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ABSTRACT  Ecological relationships between bacteria are important when considering variation in
bacterial communities in humans, with such variation playing an important role in both health and
disease.

Using high-throughput sequence data of the 16S rRNA marker-gene, we analysed the prevalence of taxa
in the airways of a number of health- and disease-associated cohorts and determined the main drivers of
community variance and bacterial co-occurrence.

A number of facultative and obligately anaerobic bacterial taxa are commonly associated with the upper
airways, forming the main “core” microbiota, e.g. Streptococcus spp., Veillonella spp., Prevotella spp.,
Granulicatella spp. and Fusobacterium spp. Opportunistic pathogenic bacteria associated with chronic
airways disease, such as Pseudomonas spp. (Pseudomonas aeruginosa), Burkholderia spp. (Burkholderia
cepacia complex) and Haemophilus spp. (Haemophilus influenzae) demonstrated poor correlation with
other members of their respective communities (p<0.5; p>0.005), indicating probable independent
acquisition and colonisation. Furthermore, our findings suggest that intra-genus variation between health
and disease may affect community assemblies.

Improved understanding of how bacteria assemble in time and space during health and disease will
enable the future development of tailored treatment according to the patient’s own signature microbiota,
potentially providing benefit to patients suffering from airway diseases characterised by chronic infection.
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Within the airways, “core” community structures are formed between microbial taxa in both
health and disease, with a number of common opportunistic pathogens not being members of
such core communities http:/bit.ly/2Kau3ni
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Introduction

In respiratory diseases characterised by chronic infection, such as cystic fibrosis (CF) and bronchiectasis
(BE), persistent bacterial colonisation of the airways is a major cause of morbidity and mortality [1-3].
Studies applying classical aerobic-based microbial culture techniques have shown that people with CF and
BE are frequently colonised with a range of potentially pathogenic bacteria, including Pseudomonas
aeruginosa, Haemophilus influenzae, Streptococcus pneumoniae and Staphylococcus aureus [4-7]. Recent
studies have also shown that these patients are frequently colonised with obligately anaerobic bacteria [6,
8-10], though their role in airways disease remains unclear.

Within the airways, the microbiota play an important role in both health and disease [11-14], with
members being able to exchange or compete for nutrients, signalling molecules, or host immune evasion
mechanisms [15-17]. Such microbial interactions are essential for community stability within the healthy
commensal human microbiota [18-21], with dysbiosis leading to an overgrowth of competitive pathogenic
species [22]. Therefore, detailed ecological characterisation of the microbiota during health is a pivotal first
step in determining how changes within community structures contribute to disease progression [23-25].

In this study, we investigated the broader microbial community structures within the airways, as well as
the distribution of various taxa in health and/or disease communities. Through community-wide and
co-occurrence network analyses, we addressed three key questions: 1) Is there a “core” community
microbiota in the airways? 2) Which taxa have the highest community-wide association (“Generalist”),
strongest niche association (“Niche Specialist”), and the strongest disease association (“Disease Specialist”)?
and 3) Which members are responsible for the observed variation within each community?

Methods

A detailed description of methods and statistical analysis is provided in the supplementary material. We
analysed greater than 2.1 million sequences from our normalised (2000 sequences per sample) dataset,
which included 1057 samples in total (table 1 and file S1).

Cohorts and sample data processing

For CF and BE, samples were obtained from previous studies from our group focusing on expectorated
sputum and mouthwash samples [8-10]. In addition, raw DNA sequence data from a number of CF
sputum samples provided by Professor John LiPuma at the University of Michigan, USA, were analysed.
16S rRNA marker-gene datasets produced from the available resources of the Human Microbiome Project
(HMP) (http:/hmpdacc.org) [26] were used as a surrogate of the “normal” upper airway microbiome. All
samples analysed were taken at a single time-point; the first visit for the HMP data and during a period of
clinical stability for CF sputum, CF mouthwash (CEFMW) and BE sputum samples. All sequence data were
generated on the Roche 454-FLX Titanium platform and the analysis focused on amplicon data covering
the V1V3 region of the 16S rRNA gene for all datasets, with the exception of a subset of samples
belonging to the CF and CFMW that covered the V1V2 region of the 16S rRNA marker-gene.

To assess whether interstudy variation, such as differences in primer pairs (V1V2 versus V1V3) or
whether niche and geographical origin explained the observed variation in our study we performed
principal coordinate analysis (PCoA) using unweighted UniFrac distance metrics. Furthermore, we

TABLE 1 Sample numbers studied for each cohort included in this study

Collection site Cohort Samples
Anterior nares Healthy 67
Attached keratinised gingiva Healthy 102
Subgingival plaque Healthy 92
Supragingival plaque Healthy 103
Saliva Healthy 69
Hard palate Healthy 93
Tongue dorsum Healthy 99
Buccal mucosa Healthy 98
Throat Healthy 94
Palatine tonsils Healthy 97
Cystic fibrosis sputum Disease 94
Cystic fibrosis mouthwash Disease 23
Bronchiectasis sputum Disease 26
Total 1057
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determined how variables associated with different cohorts (all 13 sampling sites), airway location (three
groups: lungs, mouth and nose) and primer-pairing (V1V3 versus V1V2) affected the structure of the
microbiota using a permutational multivariate ANOVA (PERMANOVA) test of the unweighted and
weighted UniFrac distances and Bray-Curtis dissimilarities. Additionally, we performed multivariate
analysis using the Adonis function (permutational multivariate ANOVA using distance matrices) as
implemented within the vegan package in R with Bray-Curtis distances and 999 permutations to establish
the independent effect or potential collinearity of variables under investigation. Further information on the
assessment of technical variation is shown in the online supplement.

Comparison between community structures

Taxa were ranked according to their mean relative abundance into three main categories: “Generalist” defined
as a taxon occurring in at least >70% of all samples, “Niche Specialists” defined as taxa showing strong niche
association within a single cohort and “Chronic Airways Disease Specialists” defined as taxa representing
the majority of the relative abundance and occurrence associated with chronic disease (CF or BE).

Co-occurrence analysis

To assess whether nonrandom co-occurrence patterns existed within our sample cohort, we initially
performed calculations based on the C-score (checkerboard units) calculations [27] under a null model
with preserved site frequencies. The C-score measures the average number of checkerboard units, or
co-occurrences, between all possible OTU (operational taxonomic unit; based on sequence similarities)
pairs and enabled determination of whether taxa/genera tended to aggregate together more than would be
expected due to chance alone.

Network inference was generated by calculating all possible Spearmans rank correlation coefficients (p)
between taxon pairs. To minimise the occurrence of spurious associations we considered a valid
co-occurrence between two different taxa if the Spearman’s correlation coefficient (p) was both >0.5 and
statistically significant (adjusted p<0.005; Benjamini-Hochberg-Yekutieli). In the reconstructed
co-occurrence networks, all nodes represent taxa that show at least 97% identity, with the edges (i.e.
connections) corresponding to a significant correlation between nodes (i.e. taxa; based on p and
significance according to the adjusted p-value). To compare the effect each taxon had on the observed
variance within its environment, we conducted principal component analysis (PCA) on the normalised
OTU abundance measures.

Statistical analysis

A Spearman rank correlation coefficient (p) was calculated to measure the strength of association between
different taxa. Community richness and diversity (Shannon-Wiener index) was compared between three
or more cohorts by the Kruskal-Wallis test, followed by post hoc testing using the nonparametric
Mann-Whitney test with Bonferroni adjustment to evaluate differences between two sample cohorts. A
p-value <0.05 was deemed statistically significant. Further information regarding data processing and
analysis is provided in the supplementary material.

Results
We analysed more than 2.1 million sequences from our normalised (2000 sequences per sample) dataset,
which included 1057 samples in total (table 1 and file S1).

Airway community richness and diversity

Community diversity and richness were significantly different between communities originating from
different airway sites (p<0.0001, Kruskal-Wallis test) (figure la and b); these differences were primarily
between cohorts associated with health and disease, with no differences apparent between the three disease
cohorts (CF sputum, CFMW and BE sputum). Furthermore, there was no significant difference observed
between the community diversity and richness of the disease-associated cohorts and several of the
health-associated cohorts, which exhibited relatively low diversity and richness (p>0.05, Mann-Whitney
post hoc testing with Bonferroni adjustment). Further information for pairwise comparisons between each
sample cohort are shown in supplementary tables Sla and S1b, respectively.

Comparison between community structures

The overall community structures were dominated by relatively few taxa, with the vast majority of
observed OTUs present in low occurrence and low relative abundance. Evaluation of the complete dataset
revealed that bacterial taxa separated into three main groups (figure 2). The “Generalists” or the “core”
community included taxa present at a relatively high frequency (occupancy) among the 13 cohorts and at
a relatively high abundance. Each of the “Generalist” groups contained multiple different OTUs; however,
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FIGURE 1 a) Taxa diversity (Shannon-Wiener diversity index) and b) taxa richness (counts of observed taxa per sample] for the 13 cohorts. Data
are presented as intracohort spread with the horizontal line showing median values. Differences between pairs were evaluated using the
Mann-Whitney test with Bonferroni adjustment (p<0.05 denoted significant differences). BE: bronchiectasis sputum; CF: cystic fibrosis sputum;
CFMW: cystic fibrosis mouthwash; SAL: saliva; BM: buccal mucosa; HP: hard palate; TD: tongue dorsum; AKG: attached keratinised gingiva;
SupP: supragingival plaque; SubP: subgingival plaque; TH: throat; PT: palatine tonsils; AN: anterior nares.

only a few of these exceeded >70% occupancy within the overall sample cohort. The main OTUs
corresponding to the “core” community were further assessed based on at least 60% prevalence in either of
the health and disease-associated cohorts and in at least 70% of all samples. A number of specific OTUs
formed the “core” community, including members of Streptococcus spp., Veillonella spp., Prevotella spp.,
Granulicatella spp. and Fusobacterium spp. CF and BE sputum samples demonstrated “skewed”
community structures attributed to the presence of a small number of taxa that formed the “Chronic
Airways Disease Specialists”. Taxa in this group included opportunistic bacteria such as Pseudomonas spp.,
Burkholderia spp., Achromobacter spp., and Stenotrophomonas spp., which demonstrated a strong shift
towards predominance within their corresponding samples (figure 2). These taxa were present with low
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FIGURE 2 Overall taxa distribution (occupancy) within the 13 cohorts included in the study. The blue dotted
line represents a cut-off for taxa termed as “Generalists” determined according to specific operational
taxonomic units (sequence types) observed in >70% of all samples.
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frequency but high relative abundance. In the anterior nares, “Niche Specialists” were mainly composed of
Staphylococcus spp., Propionibacterium spp., Dolosigranulum spp. and Corynebacterium spp., which were
present in high relative abundance (figure 2). Further information regarding taxa distribution in all
1057 samples is provided in file S2.

Airway community variance

We applied PCA to determine which OTUs represented the most significant source of population variance
within each community. The first two principal components in our normalised dataset accounted for
75.77% variance explained (figure 3). Variation was driven by the dominance of Pseudomonas spp. and
Burkholderia spp. in CF and Pseudomonas spp. and Haemophilus spp. in BE, with these taxa having the
most effect on the shape and direction of the corresponding communities (figure 3). In the upper airways
(mouth and oropharynx), the principal factor contributing to the observed variance was Streptococcus spp.,
a taxon most frequently occupying samples from these sites. The anterior nares formed distinct
community structures compared with the other sampling sites, with the variation in the samples strongly
affected by predominance of either Staphylococcus spp., Propionibacterium spp., Dolosigranulum spp. or
Corynebacterium spp. Furthermore, anaerobic bacteria such as Prevotella spp. and Veillonella spp. were
shown to affect variation within a number of niches, driving a proportion of the observed variance in both
disease-associated cohorts, as well as in saliva, throat, tongue dorsum and hard palate (figure 3).
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FIGURE 3 Biplot of principal components analysis conducted for the total community data set (sites and taxa).
Per cent variation covered by each principal component is indicated in parentheses in the axis titles, with the
first two components accounting for 75.77% total variance explained. Arrows indicate direction and magnitude
of loadings (sites) on the first principal component. Factors and taxa names that had limited effect on any of
the sites (i.e. clustered near the centre axis) are displayed as their assigned rank number for clarity. BE:
bronchiectasis sputum; CF: cystic fibrosis sputum; CFMW: cystic fibrosis mouthwash; SAL: saliva; BM: buccal
mucosa; HP: hard palate; TD: tongue dorsum; AKG: attached keratinised gingiva; SupP: supragingival plaque;
SubP: subgingival plaque; TH: throat; PT: palatine tonsils; AN: anterior nares.
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The unweighted UniFrac PCoA plots demonstrated that clustering by primer choice or geographical origin
of the samples did not have a significant overall effect on the sample clustering, while there was a strong
clustering by body site (figure 4 a—c). Factors potentially affecting the community structuring (i.e. cohort
(sampling site), airway location (three groups: lungs, mouth and nose) and primer-pairing (V1V3 versus
V1V2)) demonstrated that the different primer-pairing accounted for 3-6% (p<0.0001) of the explained
community variance dependent on the metric used (tables S3 and S4). Furthermore, multivariate analysis
showed a significant effect of sampling site (R*=0.37, p<0.001), as well as significant effect of primer
choice and airway location (R’=0.01, p<0.001 and R>=0.16, p<0.001, respectively). However, when
exclusively looking at the CF group, as this group included the overlapping primer regions for a subset of
samples, we observed effect due to the primer group (PERMANOVA: R* 0.07, p<0.001), confirming that
~7% of the variance in the CF group could be explained by primer choice.

Co-occurrence network analysis of airway associated microbiota
Based on ecological measurements of checkerboard units (C-Score) [27, 28], we observed that the whole
community was based on nonrandom co-occurrence patterns (C-score 185.40, p<0.01).

Co-occurrence network analysis for the different airway sites revealed a “core” community structure that
consisted of a number of bacterial taxa commonly associated with the upper airway microbiota (figure 5a).
In the overall sample cohort, we detected five main subnetworks of co-occurring taxa. The main
subnetwork demonstrated a strong correlation (p>0.5; adjusted p<0.005) between several taxa, with many
belonging to the “Generalist” group. Members of this subnetwork included anaerobic and microaerophilic
genera such as Prevotella spp., Veillonella spp., Campylobacter spp., Leptotrichia spp., Fusobacterium spp.
and Selenomonas spp. (figure 5a).

Within the CF sputum (figure 5b), there was a strong correlation between members of Veillonella spp. and
Prevotella spp. (p=0.730; adjusted p<1.00x10~'%) which formed the main subnetwork with members of
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FIGURE 4 Unweighted UniFrac principal coordinate analysis (PCoA) plots illustrating the relationship between
the bacterial diversity in samples from the current study. a) All 13 cohorts, b) V1V3 versus V1V2 overlapping
primer pairs and c] geographical sampling location. BE: bronchiectasis sputum; CF: cystic fibrosis sputum;
CFMW: cystic fibrosis mouthwash.
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Streptococcus spp. CF sputum communities were dominated by Pseudomonas spp. and Burkholderia spp.,
with neither demonstrating a significant correlation with any other members of their communities.

For BE sputum (figure 5c), members of the obligately anaerobic Prevotella spp., and Veillonella spp. and
facultative anaerobic Streptococcus spp. and Campylobacter spp., formed the main subnetwork, showing
significant correlations with a large number of other members of this community. BE sputum
communities were dominated by Pseudomonas spp. and Haemophilus spp.

In CEMW, the community and taxa distributions were considerably different from any other cohorts
within both the upper and lower airways. The main community subnetwork consisted mainly of taxa
associated with the upper airways or oral cavity (figure 5d) with Streptococcus spp. the predominant taxon
present; however, Streptococci did not show a positive correlation with any other members of the
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community. Further information regarding correlation scores between community members within the all
cohorts is shown in table S2a-m and additional co-occurrence networks are shown in figure Sla-j.

Community differences within sites: species assignment and distribution

Despite inherent limitations associated with the common methodologies used to assign taxonomic ranking
to the species level in studies using short amplicon reads, we attempted species level approximation for
most common genera within the 13 cohorts to provide a snapshot of potential differences that may occur
between health and disease-associated communities. The results show that the main taxa (i.e. Streptococcus
spp., Prevotella spp., and Veillonella spp.), as well as taxa important in chronic airways diseases
(i.e. Pseudomonas spp., and Haemophilus spp.) were notably different in their distribution between groups
(supplementary table S5 a-e). Further information regarding putative differences in speciation between
cohorts is provided in the online supplement.

Discussion

Previous studies have shown that different sampling sites within the airways of healthy individuals, as well
as those suffering from chronic airway diseases, harbour a diverse community of bacteria [9, 10, 12, 19, 21,
29, 30]. Within airway microbial communities, there is inherent variance between individuals with respect
to the dominant taxa, often making it difficult to decipher which signature or “core” taxa are associated
with a particular community and/or condition [31-33]. However, our results clearly demonstrate that
human respiratory tract communities tend to aggregate and that microbial communities are composed of
interacting bacterial taxa and not of randomly assembled bacterial consortia. Furthermore, within the
airways, “core” community structures are formed between taxa in both health and disease. Bacteria in
these communities exhibit the capability to inhabit similar ecological niches such as obligate anaerobes
and bacteria that are able to adjust to reduction in oxygen levels within the surrounding environment,
such as facultative anaerobic streptococci.

Though frequently reported as part of the normal human microbiota, and thus often not regarded as “true
pathogens”, a number of obligate and facultatively anaerobic bacteria have been reported to play a role in
disease progression. Opportunistic behaviour may arise from the selective advantage some members of the
population have, resulting in an acute overgrowth under certain conditions [34] that influences the balance
of the community as a whole. A number of other members of the “core” community have previously been
shown to act as opportunistic pathogens and have been associated with a variety of pathological processes
[35-37]. In CF, Streptococcus species have been associated with both clinical stability [38] and shown to
contribute to pathological processes within the airways [39]. Therefore, as intra-genus changes in bacterial
populations may cause a shift in phenotypic properties and community balance leading to disease
progression, better understanding of the role members of the “core” community play, at the species or
strain level, in progression of chronic airways disease is needed.

As reported previously, [12, 29, 30, 40] significant similarities were observed between the “core” bacteria in
communities from the lungs and the oropharynx and/or oral cavity. This was not unexpected as these sites
are anatomically contiguous, and it is likely that various members of the upper airway communities may be
dispersed to the lower part of the airways through micro-aspiration and/or mucosal secretions. However,
analysis of community composition in the anterior nares revealed a distinctive microbiome signature
similar to that previously reported in subjects with chronic rhinitis [34] and healthy individuals [41].

Furthermore, Pseudomonas spp. (i.e. Pseudomonas aeruginosa) the main taxa associated with both CF and
BE community cohorts, did not correlate with other members of the “core” community, suggesting
independent acquisition and adaptation within the airways of patients with chronic airways disease and is
in an agreement with previous observations by our group for chronic obstructive pulmonary disease [42].
The prevalence of “typical” pathogens associated with CF and BE, such as P. aeruginosa and Haemophilus
spp. (i.e. H. influenzae), in mouthwash samples and healthy upper airways was low, indicating that the
oropharynx was an unlikely source of these pathogens. This is in agreement with the findings of previous
studies that suggested a link between P. aeruginosa [43, 44] and H. influenzae [45] acquisition in the lower
airways and primary colonisation of the paranasal sinuses and the nasopharynx.

Using network inference to investigate co-occurrence of microbes within communities generated from
high-throughput short amplicon sequencing is a relatively unique way to assess how microbial
communities are constructed in space and time. Interpreting why the observed co-occurrence patterns
occur is difficult as they may be as a result of a number of factors including competition and/or sharing of
resources, co-colonisation, co-aggregation, or due to an overlapping niche that both members inhabit.
Questions of how host genetics, prolonged antibiotic exposure, and inclusion/exclusion capabilities that the
resident microbiota have on other members and how these shape the assembly of the community still
need to be addressed.
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Our methodological approach has a number of important limitations that need highlighted. Firstly, given
the large cohort of samples compared, it is inevitable that a number of different 454-FLX sequencing
machines have been employed. This, along with potential differences in sample processing, such as in
DNA extraction methods, may lead to a certain degree of bias in amplicon output and subsequent that is
difficult to counteract. We attempted to limit the effect of spurious and low-quality sequences on the
subsequent taxonomic assignments through careful quality control prior to downstream analysis.
Sequences were filtered to exclude low-quality reads, amplicons of fewer than 200 nucleotides and
potential chimeric sequences. Moreover, all sequences were inferred against a number of nonbacterial
databases to eliminate any amplicons of a nonbacterial origin. Secondly, a subset of samples from the CF
and CFMW cohort employed oligonucleotide primers covering the V1V2 region of the 16S rRNA
marker-gene which may introduce a certain bias. However, despite the fact that our analysis demonstrated
that different primer-pairings significantly affected the community delineation, the effect on the overall
variability was relatively low. Any potential differences may have been reduced by the fact that both
primer-pairings spanning the same variable region of the 16S rRNA marker-gene rather than covering two
nonoverlapping regions, which would have required the use of the closed reference OTU picking method.
Moreover, all samples employed the same forward primer and further analysis revealed no obvious
differences in the ability to assign amplicons to their appropriate rank. Thirdly, in the current study we
did not take into account the differences in disease stage (e.g. differences in lung function) for those
samples that originated from CF and BE. This may potentially be important as significant changes in the
airway microbiome have been associated with more severe lung disease [46-48]. However, whether lung
disease severity affected the community composition and clustering of those cohorts was beyond the scope
of the current study, but we did observe significantly higher degree of similarities within each of the
sampling groups. Furthermore, samples belonging to the CFMW cohort aligned closer to the communities
of the upper airways and the main “core” community structure within all the cohorts remained similar,
suggesting minimal bias due to sample preparation or amplicon length. Fourthly, the availability of
matched sequence data from the upper airways of patients with chronic respiratory disease and the lower
airways of healthy subjects is limited in the published literature. In the current dataset, the only available
comparators between the sample types from the same cohort were matched CFMW and CF sputum
samples. This lack of comprehensive matched niche-based coverage limited the ability to elucidate the
origin of the colonising microbiota of the lower airways in subjects with chronic respiratory disease.
However, including the CFMW cohort allowed us to investigate differences relating to the main
community protagonists involved in chronic bacterial infections of the lower airways in CF and BE. Next,
different sampling techniques (i.e. upper airway swabs, saliva, mouthwash and sputum) may be
confounded by differences in biomass, and furthermore it may be difficult to determine the exact point of
origin for every sputum sample as this omits direct sampling of the lower airways, as would be the case
with samples collected during bronchoscopic procedures. However, in the current study our results
indicated that site-specific microbial similarities play an important role in validating our observations, in
addition to lower richness and taxonomic diversity being associated with individuals that provided sputum
samples but had poorer clinical status. Finally, our effort to speciate the main genera within our
communities potentially provides putative indication as to how main OTUs are distributed within different
cohorts. However, speciation based on high-throughput short amplicon sequencing studies is problematic
and highlights need to utilise methodologies that accurately assess the distribution of species or strains in
complex microbial communities. Moreover, without prior knowledge of the functional properties of
individual community members, their causal role in their role in the progression of chronic diseases will
be difficult to elucidate.

In summary, this study has shown that within the airways, “core” community structures are formed
between taxa in both health and disease with opportunistic pathogens such as P. aeruginosa and
H. influenzae, not being members of such “core” communities. Better understanding of how different
members of local microbiota interact with each other will allow us to characterise how members of the
“core” microbiota affect the overall composition of their niche during the development of chronic airway
diseases. Furthermore, advancement in sequencing technologies, such as whole genome sequencing may
allow determination of specific strain distribution within the community, as well as allowing
culture-independent in silico antimicrobial susceptibility testing to determine how treatment may affect the
community as a whole. This should enable the future development of tailored treatment according to the
signature of the patients own microbial community, providing greater benefits to patients suffering from
airway diseases characterised by chronic infection.
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