
GkmExplain: fast and accurate interpretation of

nonlinear gapped k-mer SVMs

Avanti Shrikumar1,*,†, Eva Prakash2,† and Anshul Kundaje 1,3,*

1Department of Computer Science, Stanford University, Stanford, CA 94305, USA, 2Computer Science, BASIS

Independent Silicon Valley, San Jose, CA 95126, USA and 3Department of Genetics, Stanford University, Stanford,

CA 94305, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Abstract

Summary: Support Vector Machines with gapped k-mer kernels (gkm-SVMs) have been used to

learn predictive models of regulatory DNA sequence. However, interpreting predictive sequence

patterns learned by gkm-SVMs can be challenging. Existing interpretation methods such as

deltaSVM, in-silico mutagenesis (ISM) or SHAP either do not scale well or make limiting assump-

tions about the model that can produce misleading results when the gkm kernel is combined with

nonlinear kernels. Here, we propose GkmExplain: a computationally efficient feature attribution

method for interpreting predictive sequence patterns from gkm-SVM models that has theoretical

connections to the method of Integrated Gradients. Using simulated regulatory DNA sequences,

we show that GkmExplain identifies predictive patterns with high accuracy while avoiding pitfalls

of deltaSVM and ISM and being orders of magnitude more computationally efficient than SHAP.

By applying GkmExplain and a recently developed motif discovery method called TF-MoDISco to

gkm-SVM models trained on in vivo transcription factor (TF) binding data, we recover consolidated,

non-redundant TF motifs. Mutation impact scores derived using GkmExplain consistently outper-

form deltaSVM and ISM at identifying regulatory genetic variants from gkm-SVM models of chro-

matin accessibility in lymphoblastoid cell-lines.

Availability and implementation: Code and example notebooks to reproduce results are at https://

github.com/kundajelab/gkmexplain.

Contact: avanti@stanford.edu or akundaje@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Deciphering the combinatorial regulatory DNA sequence patterns

that determine transcription factor (TF) binding and chromatin state

is critical to understand gene regulation and interpret the molecular

impact of regulatory genetic variation. High-throughput in vivo and

in vitro functional genomics experiments provide large datasets to

train predictive models using machine learning approaches that can

learn the relationship between regulatory DNA sequences and their

associated molecular phenotypes. A Support Vector Machine (SVM)

is a popular type of supervised classification model that learns an

optimal linear separating hyperplane in a high-dimensional feature

space. SVMs rely on a function called a kernel that measures the

similarity between all pairs of datapoints in the high-dimensional

feature space. SVMs are appealing because they are stable to train

and, when used with an appropriate kernel, can model complex

input-output relationships. The gapped k-mer (gkm) string kernel

(Ghandi et al., 2014; Leslie and Kuang, 2004) was developed to en-

able training SVMs on string inputs such as DNA or protein sequen-

ces. The gkm kernel computes a similarity between pairs of

sequences based on the biologically motivated notion of shared ap-

proximate occurrences of short subsequences allowing for gaps and

mismatches. The gkm kernel can be further combined with other

nonlinear kernels such as the radial basis function (RBF) kernel to

capture complex nonlinear relationships between the input string

features. Gapped k-mer SVMs and their extensions have been suc-

cessfully applied to several prediction tasks in regulatory genomics

such as TF binding and chromatin accessibility prediction (Ghandi

et al., 2014; Lee, 2016; Lee et al., 2015). Interpretation of these

trained SVMs is important to decipher the patterns such as TF bind-

ing motifs present in input DNA sequences that are predictive of

their associated molecular labels. Moreover, these models can be

used to predict the impacts of genetic variants in regulatory DNA

VC The Author(s) 2019. Published by Oxford University Press. i173

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i173–i182

doi: 10.1093/bioinformatics/btz322

ISMB/ECCB 2019

http://orcid.org/0000-0003-3084-2287
https://github.com/kundajelab/gkmexplain
https://github.com/kundajelab/gkmexplain
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data
https://academic.oup.com/


sequences (Lee et al., 2015). Unfortunately, interpretation of gkm-

SVMs can be challenging. DeltaSVM (Lee et al., 2015), a popular

tool that estimates the effects of variants using a trained gkm-SVM,

does not give improvements in variant scoring when applied to

SVMs trained with nonlinear versions of the gkm kernel, even

though these nonlinear kernels perform better at regulatory se-

quence classification (suggesting that deltaSVM is not fully leverag-

ing the advantages of the nonlinear kernel) (Lee, 2016). In-silico

mutagenesis (ISM) (Bromberg and Rost, 2008), an interpretation ap-

proach that involves measuring the impact of exhaustive perturba-

tions of every nucleotide in an input sequence on the output label,

can be computationally inefficient and can fail to reveal the presence

of motifs when nonlinear saturation effects are present (Shrikumar

et al., 2017). SHAP (Lundberg and Lee, 2017), a method based on

estimating Shapely values, can address the nonlinearity issues faced

by deltaSVM and ISM but is even less computationally efficient than

ISM. As such, there is a need for fast interpretation of gapped k-mer

Support Vector Machines that works reliably in the presence of non-

linear effects.

2 Our contributions

Here we present GkmExplain, a computationally efficient method

for explaining the predictions of both linear and nonlinear versions

of gapped k-mer SVMs. Specifically, GkmExplain is a feature attri-

bution method that efficiently computes the predictive contribution

or importance of every nucleotide in an input DNA sequence to its

associated output label through the lens of a gkm-SVM model.

GkmExplain works by decomposing the output of the gapped k-mer

string kernel into the contributions of matching positions within the

k-mers. It has theoretical connections to Integrated Gradients, a fea-

ture attribution method originally developed to interpret deep learn-

ing models (Sundararajan et al., 2017). On simulated regulatory

DNA sequences, where the ground truth predictive motifs are

known, we find that GkmExplain substantially outperforms

deltaSVM and ISM at identifying predictive motifs and also outper-

forms SHAP while being multiple orders of magnitude more compu-

tationally efficient. We further show that by supplying GkmExplain

contribution score profiles to the recently-developed importance

score clustering and aggregation tool TF-MoDISco (Shrikumar

et al., 2018), we can recover motifs of TFs from gkm-SVM models

trained on in vivo TF binding data. The resulting motifs are more

consolidated, less redundant and better matches to known canonical

TF motifs when compared to those produced by the method of

Ghandi et al. (2014) as well as those produced by the traditional

motif discovery approaches MEME and HOMER. Finally, using

non-linear gkmSVM models trained to identify regulatory DNA

sequences associated with accessible chromatin, we show that muta-

tion impact scores derived through GkmExplain outperform

deltaSVM and ISM at identifying DNase-I hypersensitive quantita-

tive trait loci (dsQTLs) in lymphoblastoid cell-lines (LCLs).

3 Background

3.1 Gapped k-mers
A full k-mer refers to a letter subsequence of length k—for example,

AAGT is a full 4-mer. By contrast, a gapped k-mer refers to a subse-

quence containing k letters and some number of gaps—for example,

A*AG*T is a gapped 4-mer containing 2 gaps (* is used to denote a

gap). In the gkm-SVM implementation, the parameter l denotes the

full length of the subsequences considered (including gaps), while k

denotes the number of non-gap positions—for example, the l-mer

ACG (where l¼3) contains the gapped k-mers AC*, A*G and *CG

(where k¼2). The parameter l is also called the ‘word length’. The

number of possible gapped k-mers can be calculated using the for-

mula
l
k

� �
4k. A higher value of l allows the gkm-SVM to learn

wider patterns, while a higher value of the number of gaps (l – k)

increases the flexibility of the learned patterns.

3.2 Support vector machines and gapped k-mer kernels
Let x be an input to a Support Vector Machine (SVM), m be the

total number of support vectors, Zi be the ith support vector, yi be

the label (þ1 or -1) associated with the ith support vector, ai be the

weight associated with the ith support vector, b be a constant bias

term and K be a kernel function that is used to compute a similarity

score between Zi and x. SVMs produce an output of the form:

FðXÞ ¼ bþ
Xm
i¼1

aiy
iKðZi; xÞ (1)

Kernel functions can be thought of as implicitly mapping their

inputs to vectors in some feature space and then computing a dot

product. For example, the gapped k-mer kernel implicitly maps its

DNA sequence inputs to feature vectors representing the normalized

counts of distinct gapped k-mers. Formally, it can be written as:

KgkmðS1; S2Þ ¼
*

f S1

gkm

kf S1

gkmk
;

f S2

gkm

kf S2

gkmk

+
¼

hf S1

gkm; f
S2

gkmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf S1

gkm; f
S1

gkmi
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hf S2

gkm; f
S2

gkmi
q

(2)

where f S1

gkm and f S2

gkm are feature vectors representing the counts of

distinct gapped k-mers in sequences S1 and S2 respectively. As the

feature space corresponding to gapped k-mer counts can be large,

for computationally efficiency the gkm kernel (Ghandi et al., 2014;

Leslie and Kuang, 2004) computes the dot product hf S1

gkm; f
S2

gkmi with-

out explicitly computing f S1

gkm or f S2

gkm. Let uSx

i represent the identity

of the l-mer at position i in sequence Sx, and let fmðuS1

i ;u
S2

j Þ be a

function that returns the number of mismatching positions between

the l-mers uS1

i and uS2

j . The gkm kernel leverages the fact that:

hf S1

gkm; f
S2

gkmi ¼
X

i

X
j

h
�

fmðuS1

i ;u
S2

j Þ
�

(3)

where the indexes i and j sum over all l-mers in S1 and S2 respective-

ly, and h(m) is a function that returns the contribution of an l-mer

pair with m mismatches to the dot product hf S1 ; f S2 i. For example, if

uS1

i and uS2

j are a pair of l-mers with m mismatches between them,

then the number of gapped k-mers they share is
l �m

k

� �
. Thus, in

the case of the traditional gapped k-mer kernel, hðmÞ ¼ l �m
k

� �
.

Ghandi et al. (2014) additionally proposed variants of the gapped k-

mer kernel such as the truncated gkm-filter that differ in the func-

tion h(m), but otherwise have an identical formulation.

For computational efficiency, the gkm-SVM implementation

contains a parameter d that sets h(m) ¼ 0 for all m>d (regardless of

the values of l and k). This is efficient because it limits the number

of l-mer pairs that need to be considered to those where m � d. In

the documentation, d is referred to as the maximum number of

allowed mismatches.

i174 A.Shrikumar et al.



3.3 Extensions of the gkm kernel
Lee (2016) proposed variants of the gapped k-mer kernel. We de-

scribe these variants below.

3.3.1 The wgkm kernel

In regulatory DNA sequence, motifs often exhibit a positional pref-

erences—for example, they may tend to occur close to the summit of

peaks in ChIP-seq data. The weighted gkm (wgkm) kernel leverages

this property by giving l-mers weights according to the position at

which they occur. These weights are pre-defined by the user, and the

lsgkm implementation supports weights that decay exponentially

with distance from the center of the sequence. A dot product in the

feature space of weighted gapped k-mers can be expressed as:

hf S1

wgkm; f
S2

wgkmi ¼
X

i

X
j

h
�

fmðuS1

i ; u
S2

j Þ
�

wiwj (4)

where wi and wj are the weights associated with l-mers at positions i

and j respectively. Analogous to Eqn. 2, the wgkm kernel can be

written as:

KwgkmðS1; S2Þ ¼
*

f S1

wgkm

kf S1

wgkmk
;

f S2

wgkm

kf S2

wgkmk

+
¼

hf S1

wgkm; f
S2

wgkmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf S1

wgkm; f
S1

wgkmi
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hf S2

wgkm; f
S2

wgkmi
q

(5)

The gkm kernel is a special case of the wgkm kernel with wi¼1

for all i.

3.3.2 The gkmrbf kernel

The RBF kernel is useful for modeling complex nonlinear interac-

tions between input features. It is defined as KRBFðx; yÞ ¼

exp �kx�yk2
2r2

� �
(where x and y are vectors). Recall that the gkm ker-

nel can be thought of as mapping the input sequences to a feature

space of normalized gapped k-mer counts. The gkmrbf kernel maps

sequences to the same feature space as the gkm kernel, but then

applies the RBF kernel to the vectors rather than the dot product.

For efficient computation, this equality is leveraged:

kx� yk2 ¼ hx� y; x� yi ¼ hx;xi þ hy; yi � 2hx; yi

As gkm feature vectors are always unit normalized, hx; xi ¼
hy; yi ¼ 1. If we let c ¼ 1

r2, we get:

KgkmrbfðSx; SyÞ ¼ exp
�
cðKgkmðSx; SyÞ � 1Þ

�
(6)

3.3.3 The wgkmrbf kernel

Analogous to Eqn. 6, the wgkmrbf kernel is a combination of the

wgkm kernel and the RBF kernel:

KwgkmrbfðSx; SyÞ ¼ exp
�
cðKwgkmðSx; SyÞ � 1Þ

�
(7)

4 Previous work

4.1 DeltaSVM
DeltaSVM (Lee et al., 2015) is a popular tool developed by the

authors of gkm-SVM to estimate the in-silico effects of genetic var-

iants. DeltaSVM precomputes a score for each l-mer as the output

when the gkm-SVM is supplied only that l-mer as input. It then esti-

mates the impact of a mutation as the total change in the scores of

all l-mers overlapping the mutation. Because the scores of individual

l-mers are precomputed, calculating the impact of a single mutation

is computationally efficient. However, this formulation does not

consider non-additive relationships between l-mers that can be

learned by the gkmrbf or wgkmrbf kernels, such as those illustrated

in Figure 1. It also does not consider the influence of positional

weights that are present in the wgkm or wgkmrbf kernels.

Consistent with this, Lee (Lee, 2016) observed that deltaSVM used

in conjunction with the gkmrbf, wgkm or wgkmrbf kernels did not

produce improvements in variant scoring relative to the gkm kernel,

even when predictive models trained with the former kernels per-

formed better.

4.2 In-silico mutagenesis (ISM)
An alternative to deltaSVM for estimating the impact of individual

mutations is to directly compute the change in the output of the

SVM when the mutation is introduced into the input sequence. This

approach is called in-silico mutagenesis (ISM) (Bromberg and Rost,

2008), and it has been successfully applied to interpret complex ma-

chine learning models (Zhou and Troyanskaya, 2015). However, re-

peatedly rerunning the model to compute the impact of every

possible mutation in an input sequence can become computationally

inefficient. Further, when ISM is applied to a model that has learned

nonlinear saturating effects, it can fail to reveal the presence of

motifs in a sequence (Shrikumar et al., 2017). Such nonlinear effects

can be learned by the gkmrbf or wgkmrbf kernels (Section 3.3), both

of which were found to produce improvements in performance rela-

tive to the gkm kernel (Lee, 2016). An example is provided in

Figure 1.

4.3 SHAP
SHAP (Lundberg and Lee, 2017) is a general-purpose model inter-

pretation algorithm that addresses the saturation issue of ISM by

sampling several combinations of input perturbations and looking at

the change in the output for all the sets of perturbations.

Perturbations are performed by replacing the perturbed features

with the values that those features have in a user-supplied ‘back-

ground’. For example, in the case of DNA sequence, if the original

Fig. 1. Toy example illustrating drawback of ISM. Presented is a gkmrbf

model exhibiting ‘AND’-type logic: at least one instance of ‘TATA’ and one in-

stance of ‘CCGG’ must be present for the model to give a high positive predic-

tion. The model has a single positively-weighted support vector containing

one TATA and one CCGG. It has two negatively-weighted support vectors

consisting exclusively of TATA and CCGG. Importance scores on a sequence

containing two instances of TATA (blue boxes) and one instance of CCGG

(violet box) are shown. The sequence has a positive prediction. Although the

TATA instances are relevant for the positive prediction, ISM does not clearly

highlight them. This is because perturbing any single TATA instance does not

tend to decrease the prediction, as high similarity with the positively-

weighted support vector can be achieved with only one TATA instance

GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs i175



input sequence is AAA and the background is TTT, and positions 1

and 3 are sampled for perturbation, then the corresponding per-

turbed sequence would be TAT. In scenarios where there is no single

background input, but rather there is a collection of potential back-

ground inputs (as is often the case for DNA sequence), SHAP com-

putes the model output when each background input is used

individually for substitution and takes the average. For example, if

the original input sequence is AAA, and there are three background

sequences of TTT, CCC and GGG, then when computing the output

when positions 1 and 3 are sampled for perturbation, SHAP would

compute the average of the model output over TAT, CAC and GAG.

The runtime of SHAP thus depends on the product of the number of

sampled perturbations and the number of background sequences.

Although SHAP has been shown to have good theoretical guar-

antees, it is far less computationally efficient than ISM because the

number of sampled perturbations needed to get accurate importance

estimates can be quite large. For example, the authors of SHAP used

50 000 sampled perturbations to obtain stable estimates of feature

importance on a single example from the MNIST digit recognition

dataset (each MNIST digit is a 28�28 image, and only one back-

ground—consisting of the all-zeros image—was used). In our experi-

ments with simulated DNA sequences of length 200 bp, we ran

SHAP with both 2000 and 20 000 sampled perturbations per input

and 20 background sequences per input, where the background

sequences were generated for each input sequence by performing a

dinucleotide-preserving shuffle. We found that increasing the num-

ber of background sequences from 20 to 200 did not appear to sub-

stantially change the results (Fig. 2). At 20 000 perturbations per

input and 20 background sequences, the number of model evalua-

tions needed per sequence was 20 000� 20 ¼ 400 000. Despite this

hefty computational requirement, we still found that GkmExplain

outperformed SHAP (Figs 2 and 4 and Supplementary Fig. SA.1).

4.4 SVM motif discovery method of Ghandi et al. (2014)
Although there exist a variety of unsupervised motif discovery meth-

ods such as MEME (Bailey et al., 2009) and HOMER (Heinz et al.,

2010), we sometimes wish to understand the motifs that are specific-

ally learned de-novo by a supervised machine learning model. For

example, when debugging our models, we may wish to know which

patterns the supervised model has failed to pick up. In cases where

the supervised model can represent more complex motifs, we may

be curious whether the supervised model has learned motifs that the

unsupervised model did not identify. To our knowledge, the only

method in the literature that attempts to reveal the motifs specifical-

ly learned by a gapped k-mer SVM is the method presented by

Gandhi et al. (2014) in the gkm-SVM paper (Ghandi et al., 2014).

Their strategy was based on first scoring all possible 10-mers using

the gkm-SVM and then finding motifs within the top 1% of 10-mers

that received the highest scores using an iterative greedy algorithm.

In our experiments, we found that by supplying the importance

scores produced by GkmExplain to the importance score clustering

and aggregation tool TF-MoDISco (Shrikumar et al., 2018), we

recovered more consolidated, non-redundant motifs with better

matches to known canonical motifs than those produced by the

method of Ghandi et al. (2014) (see Figs 5 and 6).

5 Materials and methods

5.1 GkmExplain importance scores
We will begin by presenting a method for explaining the wgkm ker-

nel output between a sequence Sx and a support vector Sz in terms of

the contributions of individual basepairs in sequence Sx. Once we

have a method for explaining the kernel output, it will be straight-

forward to extend this to explain the final SVM output. Recall that

the gkm kernel is a special case of the wgkm kernel where the

weights are uniformly set to 1, and that the gkmrbf and wgkmrbf

kernels build on the gkm and wgkm kernels respectively. Thus,

explaining the wgkm kernel is an essential step to explaining the

gkmrbf and wgkmrbf kernels as well.

As a reminder, the weighted gapped k-mer kernel between

sequences Sx and Sz, denoted as KwgkmðSx; SzÞ, can be understood as

the dot product between unit-normalized feature vectors f Sx

wgkm and

f Sz

wgkm, where f Sx

wgkm denotes a vector of the position-weighted gapped

k-mer counts in Sx. Also recall that, for computational efficiency, ra-

ther than explicitly computing the feature vectors f Sx

wgkm and f Sz

wgkm,

we can instead compute the dot product hf Sx

wgkm; f
Sz

wgkmi in terms of

Fig. 2. Comparison of GkmExplain, ISM, deltaSVM and SHAP on an individual simulated sequence. An SVM with a gkmrbf kernel with l¼ 6, k¼5 and d¼ 1 was

used to distinguish sequences containing both TAL1 and GATA1 motifs from sequences containing only one kind of motif or neither kind of motif. The locations

of embedded GATA1 motifs are indicated by blue stars, and the location of the embedded TAL1 motif is indicated by a red star. The relatively poor performance

of ISM and deltaSVM is due to the nonlinear nature of the RBF kernel

i176 A.Shrikumar et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data


the number of mismatches between the l-mers in Sx and Sz.

Formally, if we let lSx

j denote the l-mer at position j in Sx, lSz

k denote

the l-mer at position k in Sz, we had in Eqn. 3 that the contribution

of the l-mer pair ðlSx

j ; l
Sz

k Þ to hf Sx

wgkm; f
Sz

wgkmi is wjwkhðfmðlSx

j ;l
Sz

k ÞÞ,
where fm is a function that returns the number of mismatches and h

is a function that depends on the specific variant of the kernel used.

For notational convenience, we will denote fmðlSx

j ;l
Sz

k Þ as m here.

How should we distribute the quantity wjwkhðmÞ over the bases

in Sx? Consider a position i in sequence Sx that overlaps the l-mer

lSx

j . Let us denote the base at position i as Bx ¼ Si
x, and the corre-

sponding base within the other l-mer lSz

k (from position k in support

vector Sz) as Bz ¼ S
kþði�jÞ
z (‘corresponding’ means that the offset of

Bx relative to the start of lSx

j is the same as the offset of Bz relative to

the start of lSz

k ). If we evenly distribute wjwkhðmÞ among the ðl �mÞ
matching positions between l-mers lSx

i and lSz

j , then position i would

inherit an importance of
wjwkhðmÞ

l�m if Bx ¼ Bz, and would inherit an im-

portance of 0 if Bx 6¼ Bz. Leaving out the weights wjwk (which don’t

depend on m, Bx or Bz), we can encapsulate the core logic in the

function effðm;Bx;BzÞ, defined as:

effðm;Bx;BzÞ ::¼
hðmÞ
l �m

if Bx¼ Bz

0 otherwise

8<
: (8)

Using this function, we write the weighted contribution to

hf Sx

wgkm; f
Sz

wgkmi inherited by position i from the l-mer pair ðlSx

j ; l
Sz

k Þ as:

impði; j; k; Sx; SzÞ ::¼ wjwkeffðfmðlSx

j ;l
Sz

k Þ; S
i
x; S

kþði�jÞ
z Þ (9)

If we sum this quantity over all possible l-mer pairs where lSx

j

overlaps position i—that is, we sum over the range j ¼ maxði� ðl �
1Þ;0Þ to j ¼ minði; lenðSxÞ � lÞ—and normalize by the total wgkm

feature vector lengths kf Sx

wgkmkkf
Sz

wgkmk (as is done in the wgkm ker-

nel), we arrive at the total contribution of position i in Sx to

KwgkmðSx; SzÞ, which we denote as /wgkm
i;Sx ;Sz

:

/wgkm
i;Sx ;Sz

::¼
Xminði;lenðSxÞ�lÞ

j¼maxði�ðl�1Þ;0Þ

X
k

impði; j;k; Sx; SzÞ
kf Sx

wgkmkkf
Sz

wgkmk

 !
(10)

kf Sx

wgkmk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KwgkmðSx; SxÞ

p
is efficiently computed using the ker-

nel function. Now that we have defined the contribution of base i to

the wgkm kernel output KwgkmðSx; SxÞ, we can define the final con-

tribution of base i to the output of the wgkm-SVM as simply being

the weighted sum of /wgkm
i;Sx ;Szj

over all support vectors Szj , where the

weights are ajy
j (as per Eqn. 1). We denote this quantity as /wgkmsvm

i;Sx

/wgkmsvm
i;Sx

¼
Xm
j¼1

ajy
j/wgkm

i;Sx ;Szj
(11)

How can we compute a similar quantity for per-base attributions

with the wkgmrbf kernel? We first note that when hf Sx

wgkm; f
Sz

wgkmi is

0, the output of KwgkmrbfðSx; SzÞ is expð�cÞ as per Eqn. 7. If we pre-

tend that a hypothetical ‘baseline’ input Sx is one that produces

hf Sx

wgkm; f
Sz

wgkmi ¼ 0 for any support vector Sz, then KwgkmrbfðSx; SzÞ �
expð�cÞ is the ‘difference from baseline’. How can we explain this

‘difference from baseline’ in terms of the contributions from individ-

ual bases in Sx? Given that we already have a way to compute

/wgkm
i;Sx ;Sz

, we can simply distribute the ‘difference from baseline’

proportionally to /wgkm
i;Sx ;Sz

. Because
P

i /
wgkm
i;Sx ;Sz

¼ KwgkmðSx; SzÞ by de-

sign, this gives us:

/wgkmrbf
i;Sx ;Sz

¼
/wgkm

i;Sx ;Sz

KwgkmðSx; SzÞ
KwgkmrbfðSx; SzÞ � expð�cÞÞ
�

(12)

Thus, by design, we again have the property thatP
i /

wgkmrbf
i;Sx ;Sz

¼ KwgkmrbfðSx; SzÞ � expð�cÞ. This is what allows

GkmExplain to address the saturation issue faced by ISM in

Figure 1: even in situations where perturbing any individual base lo-

cally produces a near-zero change in the kernel KwgkmrbfðSx; SzÞ, the

GkmExplain importance scores are not saturated as they cover the

entire difference KwgkmrbfðSx; SzÞ � expð�cÞ. Specifically, in the case

of the toy example in Figure 1, GkmExplain recognizes that the

similarity with the positively-weighted support vector is well above

its baseline value, and therefore grants positive importance to

gapped k-mer matches between the input sequence this support vec-

tor—even though similarity with the support vector is locally in-

sensitive to specific individual perturbations. The fact that

importance scores sum to the ‘difference from baseline’ is related to

a theoretical connection between GkmExplain and the method of

Integrated Gradients, which we discuss in Supplementary Appendix

SA.2.

Once we have the contribution of base i to the wgkmrbf kernel

output KwgkmrbfðSx; SzÞ, we can find the contribution of base i to the

wgkmrbf-SVM output by simply taking the weighted sum of

/wgkmrbf
i;Sx ;Szj

over all support vectors Szj , analogous to what we did in

Eqn. 11, giving:

/wgkmrbfsvm
i;Sx

¼
Xm
j¼1

ajy
j/wgkmrbf

i;Sx ;Szj
(13)

In terms of implementation, GkmExplain importance scores can

be computed efficiently by modifying the k-mer tree depth-first

search originally used to compute the output of the gkm-SVM (our

implementation is at https://github.com/kundajelab/lsgkm).

5.2 Mutation impact scores
An intuitive approach to estimating the impact of individual muta-

tions is in-silico mutagenesis (ISM) (Zhou and Troyanskaya, 2015).

In ISM, a mutation is introduced in the sequence and the change in

the predicted output is computed. However, as illustrated in

Figures 1 and 2, ISM can overlook motifs if the response of the

model has saturated in the presence of the motif (as can happen

when RBF variants of the gkm kernel are used). For these reasons, it

can be beneficial to estimate the effects of mutations using a differ-

ent quantity that we call the GkmExplain Mutation Impact Scores,

which we describe in detail below.

Consider a pair of l-mers lSx

j and lSz

k , and a mutation that

changes base Bx in lSx

j to B�. Let Bz denote the base in lSz

k that has

the same relative position within the l-mer as Bx has in lSx

j . As be-

fore, let m denote the number of mismatches between lSx

j and lSz

k . If

the mutation from Bx to B� decreased the number of mismatches be-

tween lSx

j and lSz

k (that is, Bz 6¼ Bx and Bz ¼ B�), then the contribu-

tion of the l-mer pair to the dot product between hf Sx

wgkm; f
Sz

wgkmi
would change by wjwkðhðm� 1Þ � hðmÞÞ. Let us set aside the

weights wjwk for now, and focus the term ðhðm� 1Þ � hðmÞÞ. Let

us call this term meff, for ‘mutation effect’—analogous to eff in

Eqn. 8. If the mutation from Bx to B� increased the number of

GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs i177

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data
https://github.com/kundajelab/lsgkm


mismatches (that is, Bz ¼ Bx and Bz 6¼ B�), then meff would be

hðmþ 1Þ � hðmÞ. If the mutation did not change the number of mis-

matches, then meff would be 0. To summarize:

meffðm;Bx;Bz;B
�Þ ::¼

hðm� 1Þ � hðmÞ if Bx 6¼ Bz and Bz¼ B�

hðmþ 1Þ � hðmÞ if Bx¼ Bz and Bz 6¼ B�

0 otherwise

8<
:

(14)

By analogy to Eqn. 9, we can now include the l-mer weights wj

and wk to get the impact of mutating the ith base in Sx to B�, medi-

ated by the l-mer pair ðlSx

j ;l
Sz

k Þ, on hf Sx

wgkm; f
Sz

wgkmi:

mimpði; j; k;B�; Sx; SzÞ ::¼ wjwkmeffðfmðlSx

j ; l
Sz

k Þ; S
i
x; S

kþði�jÞ
z ;B�Þ

(15)

By analogy to Eqn. 10, we replace impð. . .Þ with mimpð. . .Þ to

get the a score for the impact on KwgkmðSx; SzÞ of mutating the base

at position i in Sx to B�:

/mwgkm
i;B� ;Sx ;Sz

::¼
Xminði;lenðSxÞ�lÞ

j¼maxði�ðl�1Þ;0Þ

X
k

mimpði; j;k;B�; Sx; SzÞ
kf Sx

wgkmkkf
Sz

wgkmk

 !
(16)

Formulas for /mwgkmsvm
i;B� ;Sx

and /mwgkmrbfsvm
i;B� ;Sx

can then be obtained

by replacing /wgkm
i;Sx ;Sz

with /mwgkm
i;B� ;Sx ;Sz

in Eqns. 11 and 13 respectively.

As before, these quantities can be efficiently computed by modifying

the k-mer tree depth-first search originally used to compute the out-

put of the gkm-SVM. While the original implementation only per-

forms recursion on l-mer pairs for which no more than d

mismatches have been encountered so far, we perform recursion on

l-mer pairs for which up to dþ1 mismatches have been encountered

(because a mutation can flip a mismatching position to a match).

5.3 Hypothetical importance scores
For motif discovery with TF-MoDISco (Shrikumar et al., 2018), it is

useful to have hypothetical importance scores in addition to the true

importance scores. The hypothetical importance score of base B at

position i estimates the preference of the classifier for seeing base B

at position i instead of the base that is actually present at position i.

If base B is the same as the base that is actually present in the se-

quence at position i, the hypothetical importance score is defined to

be the same as the actual importance score. As an example, suppose

a particular TF has high affinity to the sequences GATAAT and

GATTAT and a low affinity to the sequences GATCAT and

GATGAT. If the sequence GATAAT is presented to a classifier

trained to predict binding sites of the TF, the hypothetical import-

ance assigned to base T in the 4th position would be high, as would

be the (actual) importance assigned to base A in the 4th position. By

contrast, the hypothetical importance scores assigned to C and G in

the 4th position would be low and likely negative. These hypothetic-

al importance scores are useful for motif discovery with TF-

MoDISco because different instances of a motif that have slight

variations in their underlying sequence may nonetheless have similar

hypothetical importance scores, because the hypothetical import-

ance scores impute the importance on all possible bases that could

be present (and not just the bases that happen to be present in the

specific instance of the motif). Although it may seem that the

Mutation Impact Scores defined in Section 5.2 could serve this pur-

pose, this is not the case because the mutation impact scores for the

bases that are actually present in the sequence are always 0 (as

mutating them to be themselves does not change the output).

To motivate our formula for the hypothetical importance scores,

recall from Eqn. 8 that when an l-mer lSx

j in input sequence Sx has m

mismatches with an l-mer lSz

k in support vector Sz, each matching

position in lSx

j can be thought of as contributing
wjwkhðmÞ

l�m through the

l-mer pair ðlSx

j ; l
Sz

k Þ to the dot product hf Sx

wgkm; f
Sz

wgkmi. Let us set aside

the weights wjwk for now and focus on how the term hðmÞ
l�m changes as

different bases are substituted in Sx. Call this term heff, for ‘hypo-

thetical effect’—analogous to eff in Eqn. 8. Let Bx denote a base in

lSx

j ; B� denote the ‘hypothetical’ alternative to Bx, and Bz denote the

base in lSz

k that has the same relative position within the l-mer as Bx

has in lSx

j . We define heff to be the value that eff would have if we

were to substitute B� for Bx. If Bx ¼ B� and Bx ¼ Bz (that is, if the

‘hypothetical’ base we are looking at is the same as the base that is

actually present, and it is a match), we’d have, by definition, that

heff ¼ eff ¼ hðmÞ
l�m . If, instead, we had Bx 6¼ B� and B� ¼ Bz (that is,

substituting B� for Bx would flip a mismatch to a match), then we’d

decrease the number of mismatches m by one to get heff ¼ hðm�1Þ
l�ðm�1Þ.

Finally, if we had B� 6¼ Bz—that is, B� is a mismatch to Bz—then B�

would not be viewed as contributing through the l-mer pair, and we

would have heff ¼ 0. To summarize:

heffðm;Bx;Bz;B
�Þ ::¼

hðmÞ
l �m

if Bx¼ Bz and Bz¼ B�

hðm� 1Þ
l � ðm� 1Þ if Bx 6¼ Bz and Bz¼ B�

0 otherwise

8>>>><
>>>>:

(17)

By replacing meffðm;Bx;Bz;B
�Þ with heffðm;Bx;Bz;B

�Þ every-

where in the Mutation Impact Score formulas defined in Section 5.2,

we get the corresponding formulas for the hypothetical importance

scores /hwgkmsvm
i;B�;Sx

and /hwgkmrbfsvm
i;B� ;Sx

. As before, these hypothetical im-

portance scores can be efficiently computed by modifying the k-mer

tree depth-first search originally used to compute the output of the

gkm-SVM. While the original implementation only performs recur-

sion on l-mer pairs for which no more than d mismatches have been

encountered so far, in order to get the most accurate hypothetical

importance scores we should perform recursion on l-mer pairs for

which up to dþ1 mismatches have been encountered, because a mu-

tation can flip a mismatching position to a match. However, the

additional layer of recursion can increase runtime substantially. In

practice, we found that hypothetical importance scores derived by

only considering recursions on l-mer pairs with up to d mismatches

work well, and that is what we used in this paper.

6 Results

6.1 Recovery of predictive motifs from SVM models of

simulated regulatory DNA sequences
To evaluate the performance of different explanation methods, we

used the simulated genomics dataset from Shrikumar et al. (2017).

Briefly, 8000 200 bp-long sequences were generated by randomly

sampling the letters A, C, G, T with background probabilities of

0.3, 0.2, 0.2 and 0.3 respectively. 0-3 instances of TAL1_known1 (a

known motif for TAL1) and GATA1_disc1 (a motif for GATA1 dis-

covered from GATA1 ChIP-seq data) from Kheradpour and Kellis

(2014) were then embedded into non-overlapping positions in each

sequence. 25% of sequences contained both embedded TAL1 motifs

and embedded GATA1 motifs and were labeled þ 1. The remaining

i178 A.Shrikumar et al.



sequences contained either embedded GATA1 motifs only,

embedded TAL1 motifs only or did not contain either of the two

motifs, and were labeled -1. 10% of sequences were reserved for a

testing set, while the remaining were used for training. An SVM

with a gkmrbf kernel and parameters l¼6, k¼5 and d¼1 was

trained to distinguish the positive set from the negative set (due to

the non-additive nature of the interaction between the TAL1 and

GATA1 motif, a regular gkm kernel does not perform well on this

task). As shown in Figure 5, the core TAL1 and GATA1 motifs are

6 bp long, hence the choice of l¼6. The gkmrbf-SVM attained 90%

auROC.

Figure 2 illustrates the behavior of different algorithms on a se-

quence containing three GATA1 motifs and one TAL1 motif. For

deltaSVM and ISM, the importance of a position was computed as

the negative of the mean impact of all 3 possible mutations at that

position (positions that produce negative deltas when mutated will

therefore receive positive importance). SHAP was run with the fol-

lowing different settings: 2000 samples per example sequence with

20 dinuc-shuffled backgrounds each (for a total of 40 000 model

evaluations per sequence), 2000 samples per example sequence with

200 dinuc-shuffled backgrounds each (for a total of 400 000 model

evaluations per sequence), and 20 000 samples per example se-

quence with 20 dinuc-shuffled backgrounds each (for a total of 400

000 model evaluations per sequence). See Section 4.3 for more

details on the SHAP algorithm. We found that GkmExplain success-

fully highlights all GATA1 and TAL1 motifs present in the sequence.

DeltaSVM performs very poorly, likely due to the nonlinear nature

of the gkmrbf decision function (the nonlinearity is needed to learn

the logic that both GATA1 and TAL1 must be present in the se-

quence for the output to be positive). ISM fails to clearly highlight

some individual GATA1 motifs in this sequence, likely because the

presence of multiple GATA1 motifs has a saturating effect on the

nonlinear decision function. SHAP shows promise at highlighting

the relevant motifs, but only when many perturbation samples are

used. Unfortunately, at 40 000þ model evaluations per sequence,

SHAP has a very slow runtime compared to the other methods

(Fig. 3). To confirm this was not an isolated example, we compared

the ability of GkmExplain, ISM and SHAP to identify the embedded

motifs across all examples in the test set, and found that

GkmExplain does indeed perform better (Fig. 4 and Supplementary

Fig. SA.1).

As further confirmation that GkmExplain was able to detect the

embedded TAL1 and GATA1 motifs, we supplied GkmExplain-

derived importance score profiles across all sequences in the positive

set to the recently-developed importance score clustering and aggre-

gation tool TF-MoDISco (Shrikumar et al., 2018). Briefly, TF-

MoDISco identifies subsequences (termed ‘seqlets’) of high import-

ance in all the input sequences, builds an affinity (similarity) matrix

between seqlets using a cross-correlation-like metric, clusters the

seqlets using the affinity matrix, and then aggregates aligned seqlets

in each cluster to form consolidated motifs. TF-MoDISco accepts

both importance score profiles as well as ‘hypothetical’ importance

score profiles of multiple sequences. Hypothetical importance scores

can be intuitively thought of as revealing the preference of the classi-

fier for seeing alternative bases at any given position in a sequence

(see Section 5.3). We also normalized the scores as described in

Supplementary Appendix SA.3, as we found this improved the

Fig. 4. GkmExplain outperforms ISM at identifying GATA1 motifs. A gkmrbf SVM was trained as described in Section 6.1. The 400 positives in the held-out test

set were scanned using 10 bp windows (the length of the GATA_disc1 motif). Windows containing a complete embedded GATA_disc1 motif were labeled posi-

tive. Windows containing no portion of any embedded motif were labeled negative. All other windows were excluded from analysis. Windows were ranked

according to the total importance score produced by the importance scoring method in question, and auROC and auPRC were computed. The GkmExplain

method outperforms ISM and SHAP on both metrics. The dashed black line shows the performance of a random classifier. See text for more details

Fig. 5. Motifs extracted by running TF-MoDISco on GkmExplain importance

scores successfully recovers ground-truth simulated motifs. Letter heights

are proportional to the information content of the probabilities across the dif-

ferent bases at that position. The single motif returned by the method of

Gandhi et al. on this dataset is also shown

Fig. 3. Time taken to compute importance on a single sequence for various

algorithms (log scale). Evaluation was done on model and data described in

Section 6.1. Runtime estimates for ISM and SHAP are optimistic, as they were

calculated by estimating the time required for evaluating the model on a sin-

gle example and multiplying by the min. number of model evaluations

required by each method (i.e. any computational overhead required by the al-

gorithm to synthesize the results of the model evaluations was excluded). For

example, ISM requires a min. of 601 model evaluations for a sequence of

length 200 (one for the original sequence, and 600 for all three possible muta-

tions at every position). SHAP with 2 K samples per sequence and 20 back-

grounds requires a minimum of 40 K model evaluations (see Section 4.3 for

more details on the SHAP algorithm)

GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs i179

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data


results. For comparison, we also ran the motif discovery method of

Ghandi et al. (2014) with default settings. The resulting motifs are

shown in Figure 5. We find that, in contrast to the method of

Gandhi et al., TF-MoDISco is able to learn motifs that closely match

the true embedded motifs. This is likely because the method of

Gandhi et al. works by scoring k-mers individually and then merging

the most predictive k-mers, but in this particular simulation, the de-

pendency between the TAL1 and GATA1 motifs causes the scores of

k-mers calculated in isolation to be unreliable. This is similar to the

reason why deltaSVM also produces poor results in this scenario.

6.2 Motif discovery from SVM models of in vivo

transcription factor binding
We used GkmExplain to interpret a gkm-SVM trained on ChIP-seq

data for the Nanog transcription factor in H1-hESCs. The positive

set consisted of 200 bp sequences around the summits of 5647 repro-

ducible Nanog ChIP-seq peaks (we used ‘conservative’ IDR peaks)

(ENCODE Project Consortium, 2012). The negative set consisted of

200 bp sequences around the summits of ENCODE DNase-seq

peaks in H1-hESCs that were not within 1 kb of reproducible

Nanog ChIP-seq peaks (we used the union of ‘optimal’ and ‘conser-

vative’ IDR peaks here) in H1-hESCs. To achieve a roughly bal-

anced dataset for training the gkm-SVM, the negative set was

subsampled by a factor of 20 to produce 5981 negatives. The held-

out test set consisted of regions on chromosomes 1 and 2. The SVM

was trained with the gkm kernel using the lsgkm package (Lee,

2016). Other parameters were set to their default values (l¼11,

k¼7 and d¼3). The model achieved an auROC of 83%.

GkmExplain was run on the 960 positives in the test set, and the

importance scores were supplied to TF-MoDISco. For comparison,

we ran HOMER (Heinz et al., 2010) and MEME in discriminative

mode (Bailey et al., 2009) with default settings to find motifs

enriched in the full set of 5647 positives relative to the 5981

negatives. We also ran the SVM motif discovery method of Ghandi

et al. (2014) using 11-mers rather than 10-mers (the default setting

involving 10-mers failed to produce motifs, likely because our model

was trained with 11-mers). The results for motif discovery are

shown in Figure 6. Scores on a few example sequences are shown in

Figure 7. TF-MODISCOþgkmExplain found motifs matching ca-

nonical Zic3, Sox2 and Oct4-Sox2-Nanog motifs. Gandhi et al. and

MEME missed the SOX2 motif. Gandi et al. motifs were also far

noisier when compared to canonical known motifs. HOMER found

multiple partially redundant and often truncated versions for the

three motifs.

6.3 Predicting regulatory genetic variants affecting

chromatin accessibility
We trained models using the lsgkm package (Lee, 2016) on a

DNase-seq dataset in the GM12878 lymphoblastoid cell-line

obtained from the deltaSVM website [www.beerlab.org/deltasvm/.

http://www.beerlab.org/deltasvm/ (Accessed on 10/26/2018)]. It

consists of a single positive set containing 22 384 300 bp sequences

that overlapped DNase hypersensitive peaks, and five

independently-generated negative sets that each matched the size,

length distribution, GC-content and repeat-fraction of the positive

set. One gkm-SVM and one gkmrbf-SVM were trained for each

choice of negative set. For the gkm-SVM and gkmrbf-SVM, we used

the parameter settings l¼10, k¼6 and d¼3, consistent with the

deltaSVM paper. For the gkmrbf-SVM, we further set the regular-

ization parameter c to 10 and the gamma value g to 2, as suggested

by the lsgkm documentation. Remaining values were left to the

lsgkm defaults.

To assess whether GkmExplain could be used to quantify the

functional impact of regulatory genetic variants, we used the same

benchmarking dataset of DNase I-sensitivity quantitative trait loci

(dsQTLs) in lymphomablastoid cell lines (LCLs) that was used in

Fig. 6. Nanog motifs in H1-hESCs derived using TF-MoDISco with GkmExplain scores, HOMER, MEME and the method of Gandhi et al. Letter heights are propor-

tional to the information content of the probabilities across the different bases at each position in the motif. ‘Seqlets’ are subsequences of high importance that

are used by TF-MoDISco to create motifs (Shrikumar et al., 2018). The number of seqlets contained within each TF-MoDISco motif is indicated. The TF-MoDISco

motifs were derived using only importance scores from the test set, while HOMER and MEME used the full set of training and test sequences. We find that TF-

MoDISco run on GkmExplain importance scores tends to produce consolidated motifs that have a strong resemblance to the canonical motifs. Note that the

underlying GkmExplain model used 11-mers, which might be why the Oct4-Sox2-Nanog motif, which is wider than 11 bp, is learned as two separate motifs by

TF-MoDISco. Also note that the Sox2 motif, while present in the MEME results, did not meet the E-value threshold for significance and was 9th in the list of 10

motifs, ranking below several non-significant motifs that had very few supporting instances

i180 A.Shrikumar et al.

http://www.beerlab.org/deltasvm/
http://www.beerlab.org/deltasvm/


the deltaSVM paper (Degner et al., 2012; Lee et al., 2015), consist-

ing of 579 dsQTL SNPs and 28 950 control SNPs. The dsQTL SNPs

were each located within their associated 100 bp DNase hypersensi-

tive peak and had an association P-value below 10�5, while the con-

trol SNPs each had minor allele frequency above 5% and were

randomly sampled from the top 5% of DNase hypersensitive sites.

We used 4 methods to score dsQTLs and control SNPs:

deltaSVM applied to the gkm-SVM, deltaSVM applied to the

gkmrbf-SVM, in-silico mutagenesis (ISM) applied to the gkmrbf-

SVM, and GkmExplain mutation impact scores (Section 5.2)

applied to the gkmrbf-SVM. For ISM and GkmExplain, a window

of 51 bp centered on the SNP was used as context. Although we

attempted to use SHAP, we found the runtime to be prohibitively

large (at a context size of 51 bp, 20 backgrounds per sequence, and

510 samples per sequence, SHAP was taking over 8 min per ex-

ample; note that these models were substantially larger than the

ones used to profile runtimes in Figure 3). Results are shown in

Figure 8, and GkmExplain scores on example dsQTLs are visualized

in Figure 9. Across the models trained on the 5 independent negative

sequence sets, GkmExplain consistently produced the best auPRC

(binomial P-value ¼ 0:55 ¼ 0:03125). Interestingly, we found that

deltaSVM applied to the gkmrbf-SVM consistently produced better

auRPC than deltaSVM applied to the gkm-SVM, even though Lee

(2016) found that deltaSVM did not produce improvements when

used with the gkmrbf kernel (Lee, 2016), possibly due to differences

in the dataset and parameter settings. Results for auROC are in

Supplementary Appendix SA.4.

7 Conclusion

We presented GkmExplain, an algorithm with theoretical connec-

tions to Integrated Gradients that can explain the predictions of an

SVM trained with various gapped k-mer string kernels. On simu-

lated data, GkmExplain outperforms ISM and deltaSVM when used

with a nonlinear gapper k-mer kernel such as the gkmrbf kernel

(Figs 2 and 4 and Supplementary Fig. SA.1), while being far more

computationally efficient than ISM or SHAP (Fig. 3). Importance

scores derived through GkmExplain can be supplied to TF-

MoDISco (Shrikumar et al., 2018) to perform motif discovery (Figs

5 and 6), resulting in improved recovery of consolidated, non-

redundant motifs as compared to previous motif discovery

approaches for gkmSVMs (Ghandi et al., 2014). Mutation Impact

Scores derived from GkmExplain outperform ISM and deltaSVM

for identifying regulatory genetic variants (dsQTLs) affecting chro-

matin accessibility in LCLs. (Fig. 8). Our approach is not limited to

SVM models of genomic sequences and can be generalized to other

data modalities, as illustrated in Supplementary Appendix SA.5.

Funding

AS was funded by HHMI International Student Research and Bio-X Bowes

fellowships. AK was funded by National Institute of Health grants

1DP2GM123485, 1U01HG009431 and 1R01HG00967401.

Conflict of Interest: none declared.

References

Bailey,T.L. et al. (2009) MEME SUITE: tools for motif discovery and search-

ing. Nucleic Acids Res., 37, W202–W208.

Fig. 7. Normalized GkmExplain importance scores on three example sequences that were strongly predicted as being bound by Nanog. The underlying model

was trained to distinguish 200 bp sequences centered around the summits of H1-hESC Nanog ChIP-seq peaks from sequences that were accessible in H1-hESCs

but were not bound by Nanog. The model used the standard (unweighted) gkm kernel and achieved an auROC of 83%

Fig. 8. GkmExplain Mutation Impact Scores Outperform deltaSVM and ISM at

identifying dsQTLs. For each choice of negative set provided in the deltaSVM

paper, we trained a gkm-SVM and gkmrbf-SVM. LCL dsQTLs and control

SNPs were then scored using four methods: deltaSVM on the gkm-SVM,

deltaSVM on the gkmrbf-SVM, ISM on the gkmrbf-SVM and GkmExplain

Mutation Impact Scores (Section 5.2) on the gkmrbf-SVM. For ISM and

GkmExplain, a 51 bp window centered around the SNP was used as context.

The GkmExplain mutation impact scores consistently produce the best

auPRC across all 5 choices of the negative set (binomial P-value ¼
0:55 ¼ 0:03125). SHAP was excluded from the comparison due to a prohibi-

tively large runtime

Fig. 9. GkmExplain scores around significant dsQTLs. Pictured are

GkmExplain scores around dsQTLs that were identified by GkmExplain at

precision levels >75%. The dsQTLs are present at the centers of the sequen-

ces, with 25 bp flanks on either side. GkmExplain scores on the sequences

with the major and minor alleles are shown in pairs. In the top example, a

mutation from C to T disrupts a RELA motif. In the bottom example, a muta-

tion from G to T strengthens an IRF8 motif. The corresponding precision level

of deltaSVM for these variants was more than 5% lower than the precision

level achieved by GkmExplain

GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs i181

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz322#supplementary-data


Bromberg,Y. and Rost,B. (2008) Comprehensive in silico mutagenesis high-

lights functionally important residues in proteins. Bioinformatics, 24,

i207–i212.

Degner,J.F. et al. (2012) DNase I sensitivity QTLs are a major determinant of

human expression variation. Nature, 482, 390–394.

ENCODE Project Consortium (2012) An integrated encyclopedia of DNA ele-

ments in the human genome. Nature, 489, 57–74.

Ghandi,M. et al. (2014) Enhanced regulatory sequence prediction using

gapped k-mer features. PLoS Comput. Biol., 10, e1003711.

Heinz,S. et al. (2010) Simple combinations of lineage-determining transcrip-

tion factors prime cis-regulatory elements required for macrophage and B

cell identities. Mol. Cell, 38, 576–589.

Kheradpour,P. and Kellis,M. (2014) Systematic discovery and characteriza-

tion of regulatory motifs in ENCODE TF binding experiments. Nucleic

Acids Res., 42, 2976–2987.

Lee,D. (2016) LS-GKM: a new gkm-SVM for large-scale datasets.

Bioinformatics, 32, 2196–2198.

Lee,D. et al. (2015) A method to predict the impact of regulatory variants

from DNA sequence. Nat. Genet., 47, 955–961.

Leslie,C. and Kuang,R. (2004) Fast String Kernels using inexact matching for

protein sequences. J. Mach. Learn. Res., 5, 1435–1455.

Lundberg,S.M. and Lee,S.-I. (2017) A unified approach to interpreting model

predictions. In: Guyon,I. et al. (eds) Advances in Neural Information

Processing Systems 30. Curran Associates, Inc., pp. 4765–4774.

Shrikumar,A. et al. (2017) Learning important features through propagating

activation differences. In: Doina,P. and Yee,W.T. (eds) Proceedings of the

34th International Conference on Machine Learning. Vol. 70. PMLR,

Sydney, Australia, pp. 3145–3153.

Shrikumar,A. et al. (2018) Tf-modisco v0.4.2.2-alpha: Technical note. CoRR,

abs/1811.00416.

Sundararajan,M. et al. (2017) Axiomatic attribution for deep networks. In:

Doina,P. and Yee,W.T. (eds) Proceedings of the 34th International Conference

on Machine Learning. Vol. 70. PMLR, Sydney, Australia, pp. 3319–3328.

www.beerlab.org/deltasvm/. http://www.beerlab.org/deltasvm/. (26 October

2018, date last accessed).

Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding var-

iants with deep learning–based sequence model. Nat. Methods, 12,

931–934.

i182 A.Shrikumar et al.

http://www.beerlab.org/deltasvm/
http://www.beerlab.org/deltasvm/

