locations of 

CNVs. Although the throughput and base-calling accuracy of the PacBio RS are lower than 

those of second-generation sequencing technologies (Liu et al., 2012), it has its strength in 

genome biology studies, especially for sequencing some difficult genome regions, such as 

XMETs. Sanger sequencing can generate longer and more accurate reads compared to NGS 

technologies; however, it is costly and time-consuming. To date, despite the relatively high 

error rate in the third-generation sequencing, it has its advantage to overcome the challenges 

in resolving ambiguity of highly homologous regions in XMET genes with much longer 

reads produced by third-generation sequencing technologies. The HLA genes are highly 

polymorphic, and some of them (A, B, C, DRB1 and DQB1) are longer than 5 kb. Using the 

NGS technologies is not able to resolve haplotypes of those long and highly polymorphic 

HLA genes. Ambardar et al. have set up a fulllength HLA typing method based on third-

generation (PacBio SMRT) sequencing technology (Ambardar and Gowda, 2018). A similar 

study demonstrated that sequencing HLA genes by Pac-Bio technology could provide high-

resolution allelic information for multiple HLA genes with phased SNPs (Mayor et al., 

2015).

To annotate all genetic variants with recommendations from the Clinical Pharmacogenetics 

Implementation Consortium (CPIC), the PharmCAT (A Pharmacogenomics Annotation 

Tool) project is under development. Hopefully PharmCAT can provide sophisticated 

approaches to interpret XMET variant alleles and haplotypes in the near future (Klein and 

Ritchie, 2017).
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Summary and perspectives

The NGS technologies continue to evolve and are accompanied by the innovations in both 

experimental designs and related bioinformatics algorithms. With the advancement of 

sequencing technology, new and effective bioinformatics tools will face more challenges. 

They need to deal with larger amounts of data, and to analyze data more accurately with a 

higher efficiency. It is worth noting that the human reference genome and related gene 

annotations are essential to the application of personalized medicine. However, these 

databases still need to be improved (Chen et al., 2013b). With the improvement in 

sequencing technologies and computational algorithms, the reference genome will be 

eventually completed (Chen et al., 2013a). Moreover, we expected that the advance of NGS 

technologies, with more depths of sequencing coverage, longer reads of the sequencing 

reaction, higher accuracy of the base calling, better assembly algorithms for pseudogene 

removal, more precise haplotype construction algorithms, correct annotation of functional 

relevance to identified variants (Lauschke and Ingelman-Sundberg, 2016) and simplified 

workflow would facilitate the accuracy for sequencing “complex genes”. NGS technology 

and related bioinformatics tools provide us an opportunity to explore massive scientific 

problems related to human diseases and drug sensitivity, and to reveal possible mechanisms 

of genetic events. However, we still need to carefully carry out sequencing experiments and 

improve skills and knowledge in interpretation of NGS data. Although the road is full of 

thorns, we believe that NGS technology innovation will help the practice of precision 

medicine and promote public health.
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Figure 1. 
(Color online) Difficult regions/genes for NGS.
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Figure 2. 
(Color online) Integration of environment-gene interaction into precision medicine.
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