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Abstract

Motivation: Cell-free nucleic acid (cfNA) sequencing data require improvements to existing fusion

detection methods along multiple axes: high depth of sequencing, low allele fractions, short frag-

ment lengths and specialized barcodes, such as unique molecular identifiers.

Results: AF4 was developed to address these challenges. It uses a novel alignment-free kmer-

based method to detect candidate fusion fragments with high sensitivity and orders of magnitude

faster than existing tools. Candidate fragments are then filtered using a max-cover criterion that

significantly reduces spurious matches while retaining authentic fusion fragments. This efficient

first stage reduces the data sufficiently that commonly used criteria can process the remaining in-

formation, or sophisticated filtering policies that may not scale to the raw reads can be used. AF4

provides both targeted and de novo fusion detection modes. We demonstrate both modes in

benchmark simulated and real RNA-seq data as well as clinical and cell-line cfNA data.

Availability and implementation: AF4 is open sourced, licensed under Apache License 2.0, and is

available at: https://github.com/grailbio/bio/tree/master/fusion.

Contact: xyang@grail.com or ysaito@grail.com

1 Introduction

Due to its clinical relevance in cancer, many fusion detection tools

have been developed and applied to tissue RNA-seq data (Kumar

et al., 2016; Liu et al., 2016). Fusion detection algorithms usually

run in two stages: identification of candidate readpairs or fragments

(The term ‘fragment’ refers to physical RNA or DNA molecule;

whereas the term ‘readpair’ refers to the sequencing result of a frag-

ment. A single fragment may produce multiple readpairs due to

duplicates caused by polymerase chain reaction (PCR) amplification.

These terms are used interchangeably in this text.) corresponding to

candidate gene fusions and application of a list of empirically

defined filtering criteria. The first stage typically makes use of a se-

quence alignment tool (Haas et al., 2017; Jia et al., 2013; Kim and

Salzberg, 2011), which can identify discordant and unmapped read-

pairs. Some methods further assemble reads into longer contigs for

more accurate mapping (Chen et al., 2012). This step dominates the

runtime and memory usage of the fusion detection process.

However, this process can be brittle as readpairs can be misaligned

or misidentified as soft-clipping events. Because of this, the aligners

must be configured to reduce misclassification due to such alignment

artifacts (Haas et al., 2017). The second stage for fusion detection

typically involves a variety of empirically defined criteria to elimin-

ate spurious fusion events. Such criteria may include discarding

fusions involving homologous genes, requiring a minimum number

of supporting fragments, and a constraint on minimum genomic dis-

tance between genes. Because these rules are not universally applic-

able, there is no dominant method: instead, criteria are chosen to

best match a particular application (Kumar et al., 2016).

Cell-free nucleic acid (cfNA) data serve as an important bio-

source for non-invasive cancer diagnoses and monitoring

(Donaldson and Park, 2018). Fusion detection for cfNA sequencing

data poses distinct challenges compared to tissue sequencing data.

To capture the small amount of nucleic acid fragments from tumor

cells, cfNA analyses must sequence fragments orders of magnitude

more than those for tissue sequencing. This problem prevents many

existing fusion callers from running in reasonable time frame (Haas

et al., 2017, Fig. 4). Meanwhile, curtailing the loss of fusion-

supporting fragments is critical to maintain sufficient evidence. PCR

duplicates become prevalent with high sequencing depth, so frag-

ments are typically tagged with unique molecular identifiers (UMIs),

and the system must deduplicate them properly. As many cfNA frag-

ments are shorter than the intended sequencing read length, barcode
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or primer sequences are incorporated into the 3’ end of reads. Reads

that incorporate these extra sequences may be discarded by

alignment-based methods; the high abundance of primer or barcode

kmers may confound alignment-free methods.

AF4 addresses these challenges with a two staged approach. In

the first stage, this tool conservatively identifies discordant readpairs

without relying on alignments. It finds kmers shared with candidate

genes, ignoring positions of these kmers in the reference transcrip-

tome altogether. This approach improves upon the sensitivity of

alignment-based approaches by avoiding the drawbacks highlighted

earlier: split reads are not treated as soft-clipping events and discord-

ant readpairs are not misaligned. AF4 then identifies fusion-support-

ing readpairs by inferring the most likely gene or pair of genes from

which the readpair could be derived. This inference is made solving

an optimization problem that maximizes the coverage of a readpair

by a gene or gene pair. As a result, spurious fusion-supporting frag-

ments are significantly reduced. The first stage of AF4 runs inde-

pendently for each readpair, scaling linearly with available

computing resources. In the second stage, AF4 runs a common set of

filtering strategies, including constraints on the number of unique

supporting fragments, the number of fusion partners, gene pairs

located in close proximity in the reference, gene homology and the

complexity of the subsequence supporting the fusion event. Because

of the improved specificity of the first stage—AF4 typically retains

0.0001–0.1% of the original data—users can also apply more ex-

pensive methods to further improve performance.

AF4 supports two modes of operations: target-based and

discovery-based (de novo) fusion detection. In targeted mode, it is

given an explicit list of possible fusion events in the form of a

COSMIC database file (Tate et al., 2019). In de novo mode, it con-

siders all possible pairs of genes listed in the reference transcripts.

Targeted mode is preferred in many practical applications as fu-

sion databases, such as COSMIC include events that have been typ-

ically validated and of known clinical relevance. As the fusion

database expands, targeted fusion detection is becoming more sensi-

tive and clinically relevant. We thus expect the targeted mode to be

used more widely in practice than de novo mode, which is mainly

intended for discovery. Although novel fusion discoveries are crucial

to expand the knowledge base, such effort may be less relevant to

screening or tumor sub-typing purposes for cfNA data; and in prac-

tice, the results can contain too many false positives (FPs) to be

inspected manually.

Several alignment-free methods have been recently proposed to

reduce runtime and improve sensitivity (Bray et al., 2016; Li et al.,

2017; Melsted et al., 2017). For example, ChimeRScope (Li et al.,

2017) discovers genes a fragment may come from through kmer

matching, in a manner similar to AF4. However, its fusion detection

mechanism is fairly different: it ranks genes only by the degree at

which a gene shares bases with the fragment, ignoring the locations

of kmer matches within the fragment. In contrast, AF4 explicitly

checks whether a gene pair actually forms a junction and ranks gene

pair candidates by their fragment coverage. This mechanism leads to

more accurate fusion detection.

We demonstrate AF4 to be a valuable addition to the existing fu-

sion detection tools by applying it to benchmark simulated and real

RNA-seq data with known fusions (Liu et al., 2016), clinical cfRNA

and cell-line titration cfDNA data. AF4 achieved better F-score

when compared with ChimeRScope (Li et al., 2017) on the simu-

lated RNA-seq data. On cfRNA data, AF4 achieved better sensitiv-

ity in both targeted and de novo modes than STAR-Fusion (Haas

et al., 2017) in retaining fusion fragments. However, a direct com-

parison of specificity cannot be fairly made as both programs can be

adjusted for specificity with different thresholds during filtering

(Section 3.2). By changing the reference sequences (and with no al-

gorithmic changes), the targeted mode of AF4 was able to identify

real fusions in a series cell-line titration cfDNA datasets comparable

to Manta (Liu et al., 2016), a DNA-seq structural variation detec-

tion method. In the tested data, AF4 runs 300� faster than

ChimeRscope, 12� faster than STAR-Fusion and 20� faster than

Manta.

2 Materials and methods

The workflow of AF4 is outlined in Figure 1. There are three com-

ponents in the workflow: the input component that handles I/O and

preprocessing, independent readpair handling in stage one and fu-

sion candidate filtering in stage two.

2.1 Input
AF4 takes three inputs:

• A list of paired FASTQ files, typically Illumina paired-end

sequencing data, in compressed format.
• A transcriptome FASTA file that lists known transcript sequen-

ces. For RNA-seq or cfRNA, we could use the default Gencode

transcriptome reference. For analyses in this article, however, we

padded 250 intron bases on both 5’ and 3’ regions of every exon

in Gencode 26. This reduces FPs that arise from reads spanning

intron–exon junctions in unspliced nascent mRNA molecules.

For cfDNA, we use the entire genic space including introns.
• An optional fusion-gene pair file, used only in targeted mode. We

use the COSMIC fusion database (Tate et al., 2019, 297 gene

pairs to date), plus structural multiplex cfDNA reference

Fig. 1. An overview of AF4 workflow. Detailed descriptions are given in the

main text
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standard (www.horizondiscovery.com) and additional targets,

resulting in a total of 655 fusion gene pairs.

2.2 Intuition
When a readpair (r1, r2) supports a fusion event involving genes g1

and g2, one of the three conditions must hold:

1. r1 and r2 map to different genes but neither r1 nor r2 spans the

fusion junction (Fig. 2a).

2. One of r1 or r2 spans the fusion junction, and the other is cov-

ered by one of the genes (Fig. 2b).

3. Both r1 and r2 span the fusion junction, which happens when the

fragment is short and r1 and r2 overlap (Fig. 2c).

With these observations, we define readpair (r1, r2) supporting a

fusion transcript involving gene pair (g1, g2) using parameters a and

b.

1. a fraction of r1 and r2 combined map to g1 and g2. In Figure 2,

a ¼ 100% as the entire r1 and r2 map to the fusion transcript.

We set a ¼ 0:8 by default to account for sequencing errors.

2. r1 or r2 share a minimum of b bases on both sides of the fusion

junction point. In Figure 2, this means on either side of xb, at

least b bases of r1 (r2) map to g1 (g2). We set b ¼ 25 by default.

Although we used paired-end reads as an illustration, it is easily

generalizable to single-end inputs.

2.3 Stage 1
AF4 first reads the transcriptome and the optional gene pair files.

For every gene implicated in a candidate fusion event, it produces

kmers (k¼19 by default) for all possible positions and registers

them in a central hash table that maps a kmer to the list of genes

that contain the kmer. Then, it drops kmers that map to more than a

certain number of genes (by default >2, discussed in Section 4). This

policy drops < 0:1% of kmers in both targeted and de novo modes.

This stage takes 10 s and produces a hash table of size 4GiB in tar-

geted mode, or 1 min and 35GiB in de novo mode (hardware speci-

fied in Section 3).

AF4 then reads the FASTQ file pairs to identify a gene or a gene

pair that best supports each readpair (r1, r2). This step works inde-

pendently and in parallel for every readpair. Algorithm 1 describes

our method.

In Line 1, we drop low-complexity readpairs, for which the fre-

quency of any two nucleotides reaches 90% of the sequence

length.

As the library is expected to contain many short molecules, r1

and r2 are likely to overlap. In addition, if the molecule is smaller

than a read length, r1 or r2 may further contain bases that are not

part of the molecule. Therefore, we stitch r1 and r2 into a fragment

(Line 2 and Fig. 3). We produce kmers at all positions for the two

reads, then find some common kmer that anchors the suffix–prefix

alignment of r1 and r2 (Fig. 3a). If such a kmer is found and the sec-

tion shared between (r1, r2) has sufficient similarity (e.g. Hamming

distance < 10% of the section length), we stitch the two sequences

into one. If the 30 end of r1/r2 extends beyond the 50 end of r2/r1

(overhang), f becomes the overlapping region (Fig. 3b). If r1 and r2

cannot be stitched, either because they are not overlapping or they

have too many sequencing errors, we concatenate the readpair in

form r1Nr02 where N is an artificial base distinct from real bases, and

r02 is a reverse complement of r2 (Fig. 3c). The N character prevents

generation of kmers.

Lines 4–16 detect fusions as described in Section 2.2. The key

idea here is to approximate the coverage of fragment f by gene g

without aligning them to a reference. Instead, if the kmer of f at pos-

ition x matches any kmer of g, we assume that g covers positions

½x;xþ kÞ (½x; yÞ means a half-open range, fx;xþ 1; . . . ; y� 1g) of f.

If multiple kmers of f match those of g, we blindly merge the

matched ranges without verifying if these kmers are sequentially

aligned on the gene. Next, we pick the pair of genes that provide the

most coverage of the fragment, among those that satisfy the fusion

criteria defined in Section 2.2.

Figure 4 illustrates this process. jCðf ; g1Þj ¼ ðx01 � x1Þ
þðx02 � x2Þ þ ðx03 � x3Þ, jCðf ; g2Þj ¼ ðx04 � x4Þ þ ðx05 � x5Þþ
ðx06 � x6Þ. A junction in range ½x1;x

0
5Þ will maximize the combined

coverage, thus jCCðf ; g1; g2;qÞj ¼ ðx04 � x4Þ þ ðx01 � x5Þþ
ðx02 � x2Þ þ ðx03 � x3Þ.

Algorithm 1 may look expensive since it seems to examine all

pairs of genes that share any segment with the fragment. However,

in practice it can be implemented efficiently, for the following

reasons:

• given a pair of genes, the best junction point can be computed in

time linear to the fragment length—to calculate CCðf ; g1; g2; qÞ,
we first sort the regions of each gene in an increasing order of

positions from 5’ to 3’ w.r.t. f. Then, we only need to consider

range boundaries between g1 and g2, assuming there’s at most

one fusion junction spanned by f.
• The average number of genes that needs to be examined per frag-

ment is small due to the conditions imposed in Line 8. In targeted

mode, fragments match less than one gene on average, so the

overhead of this process is negligible. In de novo mode, frag-

ments match more genes depending on samples, but we found it

Algorithm 1. Assign (r1, r2) to a candidate fusion event

1: Drop low-complexity reads.

2: Find a kmer shared between (r1, r2), stitch and trim over-

hangs to generate a fragment f.

3: Let L be the length of the fragment f and gs be the set of

genes sharing some common kmer with f.

4: for Every gene g1 2 gs do

5: Cðf ; g1Þ ¼ set of positions in f covered by g1.

6: for Every gene g2 2 gs n fg1g do

7: Cðf ; g2Þ ¼ set of positions in f covered by g2.

8: Ignore pair (g1, g2) if their coverage do not satisfy con-

currently the fusion support criteria (Section 2.2).

9: for Every possible junction position q 2 ½0;LÞ do

10: CCðf ; g1; g2; qÞ ¼ ðCðf ; g1Þ \ ½0;qÞÞ [ ðCðf ; g2Þ \ ½q;LÞÞ,
representing the combined coverage of g1 and g2 wrt

junction q.

11: end for

12: Cðf ; g1; g2Þ ¼ CCðf ; g1; g2; qÞ s.t. q is some junction pos-

ition that maximizes jCCðf ; g1; g2; qÞj.
13: end for

14: end for

15: Cmaxðf Þ ¼ Cðf ; gÞ s.t. g is the gene that maximizes jCðf ; gÞj
16: CCmaxðf Þ ¼ Cðf ; g1; g2Þ s.t. (g1, g2) is a gene pair that

maximizes jCðf ; g1; g2Þj.
17: if jCCmaxðf Þj > jCmaxðf Þj, then assign the fragment to (g1,

g2).
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still takes less than 5% of the CPU time overall, since this code-

path exhibited high memory-access locality. We examine the per-

formance of AF4 in more detail in Section 3.4.

2.4 Stage 2
Stage one obtained potential candidate fragments and their support-

ing gene fusion pairs. In stage two, like other fusion detection meth-

ods (Haas et al., 2017; Nicorici et al., 2014), AF4 runs a set of

empirically derived methods to remove spurious gene pairs. Given a

candidate fragment f and the corresponding candidate fusion gene

pair (g1, g2), we run the following filters:

Low-complexity sequences: If the subsequences of f covered by

g1 or g2 has low complexity, f is dropped.

Nearby genes: If g1 and g2 are on the same chromosome and are

less than 100 000 bps apart, f is dropped. This policy prevents the

inference of read-through events or the overlapping genes.

PCR duplicates: Fragments with the same UMIs are collapsed

into one. To allow for sequencing errors, UMIs that are within two-

Hamming distance apart are considered the ‘same’. Unlike other sys-

tems that collapse UMIs early in the pipeline, AF4 performs it here,

since the first stage processes each readpair independently. After re-

moval of PCR duplicates, any fusion gene pairs supported by <2 dis-

tinct fragments are dropped. When the data has no UMIs, we merge

highly similar fragments, where by default 95% similarity threshold

is used.

Genes with too many partners: If a gene g appears in too many

gene fusion pairs, all fragments that contain g are dropped. The

default number of maximum gene fusion pairs g involved in is set

to be 5.

These criteria are empirically determined and are not always ap-

propriate. AF4 supports reading candidate fragments and gene pairs

from a checkpoint file and running dataset specific filtering algo-

rithms quickly.

3 Results

AF4 is written in Go (www.golang.org). The experiments were run

on an Ubuntu 16.04 machine with Linux 4.4.0, Xeon E5-

2690@2.6GHz * 28 (two hyperthreads/core, 56 total CPUs),

256GiB of memory and XFS (en.wikipedia.org/wiki/XFS) on NVMe

for storage. In this section, the same default parameter values were

used in all cases to avoid overfitting to an individual dataset. The

scripts used to generate the results in this section are available at:

https://github.com/grailbio/bio/tree/master/fusion/benchmark.

3.1 Simulated and real RNA-seq data
Although AF4 was designed to handle cfNA data, it is applicable

directly to RNA-seq data. To demonstrate this, we ran AF4 on wide-

ly used datasets in methods comparison (Liu et al., 2016). They con-

sist of 15 datasets—three read lengths (50 bp, 75 bp and 100 bp) and

five different coverage levels (5�, 20�, 50�, 100� and 200�). Each

dataset contains fragments that match 150 possible fusion events.

Table 1 shows the results of AF4, STAR-Fusion (Haas et al.,

2017) and ChimeRScope (Li et al., 2017), a recently developed

alignment-free method that was shown to have an overall better

(a)

(b)

(c)

Fig. 2. Fusion event involving gene pairs (g1, g2) and readpairs (r1, r2). The

green line denotes the fusion transcript derived from genes g1 and g2 with fu-

sion junction point denoted by xb. (a) Neither r1 nor r2 spans xb, (b) r1 but not

r1 spans xb and (c) both r1 and r2 span xb

(a)

(b)

(c)

Fig. 3. Fragment generation by stitching and overhang trimming of readpair

(r1, r2). (a) r1 and r2 are represented as arrows facing each other denoting the

forward and reverse complement strands. The green bars denote one of the

shared kmers between them, which is an anchor for suffix—prefix alignment.

The stitched fragment is a concatenation of prefix of r1, overlap and suffix of

r2. (b) When r1 and/or r2 extends beyond the 50 region of the other read, the

overhang is trimmed, and f is the overlap. (c) When r1 and r2 cannot be

merged, f is a concatenation of r1 and reverse complement of r2

Fig. 4. Computing maximum coverage of fragment f for a gene pair (g1, g2).

g1 and g2 are two genes inferred to cover regions of f. g1 covers regions

s1; s2; s3, and g2 cover regions s4; s5; s6. ½xi ; x
0
i Þ are start and end positions of f

for region si
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performance than other methods. The most recent version of STAR-

Fusion (v.1.5.0) was obtained from github (github.com/STAR-

Fusion/STAR-Fusion/) along with the required reference folder

(GRCh38_v27_CTAT_lib_Feb092018). We used the provided

docker image to run STAR-Fusion. Note that ChimeRScope only

reported 135 out of 150 possible fusion events due to the constraint

that ChimeRScope is built on RefSeq annotation but the 15

excluded fusion events were simulated from Ensembl and involved

non-coding regions by RefSeq annotation. AF4 reported on all 150

and achieved a higher F-score than ChimeRscope and STAR-Fusion

for both targeted (over 0.98) and de novo modes (over 0.96). As

expected, the de novo mode produced higher number of FPs.

We further demonstrate the utility of AF4 using four breast cancer

RNA-seq data (Liu et al., 2016) in targeted mode, where the real fu-

sion events can be found in Edgren et al., 2011, Table 1. Because of

the updated annotations of gene names, the genes TMEM49, WDR67

and KIAA0406 have been replaced with VMP1, TBC1D31 and TTI1,

respectively. ENSG00000236127 was eliminated from evaluation

since no proper annotation replacement was found. Using default

parameters, 23 out of 26 total validated fusions have been identified

and one Fp gene pair HMGA2/LP was reported. Upon inspection, we

found that the two false negative gene pairs DHX35/ITCH and

CCDC85C/SETD3 were excluded because of they failed by the

‘Nearby genes’ criterion imposed by AF4 (Section 2.4). The results,

using default parameters, have one more true positive prediction than

ChimeRScope, which was shown to have better predictions than

others alignment-based methods that typically reported 5–20 true

positive predictions in these data (Li et al., 2017, Table 4).

3.2 cfRNA data
We have obtained 40 ml of whole blood collected in Streck tubes,

separated into plasma and extracted cfRNA samples from two Stage

IV Prostate cancer patients and three healthy controls from

Conversant Bio and generated cfRNA sequencing data with UMIs

added. For the two cancer patients, it has been determined that

TMPRSS2-ETV4 and TMPRSS2-ERG fusion were the most likely

real fusion events, because TMPRSS2 fusion are detected in 50% of

prostate cancer (Tomlins et al., 2008). The three healthy individuals

had a primary diagnosis of normal, and therefore, should contain no

real fusion events and serve as negative controls.

We applied AF4 to these data using both the targeted and de

novo mode using default parameters. We also tested the STAR-

Fusion program (Haas et al., 2017), which is one of few programs

that can work with data of this size in a reasonable runtime.

Table 2 shows the results on the inputs of 350 to 450 million

readpairs. It contains the runtime, the number of supporting frag-

ments for the fusions (TMPRSS2-ETV4 and TMPRSS2-ERG) in the

two prostate cancer patient samples as an indicator of sensitivity

and the number of reported fusion events as an indicator of FPs.

For the two real fusions (middle section of Table 2), we report

both the preliminary and final results for both programs.

Preliminary results of AF4 are the output from the first stage of the

program, whereas for STAR-Fusion, there were two preliminary fil-

tered results, one based on FFPM filtering (fusion fragments per mil-

lion total reads) that relies on the expression value (file with

suffix.preliminary.filtered.FFPM) and the other is based on splice in-

formation (file with suffix.wSpliceInfo.wAnnot.pass). We used the

result reported in the FFPM file in the table. As shown in the table,

AF4 identified more fusion-supporting fragments compared to

STAR-Fusion in the preliminary output and in most cases much less

spurious fusions in both targeted and de novo mode. The prelimin-

ary results indicate the method’s capability to identify read-pairs

derived from real fusion events. Also, the chimeric read counts con-

sidered by STAR-Fusion were around 20 and 33 million, respective-

ly, 100 times more than AF4, indicating a higher specificity of AF4.

In the final results (after filtering in stage two), AF4 reported both

real fusions in targeted mode but missed one in de novo mode. Upon

inspection, TMPRSS2-ERG was filtered out in the second stage be-

cause ERG has more than five partners. On the other hand, STAR-

Fusion filtered out both real fusions, likely due to aggressive filtering

as indicated by very low number of total reported fusions.

Note that the parameters of both programs can be tuned to re-

duce the number of FP fusions, while retaining the real fusions. For

example, by raising the minimum number of unique fusions support-

ing fragments from 2 to 5, AF4 will still retain the real fusions but

reduce the number of total reported fusions to be under 10.

Table 1. AF4 for simulated datasets (Liu et al., 2016)

Samples AF4 ChimeRScope STAR-Fusion

Targeted De novo

Length (bp) Coverage TP FP FN F-score TP FP FN F-score F-score F-score

50 5� 146 0 4 0.986 143 1 7 0.973 0.948 0.416

50 20� 147 0 3 0.990 144 2 6 0.973 0.954 0.855

50 50� 147 0 3 0.990 144 2 6 0.973 0.947 0.867

50 100� 147 0 3 0.990 144 3 6 0.970 0.908 0.868

50 200� 147 0 3 0.990 144 3 6 0.970 0.905 0.875

75 5� 144 0 6 0.980 141 1 9 0.966 0.948 0.700

75 20� 147 0 3 0.990 143 1 7 0.973 0.949 0.865

75 50� 147 0 3 0.990 143 1 7 0.973 0.957 0.872

75 100� 147 0 3 0.990 144 2 6 0.973 0.954 0.875

75 200� 147 0 3 0.990 144 3 6 0.970 0.947 0.875

100 5� 144 0 6 0.980 140 0 10 0.966 0.940 0.692

100 20� 147 0 3 0.990 143 1 7 0.973 0.957 0.878

100 50� 147 0 3 0.990 143 1 7 0.973 0.957 0.875

100 100� 147 0 3 0.990 143 1 7 0.973 0.957 0.872

100 200� 147 0 3 0.990 143 1 7 0.973 0.957 0.877

Note: Each dataset contains fused reads of 150 gene pairs. In the targeted mode, the names of the 655 target gene pairs (including all 150 target ones) are given

in the command line, along with the transcriptome. In the de novo mode, only the transcriptome is given.
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Nonetheless, we report the results by using the default of both pro-

grams to reflect the needs to empirically adjust the parameters of the

program to different data type to achieve acceptable performance.

3.3 cfDNA data
Fusion detection in DNA-seq data is more challenging. Because fu-

sion junctions may occur within introns, typically over half of exist-

ing gene panels are devoted to capture fusions. Computationally,

this translates to a larger search space and higher number of FPs.

Typically, fusion detection programs intended for RNA-seq data are

not directly applicable to DNA-seq data. However, we show the tar-

geted mode of AF4 may be applicable to cfDNA data.

We have created a proxy for circulating tumor DNA derived

from plasma from human subjects by titrating genomic DNA carry-

ing known genetic variations into a well characterized genome in a

bottle (GIB) sample (NA12878) at six concentrations and then

sheared them. Horizon control HD753 (https://www.horizondiscov

ery.com/structural-multiplex-reference-standard-hd753) was used as

the spike in sample, which contains two fusion variants, CCDC6/

RET and SLC34A2/ROS1. Titration percentages varied be-

tween.001 and.01.

Table 3 shows the results for AF4 and Manta (Liu et al., 2016),

with AF4 running in targeted mode using default parameters. For

Manta, raw cfDNA sequencing data were trimmed to remove adapt-

er sequences and aligned using BWA. PCR duplicates were identified

using an internal tool that uses the fragment start and end position

along the genome, along with the pair of UMIs that are annealed to

each end of the read to disambiguate collision events. Aligned and

deduplicated reads were then processed by Manta using the com-

mand line: ‘python configManta.py –tumorBam –runDir –

referenceFasta –generateEvidenceBam –exome’, where hg19 was

used as the reference. AF4 achieved comparable or better sensitivity

compared to Manta. For Manta outputs, we removed non-fusion

related outputs and merged all fusions involving the same two genes.

However, the FPs in Manta are too high to be used to confidently

call genuine fusion events. By further filtering using the target gene

pairs as used by AF4, nearly all FPs were eliminated. This demon-

strated that the strategy of targeting clinical relevant fusions is high-

ly effective.

Note that due to the large search space and the fact that screen-

ing or tumor sub-typing is the main-intended use for cfDNA data,

only targeted mode of AF4 is intended to be used for this data type.

Although Manta can be used to discover novel fusion events, the ex-

cessive number of FPs makes it impractical without additional post-

filtering.

3.4 Performance
Table 4 shows the number of fragments retained or dropped by vari-

ous stages in the AF4 pipeline, using the samples from the previous

sections. AF4 yields very few candidate fragments after the first

stage—<0.0001% in targeted mode and 0.1% in de novo mode.

Moreover, the vast majority of the candidates from the first stage

are PCR duplicates that can be removed. That leaves just a few can-

didates, even for very large datasets.

Table 5 summarizes the performance of the systems studied in

the previous sections. We omitted simulated datasets (Section 3.1)

as AF4 takes about 10 s in targeted mode to 60 s in de novo mode.

We could not run ChimeRScope ourselves due to licensing reasons,

but Li et al., (2017) reported that its read throughput is of >5000

reads per minute/CPU. Extrapolating, AF4 looks to be 300 times

faster than ChimeRScope. AF4 is significantly faster than STAR-

Fusion, by 12� to 23�. Its performance is on par with Manta; how-

ever, this does not include the time spent generating the alignments

which took over 6 h for the samples in our datasets.

The vast majority of AF4’s runtime is spent in the first stage; the

second stage runs in a few seconds for all the datasets. For the first

stage, AF4 spends 40–50% of its time in kmer-to-gene-list map

lookups. This map is so large that it always causes TLB- and CPU-

cache misses, and this operation happens at every position of every

fragment.

Table 2. Results of AF4 and STAR-Fusion on cfRNA data

Samples #readpairs (millions) Coverage Number of TMPRSS2-ETV4/ERG supporting fragments Number of reported fusion events

AF4 STAR-Fusion AF4 STAR-Fusion

Targeted De novo Targeted De novo

Final Prelim Final Prelim Final Prelim Final Prelim

Prc101 373.8 29 132 19 345 19 345 0 31 9 239 19 979

Prc108 464.5 36 200 9 114 0 116 0 13 12 140 13 787

HC118 399.8 31 158 — — — — — — 1 289 5 930

HC160 348.9 27 191 — — — — — — 0 303 21 254

HC332 443.2 34 540 — — — — — — 1 350 18 840

Note: The coverage is calculated by the formula #readpairs � 166/2.13, where 2.13 (million bp) is the panel size and 166 (bp) is used as the average fragment

length. The middle section of the table shows the number of readpairs that support either the TMPRSS2-ETV4 or the TMPRSS2-ERG fusion event. As these two

fusions are not expected in the healthy controls, they are marked by ‘—’. The right most part of the table shows the number of unique fusion events reported.

Table 3. Results of AF4-targeted mode and Manta on cfDNA titra-

tion data for identified fusion events

Samples

(titration)

readpairs

(millions)

Coverage AF4 Manta

TP FP FN TP FP FN

T1 (0.001) 1000.9 78 004 1 13 1 1 3774 1

T2 (0.002) 938.8 73 165 1 11 1 0 2884 2

T4 (0.004) 1141.2 88 939 2 16 0 2 2723 0

T7 (0.006) 998.1 77 786 2 16 0 1 2353 1

T10 (0.008) 951.4 74 147 2 15 0 2 2455 0

T13 (0.01) 1033.2 80 522 2 22 0 2 2832 0

T14 (0.01) 1014.2 79 041 2 17 0 2 3108 0

Note: The coverage is calculated by the formula #readpairs (millions) �
166/2.13, where 2.13 (million bp) is the panel size and 166 (bp) is used as the

average fragment length. Some titrations have two to three replicates as

shown in the first column.
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Interestingly, the core AF4 algorithms—computing the coverage

by genes, examining pairwise combinations of genes, and picking

the best fusion—takes an insignificant fraction of time: 0% in tar-

geted mode and 3% in de novo mode. In targeted (or de novo)

mode, one fragment finds on average 0.5 (or 2, respectively) gene

that has any kmer in common. Thus, many fragments are dropped

without running our main fusion detection code.

4 Discussion

We have originally developed AF4 to efficiently handle cfRNA data

but we observed that AF4 could be directly applied to tissue RNA-

seq data. Moreover, it is encouraging to see that the targeted mode

of AF4 can be used for cfDNA fusion detection: previously, align-

ment-based algorithms were typically needed to handle DNA-seq

data due to the much larger search space.

Fusion detection methods use varied filtering criteria for differ-

ent data types. These programs, including AF4, are typically rich in

parameters that require tuning. Therefore, AF4 is not intended to

fully replace other fusion detection methods, but it would be a valu-

able addition due to its linear scalability, high sensitivity in retaining

relevant fusion fragments, and effective optimization strategy to re-

move the majority of spurious fragments. Users have an option to

use the output of the first stage of AF4 in combination with more

sophisticated filtering methods, which should be able to handle a

much-reduced data size. It is also worth noting that different data

types may have different properties, therefore requiring different

parameter settings. Our results showing superiority on these bench-

mark datasets does not imply that the superior performance will

generalize to all other datasets.

In order to select default parameters for AF4, we identified

kmer size and the number of occurrences of the kmer shared

across genes in the transcriptome data and identified the reason-

able choices of the former to be 17–19 and the latter to be 2–3.

With k¼19, the default value, this approach allows efficient

coverage computation with negligibly low false-match rate. Both

of these parameters can be adjusted: when k decreases, the method

would be more sensitive in picking up candidate fusion fragments,

however, the average number of genes a kmer occurs in would in-

crease. Correspondingly, the number of occurrences of a kmer

shared across genes should be increased to avoid of kmers being

dropped. The filtering thresholds in the second stage of AF4 would

be more relevant to the particular application and users have the

option to learn empirically the optimal settings to have a balance

between sensitivity and specificity.

One drawback of AF4 is its difficulty in detection fusion events

where single nucleotide polymorphisms (SNPs) exist near a junction,

which limits its ability to identify fusion spanning fragments, where-

as alignment-based methods would likely be able to identify these

fragments by tolerating mismatches. However, based on the design

of the method, this can be addressed by generating additional refer-

ence sequences by incorporating common SNPs on the exon boun-

daries without needing to change the program. Some improvements

can be built-in further in AF4 such as to include more sophisticated

filtering criteria and to incorporate alignment-based strategies in

stage two to improve specificity.

Table 5. Runtimes of AF4, STAR-Fusion and Manta in seconds

(wall-clock time), where the same number of cores were used

Samples #readpairs

(millions)

AF4 AF4 STAR-

Fusion

Manta

Targeted De novo

Prc101 373.8 362 481 8475 —

Prc108 464.5 340 462 16 075 —

HC118 399.8 346 470 8801 —

HC160 348.9 373 381 7903 —

HC332 443.2 382 391 12 666 —

T1 (0.001) 1000.9 1000 — — 1280

T2 (0.002) 938.8 938 — — 1160

T4 (0.004) 1141.2 1268 — — 2016

T7 (0.006) 998.1 1124 — — 1160

T10 (0.008) 951.4 1104 — — 1040

T13 (0.01) 1033.2 1217 — — 1190

T14 (0.01) 1014.2 1117 — — 1490

Note: Samples are from Sections 3.2 and 3.3. Times for Manta exclude the

alignment and de-duplication steps.

Table 4. Efficacy of filtering policies implemented in AF4

Samples Stage one Low cmpl seq Nearby genes PCR dups Abund partners Final

T1 345 1 0 243 66 35

T2 287 5 0 202 41 39

T4 709 5 43 519 65 77

T7 397 4 8 302 0 83

T10 704 3 3 571 0 127

T13 866 3 0 717 0 146

T14 679 3 3 559 0 114

Prc101 (T) 29 754 0 0 25 592 0 4162

Prc101 (D) 296 113 1172 6038 257 979 29 838 1481

Prc108 (T) 284 0 28 203 0 53

Prc108 (D) 325 417 794 6047 261 012 56 199 1634

HC332 (T) 64 0 0 59 0 5

HC332 (D) 140 189 407 3127 121 074 14 156 1681

HC118 (T) 116 0 0 111 0 5

HC118 (D) 449 265 723 9030 420 528 17 305 1880

HC160 (T) 2 1 0 1 0 0

HC160 (D) 22 173 174 539 18 658 1693 1154

Note: ‘Stage one’ column shows the number of fusion candidate fragments found in the first stage. Columns ‘Low cmpl seq’ (low-complexity sequences),

‘Nearby genes’, ‘PCR dups’ (PCR duplicates), and ‘Abund partners’ (genes with too many partners) show the number of candidates dropped due to the named pol-

icies defined in Section 2.4. ‘Final’ column shows the final number of fusion fragments reported.
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