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Fast and Accurate Shared Segment Detection
and Relatedness Estimation
in Un-phased Genetic Data via TRUFFLE

Apostolos Dimitromanolakis,1,2 Andrew D. Paterson,3,4,5,* and Lei Sun1,5,*

Relationship estimation and segment detection between individuals is an important aspect of disease gene mapping. Existing methods

are either tailored for computational efficiency or require phasing to improve accuracy.We developed TRUFFLE, amethod that integrates

computational techniques and statistical principles for the identification and visualization of identity-by-descent (IBD) segments using

un-phased data. By skipping the haplotype phasing step and, instead, relying on a simpler region-based approach, ourmethod is compu-

tationally efficient while maintaining inferential accuracy. In addition, an error model corrects for segment break-ups that occur as a

consequence of genotyping errors. TRUFFLE can estimate relatedness for 3.1 million pairs from the 1000 Genomes Project data in a

few minutes on a typical laptop computer. Consistent with expectation, we identified only three second cousin or closer pairs across

different populations, while commonly used methods identified a large number of such pairs. Similarly, within populations, we iden-

tified many fewer related pairs. Compared to methods relying on phased data, TRUFFLE has comparable accuracy but is drastically faster

and has fewer broken segments. We also identified specific local genomic regions that are commonly shared within populations, sug-

gesting selection. When applied to pedigree data, we observed 99.6% accuracy in detecting 1st to 5th degree relationships. As genomic

datasets become much larger, TRUFFLE can enable disease gene mapping through implicit shared haplotypes by accurate IBD segment

detection.
Introduction

Estimating relatedness and co-ancestry among pairs

of individuals is a commonly encountered task in

genetic studies. Traditionally, likelihood-based methods

(e.g., PREST1,2) or method-of-moments estimators (e.g.,

PLINK3) were used in linkage or association studies,

respectively. KING4 introduced a computationally effi-

cient kinship estimation approach (KING-kinship) that

does not explicitly require allele frequency estimation

and presumably could be more robustly applied to

relationship inference in non-homogeneous population

samples. The method is widely used for the inference of

close relationships in large-scale genetic data, although it

can have a higher error rate for distantly related pairs;5

also see Results below.

The availability of increasing marker densities in studies

using genotyping arrays or sequencing technologies makes

a different class of methods that perform identical-by-

descent (IBD) segment detection more attractive. These

methods estimate recent shared ancestry between pairs

of individuals by identifying shared chromosomal seg-

ments, and they have been implemented in software

such as GERMLINE,6 BEAGLE Refined IBD,7 and fas-

tIBD.8,9 However, although these methods can provide

more refined estimates of shared ancestry, identify long-

distance relationships, and assist disease mapping, they
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typically require orders of magnitude more computational

time and need accurate phasing of the input data. The re-

sulting application complexities prevent their broader

use in large-scale genetic studies.

Methods for IBD segment detection in un-phased data

have been proposed, including IBDSeq,10 Parente2,11 and

the recent shared segment method implemented in the

KING software (KING-segment).12 Among those, IBDSeq

and Parente2 are not fast enough for application to large

studies and do not provide genome-wide IBD estimation

in a single step. The accuracy profile of the KING-segment

method has yet to be reported.

We developed TRUFFLE, a practical method that enables

faster and yet accurate identification of IBD1 and IBD2 seg-

ments shared between individuals, calculation of averaged

IBD sharing probabilities across the genome (or kinship

coefficients), and visualization of shared segments using

un-phased genetic data. By skipping the haplotype

phasing step and, instead, relying on a simpler region-

based approach, the proposedmethod is less computation-

ally intensive and much easier to apply. In addition, a

built-in error model corrects for segment break-ups that

can occur as a consequence of genotyping errors. Finally,

an integrated variant filtering allows direct application of

TRUFFLE to raw variant calls from VCF files, without the

need for external linkage disequilibrium (LD) pruning of

markers.
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Material and Methods

Without loss of generality, let us consider a single chromosome

on which we identify IBD1 and IBD2 segments for a pair of

individuals (a, b) based on available, un-phased bi-allelic single-

nucleotide polymorphism (SNP) data. As in convention, the

markers are arranged by physical position, and the genotypes of in-

dividual a atmarker j areGa(j)¼ {0, 1, 2}, where a ranges from 1 to n

and j ranges from1 tom. For everypairof individuals (a,b),wedefine

IBSa;b2 ðjÞ : ¼1 if GaðjÞ ¼ GbðjÞ; and ¼ 0 otherwise;

IBSa;b12 ðjÞ : ¼1 if abs
�
GaðjÞ �GbðjÞ� < 2; and ¼ 0 otherwise:

IBS2
a,b(j) tracks if the genotypes at marker j are identical between

the two individuals, i.e., two alleles shared identity-by-state

(IBS), IBS2, while IBS12
a,b(j) tracks IBS at least one. If either of the

genotypes at SNP j is missing, then both values are defined to be

1 to prevent segment break-up and keep the same set of markers

for all pairs analyzed. It is assumed that long continuous stretches

of missing data do not exist in datasets that underwent standard

quality control.

For each marker j on the chromosome, we also define p.IBS2(j)

and p.IBS12(j) to be the expected probability of having, respec-

tively, two alleles and at least one allele shared IBS between a

pair of unrelated individuals. These probabilities depend on the

minor allele frequency (MAF) of the bi-allelic marker, mafj, such

that p.IBS2(j) ¼ (mafj)
4 þ (1 � mafj)

4 þ (2mafj (1 � mafj))
2 and

p.IBS12(j) ¼ 1 � 2(mafj)
2(1 � mafj)

2. We can then define p2 and

p12, respectively, as the averaged p.IBS2(j) and p.IBS12(j) across all

markers. The values of p2 and p12 would in turn depend on the

distribution of the MAFs for the panel of bi-allelic markers used.

However, we note that the method is generally robust to mis-spec-

ification of MAFs (see Results).
Base Model with No Genotype Error Consideration
As a basic model we consider scanning a pair of individuals for

long stretches of IBS2 or IBS12. A stretch of multiple consecutive

IBS markers are likely to be IBD if (1) it is unlikely to occur by

chance and (2) it extends beyond the LD of the region that is being

considered.

For criterion 1, in a typical whole-genome dataset (either by geno-

typing or sequencing, e.g., the 1000Genomes Project13) and consid-

ering only common variants (MAF > 5%, defined globally), the

average p.IBS2(j) over approximately 1,000markers froma randomly

selected region ranges from 0.46 to 0.51, with a mean of p2 ¼ 0.48

over thewhole genome (Supplemental Data – Section 2). A consecu-

tive stretch of k independentmarkers that are all IBS2 has a probabil-

ity of occurring by chance of approximately 0.48k. Thus, when

ignoring LD between markers, we could set a length threshold l2

for declaring IBD2 segments, such that p2
l2 < 10�8. The detection

of IBD1 segments through long stretches of IBS sharing is harder,

as the probability of at least one allele shared IBS (i.e., IBS12) by

chance is substantially higher than IBS2 alone. For example, the

average p.IBS12(j) in a randomly selected region ranges from 0.92

to 0.94, with a mean of p12 ¼ 0.93 (Supplemental Data – Section 2).

To establish a low probability of a false positive for IBD1, as before,

we set the minimum length l1 (typically substantially greater than

l2) such that p12
l1 < 10�8 for independent markers.

For criterion 2, ideally, using a model that takes into account

local LD structure can guide the selection of the minimum
The
segment length required for a particular region. However,

LD-based hidden Markov models (HMMs) pose a serious compu-

tational burden and are typically thousands of times slower than

non-LD models.5 The need for an accurate and high-resolution

genetic map also limits their applicability to individuals of

mostly European descent. To reduce the effects of LD without

incurring a significant computational time penalty, we consider

a basic pruning approach such that markers closer than a specific

number of base pairs are removed.We performed sensitivity anal-

ysis of the minimum length parameters, l1 and l2, to identify the

cutoff values for robust estimation of overall IBD1 and IBD2

sharing (Supplemental Data – Section 3). As a default, segments

shorter than 5 Mb for IBD1 or 2 Mb for IBD2 are not considered,

although these cutoffs can be adapted using command line op-

tions. Filtering of segments by genetic distance in centiMorgan

(cM) can also be done, with a set of post-processing scripts. For

our analyses here, we have used the genetic map on build

GRCh37 as provided in the BEAGLE8 website (see Web Re-

sources). Although these default parameter values can be revised

by the user, we have found that in practice (see Results below),

they work well for datasets with a variety of ancestral composi-

tions, variant densities, and sequencing or array-based platforms.
Model with Genotyping Error
A common problem in segment detection is the presence of gen-

otyping error, which breaks apart segments and can easily cause

false negatives in segment detection. In addition, de novomutation

events can generate spurious errors that will further increase the

rate of segment break-ups. For example, with an error rate of

0.5%, two individuals on average will have at least 25 markers

with genotyping error in a segment of 5,000 markers. Previous

analysis showed that methods accounting for genotyping error

like IBDseq have better performance than methods that do not,

like Refined IBD7 (Figure 2 of Browning and Browning10). The

error model implemented in TRUFFLE was developed to cope

with error rates up to 1%, which might be the case in low-depth

sequencing data. In its essence, the proposed approach is a finite

deterministic state space model with an unbounded number of

states (Figure 1).

For the case of identifying IBD1 segments for a pair of individ-

uals (a, b), the genome is scanned sequentially from marker 1 to

m. A set of four states is kept at each marker position: Sj ¼ {s1, s2,

s3, e}, j¼ 1,.,m, with the initial values being S0¼ {0, 0, 0, 0}. Intu-

itively, these four states correspond to the lengths of the last three

IBS1 segments (s1, s2, s3) that were found and an error load (e) of

the currently considered segment. A description of the algorithm

for identifying IBD1 segments is shown in Figure 1. The algorithm

for IBD2 segment detection is identical, but with different values

for the five tuning parameters: A, B, r0, r1, and r2.

The parameter setting of A ¼ 1, B ¼ 0, and r0; r1; r2 ¼ N corre-

sponds to a no genotyping error model. In contrast, given a

non-zero B, approximately B/A errors are allowed for a shared

segment before it is considered broken, while short segments are

joined together if at least one of them is long enough. In practice,

this model is computationally efficient as no complex mathemat-

ical operations are required.

The default values for parameters A;B; r0; r1; and r2 are different

for detecting IBD1 and IBD2, and they were optimized by simula-

tions. Briefly, for IBD1 we simulated regions containing 20,000 in-

dependent variants, with an average probability of IBS12 of 0.93 to

0.95 (representative of typical genotyping datasets, for example
American Journal of Human Genetics 105, 78–88, July 3, 2019 79



Figure 1. The TRUFFLE Algorithm for IBD1 Detection with Error
Model
For IBD2, replace IBS12

a,b(j) with IBS2
a,b(j).

Figure 2. Power of IBD1 Segment Detection ða ¼ 4:6,10�4Þ by
TRUFFLE Stratified by Segment Size
True shared segments (IBD1) of varying sizes were inserted in
simulated variant data (38,174 markers) using simuPOP and the
simuGWAS scripts.
see Figure S1). Artificial IBD shared segments of 500 markers were

added by copying one or two haplotypes of the region from one

individual to another; this segment size corresponds to a propor-

tion of IBD1 of 0.125% in a 400k-marker panel. An exhaustive

search for the best parameter values was then performed, selecting

the ones that maximized the detection power at a false positive

error rate of 0.001. For the case of IBD2, similar datasets were simu-

lated, with the markers having an average probability of IBS2 of

0.5, and artificial IBD2 segments of sizes 1 to 5 Mb were added.

Segment Visualization
A significant benefit of IBD segment detections algorithms is that

they can provide the locations of IBD1 and IBD2 segments, across

the genome. TRUFFLE aids the visualization of such segments by

including a set of scripts to create interactive images showing

the chromosomes and shared segments; see Results below.

Implementation
TRUFFLE was implemented in Cþþ. It is readily applicable to

genome-wide datasets with high marker densities, even on typical

laptop computers. Support for parallel execution in multi-core

computers and variant filtering (e.g., MAF, missing rate, and min-

imal distance between markers in base pairs) is integrated. The

input file is a multi-sample VCF file generated ideally from joint

calling across samples14 and contains all or some autosomes.

The input file can be phased, although it is not treated differently.

If necessary, users can define parameter values for the minimum

segment detection length and the reporting threshold for

related pairs. TRUFFLE is available free for non-commercial use

(see Web Resources).
Results

Power Study

To better understand the statistical properties of TRUFFLE

to identify shared segments across distant relatives, we pur-

sued simulations using simuPOP v.1.1.3,15 following the
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simulation design of Peng and Amos;16 the exact simula-

tion scripts are provided in the Supplemental Material

and Methods.

A single chromosome was simulated, with 38,174 bi-

allelic markers having MAF > 5%. The simulation used

the HapMap phase III populations TSI and LWK as the

initial population composition,3 simulating a heteroge-

neous dataset of 3,000 individuals with equal numbers

from the two populations. Artificial IBD1 segments of

varying sizes were then injected into pairs of individuals

within each population.

Under the null condition, we set the false positive rate to

be 4.6 3 10�4; note that this error rate depends on the

parameter values used in the simulation. Although this

rate appears to be small, it allows for 2,070 false positives

for the 3,000 individuals analyzed because there were

about 4.5 3 106 pairs in total.

For each dataset simulated under the alternative, 100 in-

dividuals were randomly selected and 100 artificial IBD1

segments, of lengths ranging from 2 to 14Mb, were created

by copying these 100 segments into another 100 randomly

selected individuals. In addition, genotype errors based on

an error rate of 0.9%were added to the shared segments. In

total, 15,000 datasets were simulated. While TRUFFLE

accurately detects large segments (power >80% for seg-

ments >5 Mb), it has lower power (<5%) for segments

<4 Mb (Figure 2).

1000 Genomes Project Data

We applied TRUFFLE to the 20130502 release of the 1000

Genomes phase III data.13 The dataset consists of variant

calls for 2,504 individuals from 26 populations (five su-

per-populations: 661 Africans, 347 admixed Americans,

504 East Asians, 489 South Asians, and 503 Europeans).

The total number of variants is approximately 88 M before

any filtering is applied. These variants were derived from a

combination of low- and high-coverage whole-genome

sequencing data, high-coverage exome sequence, and



Table 1. Comparison of Relationship Estimation in 2,504 Individuals from the 1000 Genomes

Relationship Cutoff 1

Dataset (A) Dataset (B) Dataset (C)

TRUFFLE KING Kinship KING Segment TRUFFLE KING Kinship KING Segment KING Segment

All Pairs

Full sibling or parent-offspring 0.1875 12 12 12 12 12 12 12

First cousin or closer 0.035 61 14,201 59 61 90 1,726 81

Second cousin or closer 0.0097 200 573,326 214 229 34,927 28,012 2,036

Third cousin or closer 0.0024 1,543 684,657 1,976 2,815 172,800 35,799 8,180

Pairs Observed across Populations

Full sibling or parent-offspring 0.1875 1 1 1 1 1 1 1

First cousin or closer 0.035 2 6,524 2 2 8 211 2

Second cousin or closer 0.0097 2 467,149 2 3 16,746 14,079 21

Third cousin or closer 0.0024 25 573,081 30 244 110,274 18,704 251

Top: Kinship estimation using TRUFFLE v.1.38 and KING v.2.1.6 for the two datasets (A) and (B) generated from the 1000 Genomes Project phase 3 data.13 The
numbers of pairs that fall under four different kinship cutoffs are shown. Bottom: The corresponding numbers of pairs where the two individuals belong to two
different populations are also shown. Large numbers of such pairs are more likely to be false positives.1 Cutoff chosen as the midpoint between the kinship of the
relationship in consideration and the kinship of the next more distant relationship considered in this table. Pairs counted have the estimated kinship greater than
the specified cutoff for each row. KING results for dataset (C) (�12M SNPs with MAF > 1%) are provided for comparison since this is recommended for KING.
genome-wide association study (GWAS) array data from

two platforms.13

For our analyses and method evaluations, three subsets

of the bi-allelic markers were generated. The first dataset

(A) mirrors what is typically used for relatedness estima-

tion by selecting bi-allelic markers with global MAF >

10% across all populations, and performing LD pruning us-

ing PLINK v.1.90b3.44;3 the indep-pairwise procedure with

parameter values 2,000, 200, and 0.1 for the number of

markers in window, shift, and r2 criteria. A total of

63,126 markers remained in dataset (A). The second data-

set (B) was derived by selecting markers with MAF > 5%

andwith a spacing of at least 5 kb between two consecutive

markers, resulting in 469,470 markers remaining. Dataset

(B) was generated to evaluate the performance of TRUFFLE

when the computationally expensive step of LD-pruning is

avoided. Unlike dataset (A), dataset (B) can be internally

generated by TRUFFLE in a single step from amulti-sample

VCF file, streamlining the cryptic relatedness analysis for

whole-genome sequencing studies. In addition, due to

the higher marker density dataset (B) allows for detection

of shorter shared segments. Finally, dataset (C) included

all �12 M biallelic SNPs with MAF > 1%. Variants with

missingness > 2% were excluded for all 3 datasets.

For comparison, datasets (A) and (B) were analyzed

using the two different approaches implemented in

KING v.2.1.6, i.e., KING-kinship4 and the more recent

KING-segment.

Despite more than 3 M pairs of individuals to be exam-

ined, the running time of TRUFFLE was 1.6 min, using 8

cores of a 2 Ghz Xeon CPU processor for dataset (A). The

running time of the KING-segment procedure was only

9.7 s but came at the cost of robustness; see below.

TRUFFLE running time for dataset (B) was 9.7 min because
The
of the increased number of markers; however, it does not

require the LD-pruning step that involved 115 min of

computing time using the indep-pairwise procedure in

PLINK. KING time for dataset (B) was 40 s.

For relationship estimation, KING identified a signifi-

cant number of distant relationship pairs and appeared

to be quite sensitive to the density of markers, in contrast

with TRUFFLE (Table 1, Figures S5 and S6). With a kinship

coefficient cutoff of >0.0097 for declaring second cousin

or closer relatedness, the KING-kinship method reported

573,326 pairs while the KING-segment method reported

214 pairs using the low-density LD-pruned marker dataset

(A). When using the higher-density bp-pruned dataset (B),

KING-segment also reported an unusually high number of

28,012 s cousin or closer related pairs, among which

14,079 pairs are across populations (Table 1). In contrast,

TRUFFLE estimated 200 pairs with kinship coefficient

equal or greater to second cousin using (A) and 229 using

(B), among which 189 pairs are overlapping and only

two and three pairs are across populations.

For first-degree relative pairs, results of all three

methods (KING-kinship or segment, and TRUFFLE)

agree: there were four full-sib pairs and eight parent-

offspring pairs reported (Table 1). Looking closer, the

estimated IBD2 sharing by the KING-segment method

are 18.3%, 12.3%, 14.8%, and 17.3%, respectively, for

the identified four full-sib pairs using dataset (A), with

a mean of 15.7%. This is noticeably different from the

mean value of 25.1% using dataset (B) also based on

KING-segment. In contrast, the mean values based on

TRUFFLE are 25.6% and 25.9% using datasets (A) and

(B), respectively.

We also analyzed dataset (C) using KING, as recommen-

ded by KING. The results are indeed improved compared to
American Journal of Human Genetics 105, 78–88, July 3, 2019 81



Figure 3. Locations of Shared Segments Identified by TRUFFLE in Two Pairs from the 1000 Genomes Data
(A) A putatively full-sib pair from the STU population showing numerous IBD1 and IBD2 shared segments.
(B) A putatively more distant related pair from the PJL population with estimated IBD1 of 32% and IBD2 of 0.48% across the genome.
using dataset (B) for KING (see Table 1). However, using

this many markers negates any computational advantage

of KING over TRUFFLE as now the running time for

KING was 29 min, about 3 times slower than TRUFFLE.

Nevertheless, both KING and TRUFFLE are much faster

than phased methods. For example, an earlier numerical

experiment showed that BEAGLE Refined IBD and

GERMLINE required 64 CPU days for phasing a dataset

with �2,500 individuals and �500,000 SNPs, compared

to 5 min when using an earlier, slower KING method5

Our primary analyses used MAFs estimated from all

available individuals, which are simple to implement

when analyzing cross-population pairs. To study the effect

of using globally defined MAFs on the TRUFFLE analyses

for individual populations, we re-analyzed dataset (B)

(�470,000 SNPs with global MAF > 5%). We re-screened

the SNPs requiring the MAF> 5% in the CEU sample alone

(�430,000 SNPs), then performed the TRUFFLE analysis

again in CEU. IBD segment estimates are very similar be-

tween the two analyses (correlation > 0.99). This is true

for another population, the LWK African sample, analyzed

in a similar way. In addition, the location of shared seg-

ments generally were not sensitive to the number of

markers and did not vary when either global or popula-

tion-specific MAFs were used (Figure S12).

Visualization of the exact locations of detected IBD seg-

ments can be generated using TRUFFLE post-processing

scripts. Figure 3 illustrates segment locations for two

selected related pairs from the 1000 Genomes Project,

obtained in dataset (B).

Short Shared Segment Analysis

Genomic sharing among unrelated individuals is com-

mon and has been described previously. For example, an-

alyses of HapMap II data revealed patterns of segment

sharing among seemingly unrelated individuals.17 It was

estimated that, on average, any two individuals from
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the same population share approximately 0.5% of their

genome through recent IBD, and 10% to 30% of the pairs

share at least one region of their genome IBD.

We performed a scan of all the 2,504 individuals from

the 1000 Genomes Project for IBD1 and IBD2 segments us-

ing TRUFFLE and dataset (B). To this end, a minimum

length of 1,000 markers was used as a cutoff to detect

both IBD1 and IBD2 segments; this is different from the

earlier default recommendations of 5 Mb for IBD1 and 2

Mb for IBD. To understand the characteristics of locally

shared IBD segments between apparently unrelated indi-

viduals, we removed segments shared between 574 pairs

that are closely related (estimated average IBD1þIBD2 >

0.02). Among the remaining pairs, the minimum segment

length detected was 5.45 Mb for IBD1 and 5.54 Mb for

IBD2, and the maximum lengths were, respectively,

68.0 Mb (pair HG00641-HG01162 within the PUR popula-

tion) for IBD1 and 11.9 Mb (pair HG02348-HG01967

within the PEL population, Peruvians from Lima, Peru).

In total, there were 956,577 IBD1 segments and 575

IBD2 segments.

Greater than 30% of the pairs in the Puerto Ricans from

Puerto Rico population (PUR) share at least 0.5% of their ge-

nomes IBD1 (Figure 4A) and 62% of pairs share at least one

segment of length >10 cM (Figure S9). The sharing is even

more extensive for segments >5 cM, where more than

82%of pairs share at least one segment. These findings align

with previous analyses using Refined IBD of BEAGLE;7 for

example, Auton et al.13 showed that Puerto Ricans have

one of the lowest effective population sizes. The average

sharing length in the PUR population was 28.5 cM among

all pairs; for comparison, the average length in CEU, GBR,

and TSI was 2.37, 4.28, and 3.62 cM, respectively.

The Finnish in Finland sample (FIN) also showed exten-

sive segment sharing (average length 16.1 cM), to an

extent higher than the other three European populations

(CEU, TSI, and GBR). More than 18% of the pairs in the



Figure 4. Shared Segments among the 1000 Genomes Populations
(A) Proportion of pairs within a population that share at least 0.5% of their genome as IBD1.
(B) Distribution of segment locations identified within pairs of the same population for the first six chromosomes and nine selected pop-
ulations. The segments are positioned randomly on the x axis to aid visualization and reduce over-plotting. The centromere location is
denoted with a purple segment.
FIN population share a segment of length >10 cM, in

contrast to 0.7% for CEU.

Distribution of segments in Figure 4B (and Figure S10)

also suggests sharing hotspots across the genome, likely

due to reduced recombination rates in those locations.

Similar to our analyses, other approaches have found and

reported such hotspots.18,19 A high proportion of the iden-

tified segments fall in specific genomic regions across mul-

tiple different populations (e.g., CEU and CHS in Figure 4);

see Figure S8 for all 26 populations. Some of the hotspot re-

gions match centromeres of specific chromosomes, indica-

tive of reduced recombination rates at those regions but

perhaps also low SNP density. These patterns are less pro-

nounced in African populations (e.g., GWD and YRI),

possibly reflecting their higher genetic diversity.20 Such

IBD hotspots shared across populations could inflate rela-

tionship estimation and exclusion of hotspots could alter

the interpretation of distant relationship estimation.
Comparison with Genotyping Array Data

To assess the applicability of TRUFFLE to genotyping array

data, we used individuals genotyped on the Illumina

Omni2.5 array as part of the 1000 Genomes Project.13

Quality control has been previously performed,21 and the

post-quality control data were downloaded from the
The
TCAG website, consisting of 2,318 individuals and

1,989,184 SNPs.

To mirror the dataset (B) generated from the 1000

Genomes combined sequencing and array data, we applied

TRUFFLE to 322,849 bi-allelic markers with MAF > 5% and

having minimum distance of 5 kb between markers.

Among the 2,318 individuals in the array dataset, 1,693

were common with those in dataset (B). Thus, we

compared the kinship estimates for all the pairs involving

those 1,693 individuals.

The correlation of TRUFFLE kinship estimates, using array

or combined sequencing and array data, was very highwith

a sample correlation of 0.998 for pairs estimated as having

kinship coefficient > 0.01 in either of the two datasets.

Essentially, the inferenceof relatives closer than third cousin

is identical between array and sequencing data. Among all

pairs, the sample correlation was 0.932 (Supplemental

Data and Figure S8), with a mean difference in kinship esti-

mates of 2.93 10�4 (standard error of 8.23 10�4).
Comparison of Total Lengths of Shared Segments from

TRUFFLE and KING with Previously Published BEAGLE

Refined IBD Results in the 1000 Genomes

The Refined IBD procedure in BEAGLE7 is a hidden HMM

approach for detecting IBD segments that accounts for
American Journal of Human Genetics 105, 78–88, July 3, 2019 83



Figure 5. Comparison of Total Shared
Segment Lengths Identified in the 1000
Genomes by TRUFFLE and KING to BEAGLE
Refined IBD
The left figure for TRUFFLE versus BEAGLE
using dataset (B), and the right figure for
KING-segment versus BEAGLE using dataset
(C) as recommended by KING. BEAGLE
results were downloaded from the 1000 Ge-
nomes project ftp site. Because BEAGLE did
not distinguish between IBD1 and IBD2, the
y axis shows the estimated p.IBD1þp.IBD2
by TRUFFLE or KING for comparison. We
did not convert the cM segment sizes to
Mb for BEAGLE in the x axis, as it would
require population-specific genetic maps.
LD structure in phased genotype data. Previously, shared

segment analysis using BEAGLE v.4.1 was conducted for

the 1000 Genomes phase III data and reported by the

1000 Genomes Project.13 In their analysis, bi-allelic SNPs

with more than ten copies of the minor allele were used

and results were post-processed to delete small gaps be-

tween segments (as Refined IBD does not directly account

for genotyping error). We compared the reported results

with those of TRUFFLE, as well as with the estimates

from the KING-segment method applied to the dataset

(A) or (B) as previously. The BEAGLE Refined IBD shared

segment results were obtained from the 1000 Genomes

project ftp site (see Web Resources). Because the reported

segments in BEAGLE did not distinguish between IBD1

and IBD2, we compared the total length of all IBD seg-

ments in each individual pair, which is proportional to

the estimated p.IBD1þp.IBD2.

The agreement between the Refined BEAGLE IBD

segment estimation and TRUFFLE is very high with a sam-

ple correlation of 0.956 for dataset (A) (Figure S7) and

0.966 for dataset (B) (Figure 5). In contrast, the correlation

of BEAGLE with KING-segment was 0.971 for dataset (A)

(Figure S7) and 0.355 for (B), consistent with the over-esti-

mation of distant relatedness for dataset (B) as seen in Ta-

ble 1. Using dataset (C), the correlation between KING

and BEAGLE results was 0.88 (Figure 5). Essentially,

TRUFFLE is a compromise between statistical and compu-

tational efficiency. KING is faster, but using the results

inferred from BEAGLE Refined IBD procedure as bench-

marks, TRUFFLE provides a better approximation of the

shared segment lengths than KING. BEAGLE is more accu-

rate but TRUFFLE does not need haplotype phasing that is

computationally costly, or a detailed genetic map that may

not be available for a population of interest.

Comparison of Locations of Shared Segments from

TRUFFLE with BEAGLE Refined IBD, GERMLINE, and

KING in the 1000 Genomes

To compare the specific locations of shared segments

between pairs of individuals, we focused on chromosome

1 data from both dataset (B) (32,926 SNPs) and dataset

(C) (943,790 SNPs) and compared four methods, including
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two (Refined IBD7 and GERMLINE6) that require phased

input. Here we used the previously phased data from the

1000 Genomes analysis group using both BEAGLE

and SHAPEIT2. Specifically, we ran GERMLINE (Web

Resources) using the options: -bits 32 -haploid -min_m 3

-err_hom 4 -err_het 1. (We also ran GERMLINE using the

default option of -bits 128, but there were excessive

segment breakups for the parent-offspring pairs.) We also

ran BEAGLE Refined IBD segment detection method using

the default options, with the genetic map provided with

BEAGLE (Web Resources); KING4 v.2.1.6 using the -ibdseg

method for inferring segment locations; and TRUFFLE

v.1.38 using the default options. For Refined IBD we pre-

sent the results both before and after merging segments us-

ing the merge-ibd-segments.26Feb19.29e.jar programwith

the recommended options (Web Resources).

In the absence of de novo mutations, either from single

variants or large indels or CNVs, we expect parent-

offspring pairs to have IBD1 across the autosomes: this rep-

resents a reasonable gold standard. Therefore Figure 6

shows results for all eight parent-offspring pairs. We have

also selected a random pair from other more distant rela-

tionships for comparisons of lengths and positions of iden-

tified IBD segments (Figure S11).

We conclude that TRUFFLE generally identifies segments

of expected lengths (i.e., whole chromosome for parent-

offspring pairs), does not have segments broken up, and

is relatively robust to the selection of markers in compari-

son to most of the other methods. In contrast, the two

methods that require phased data, BEAGLE Refined IBD

and GERMLINE, show many short segments. Note, most

methods do not identify IBD at the centromere of chromo-

some 1 due to low marker density across this large region

(>20 Mb).

Consistent with expectations, using 943k chromosome

1 SNPs with MAF > 1% typically produces more segment

breaks, likely due to the fact that the genotyping error

rate of some of these variants is higher than the 33k

SNPs which all have MAF > 5%.22 Similar results are

observed for other types of relative pairs, including

randomly selected full-sibs and first cousins, along with

more distantly related pairs (Figure S11).



NA20900 NA20882 NA20900 NA20891

NA20355 NA20334 NA20362 NA20359

NA20318 NA20317 NA20321 NA20320

HG03754 HG03750 NA19913 NA19904

0 50 100 150 200 250 0 50 100 150 200 250
Mb

id
BEAGLE (33k markers)

BEAGLE (33k markers) merged

BEAGLE (943k markers)

BEAGLE (943k markers) merged

GERMLINE (33k markers)

GERMLINE (943k markers)

KING (33k markers)

KING (943k markers)

TRUFFLE (33k markers)

TRUFFLE (943k markers)

Figure 6. Comparison of Locations of IBD Segments on Chromosome 1 from the 1000 Genomes Project for Eight Parent-Offspring
Pairs using Different Methods and Variant Densities
The data are from phase 3 release 5. KING and TRUFFLE can work on un-phased data, and BEAGLE Refined IBD and GERMLINE were
applied to the data previously phased by the 1000 Genomes analysis group using both BEAGLE and Shapeit2. In the absence of de novo
mutations, we expect parent-offspring pairs to have IBD1 across the autosomes, representing a gold standard. The 33k SNPs have MAF
>5% with >5 kb between two consecutive SNPs with missing rate <2%, and the 943k SNPs have MAF >1% and missing rate <2%.
Positions are based on build 37, where the centromere is located at 121.5–142.5 Mb.
Estimation of Accuracy in Pedigree Data

We analyzed Affymetrix 6.0 array data from 822 geno-

typed individuals from 173 pedigrees. The data were

part of the Genetic Analysis Workshop 20 (GAW20) proj-

ect and provided by the Genetics of Lipid Lowering Drugs

and Diet Network (GOLDN) study.23,24 The GOLDN study

recruited European American pedigrees with at least two

siblings from the communities of Minneapolis, MN, and
The
Salt Lake City, UT. The average pedigree size was 17.8 in-

dividuals, with an average of 4.75 genotyped individuals

per pedigree. The numbers of reported relationship pairs

within the pedigrees are shown in Table S1. Individuals

from different pedigrees are presumed to be unrelated.

As part of the GAW20 data release, 718,542 autosomal bi-

allelic SNPs were available for analysis. We applied TRUFFLE

to a reduced variant set of 210,181 markers, selected as
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pedigree structure, and the horizontal line shows the expected kinship coefficient for each panel. With each group, pairs are randomly
ordered on the x axis.
having MAF > 5% and minimum distance of 5 kb between

two consecutive markers. The TRUFFLE analysis of 337,431

pairs required 32 s on a Core-i7 desktop computer

(including both across and within pedigree pairs).

Overall, the TRUFFLE kinship estimates closely matched

the reported relationships (Figure 7), even using this non-

LDprunedvariant subset.Overall, 99.6%of the relationships

were estimatedcorrectly towithinonedegree,where theesti-

mateddegreeof relationship is computed fromtheestimated

kinship, bk, as the closest integer to�log2
bk � 1 (Table S1).

Even though the estimated relationship was in line with

the specified one overall, 11 pairs of 4th degree or closer

related individuals appeared to have mis-specified relation-

ship, with a ratio of reported versus estimated kinship

greater than 2 (or 1/2 ). In addition, 13 pairs showed strong

evidence of inbreeding, having estimated p.IBD2 > 2%.

Among the 684 presumed unrelated within-pedigree pairs,

the average estimated kinship was 0.0013. However,

among the 334,431 between-pedigree presumably unre-

lated pairs, 30 showed estimated relationship of 5th degree

or closer. These individuals share 4.3% to 11.7% of their

genome as IBD1, with shared segments occurring in multi-

ple locations across their genomes and an average of 6.2

shared segments per pair; they are likely to be true relatives.

For comparison, we also applied KING to the GOLDN

data. For first- and second-degree relatives, the TRUFFLE

and KING kinship estimates are consistent with each other,

and with the pedigree-based values. For more distantly

related relatives, while TRUFFLE slightly underestimates

the relationship, KING slightly overestimates (Table S2).

Discussion

In applications to population-based data13 and family-

based pedigree data,23 TRUFFLE provides accurate IBD1
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and IBD2 estimation within a few minutes of computer

time for a complete scan of all pairs in a sample using

un-phased genome-wide data. Although it is likely that

HMM-based models, such as Refined IBD,7 will ultimately

have more power in detecting short (1–3 Mb) segments,

their computational burden and requirement for phased

data prohibits their widespread use.

Our power and pedigree studies showed that TRUFFLE

has high accuracy in providing pedigree relationship esti-

mation and distinguishing distant cousin pairs sharing

>5 Mb segments (corresponding to a putative 10th degree

relative pair). Our applications also demonstrated

TRUFFLE’s applicability to both sequencing and array-based

studies. The visualization of the exact locations of detected

IBD segments is another useful feature of TRUFFLE.

Compared to other commonly used methods, TRUFFLE ap-

pears to suffer less from breaking up segments (Figure 6).

Although it is easy to apply TRUFFLE to studies with up to

20,000 individuals, further enhancements and speed im-

provements would be needed to make application to

large-scale, population-based genetic studies routine.

When analyzing >20k individuals with >500k variants,

there could bememory issues with the current TRUFFLE im-

plementation. Based on the empirical evidence from

analyzing dataset (A) (�50k variants) and dataset (B)

(�500k variants) in the 1000 Genomes Project, we also

recommend reducing the number of variants used as an

initial screening step, or analyzing each chromosome sepa-

rately as practical mitigating solutions. Hashing and dictio-

nary-based approaches are useful future directions bymeans

of avoiding the all-pairs quadratic number of comparisons.

Although such methods have been previously applied to

segment detection in phased data,6 application of such

methods to un-phased data is not trivial and would require

new algorithmic techniques and inferential methods.



Common variants are more informative for IBD inference

than rare variants. Genotype accuracy declines with lower

MAF, particularly for variants derived from low-coverage

NGS.22 Future work will focus on rare variants, including

having error models that differ by MAF and depth.

The relatedness from the X chromosome can be wildly

different from the autosomes, as it follows a different in-

heritance pattern. Because of the lower recombination

rate,25 the X chromosome will require different models

for the analysis and discovery of shared segments.

The pseudo-autosomal regions of the X chromosome

(PAR1-3) would also require specific handling, which is of

future research interest.

Overall, TRUFFLE provides a significant improvement in

the applicability of IBD segment detection methods to

many types of genetic studies. The combination of ease

of use, accurate IBD estimation for both distant and close

relationships, and segment location visualization greatly

extend the goal of traditional relationship inference

methods. TRUFFLE can enable disease mapping and popu-

lation genetics through implicit shared haplotypes by

accurate IBD segment detection focusing on overlapping

segments from multiple pairs of affected individuals.

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.05.007.
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Web Resources

1000 Genomes array data, http://www.tcag.ca/tools/1000genomes.

html

1000 Genomes VCF, http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/

BEAGLE Refined IBD Results, http://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/supporting/ibd_by_pair/

BEAGLE Refined IBD version released on February 26, 2019,

http://faculty.washington.edu/browning/refined-ibd.html

GERMLINE v.1.5.3 released on 06/10/2018, http://gusevlab.org/

projects/germline/
The
Human Genetic Maps GRCh37, http://bochet.gcc.biostat.

washington.edu/beagle/genetic_maps/

KING v.2.1.6, http://people.virginia.edu/�wc9c/KING/

PLINK v.1.90b3.44, https://www.cog-genomics.org/plink2

TRUFFLE v.1.38, https://adimitromanolakis.github.io/truffle-

website/
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