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Abstract

Motivation: Finding non-linear relationships between biomolecules and a biological outcome is

computationally expensive and statistically challenging. Existing methods have important draw-

backs, including among others lack of parsimony, non-convexity and computational overhead.

Here we propose block HSIC Lasso, a non-linear feature selector that does not present the previous

drawbacks.

Results: We compare block HSIC Lasso to other state-of-the-art feature selection techniques in

both synthetic and real data, including experiments over three common types of genomic data:

gene-expression microarrays, single-cell RNA sequencing and genome-wide association studies.

In all cases, we observe that features selected by block HSIC Lasso retain more information about

the underlying biology than those selected by other techniques. As a proof of concept, we applied

block HSIC Lasso to a single-cell RNA sequencing experiment on mouse hippocampus. We discov-

ered that many genes linked in the past to brain development and function are involved in the bio-

logical differences between the types of neurons.

Availability and implementation: Block HSIC Lasso is implemented in the Python 2/3 package

pyHSICLasso, available on PyPI. Source code is available on GitHub (https://github.com/riken-aip/

pyHSICLasso).

Contact: myamada@i.kyoto-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomarker discovery, the goal of many bioinformatics experiments,

aims at identifying a few key biomolecules that explain most of an

observed phenotype. Without a strong prior hypothesis, these mo-

lecular markers have to be identified from data generated by high-

throughput technologies. Unfortunately, finding relevant molecules

is a combinatorial problem: for d features, 2d binary choices must

be considered. As the number of features vastly exceeds the number

of samples, biomarker discovery is a high-dimensional problem. The

statistical challenges posed by such high-dimensional spaces have

been thoroughly reviewed elsewhere (Clarke et al., 2008; Johnstone

and Titterington, 2009). In general, due to the curse of dimensional-

ity, fitting models in many dimensions and on a small number of

samples is extremely hard. Moreover, since biology is complex, a

simple statistical model such as a linear regression might not be able

to find important biomarkers. Those that are found in such experi-

ments are often hard to reproduce, suggesting overfitting. Exploring

the solution space and finding true biomarkers are not only statistic-

ally challenging, but also computationally expensive.

In machine learning terms, biomarker discovery can be formu-

lated as a problem of feature selection: identifying the best subset of

features to separate between categories, or to predict a continuous

response. In the past decades, many feature selection algorithms that

deal with high-dimensional datasets have been proposed. Due to the

difficulties posed by high-dimensionality, linear methods tend to be

the feature selector of choice in bioinformatics. A widely used linear

feature selector is the Least Absolute Shrinkage and Selection

Operator, or Lasso (Tibshirani, 1996). Lasso fits a linear model be-

tween the input features and phenotype by minimizing the sum

of the least square loss and an ‘1 penalty term. The balance between

the least square loss and the penalty ensures that the model explains
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the linear combination of features, while keeping the number of fea-

tures in the model small. However, in many instances biological

phenomena do not behave linearly. In such cases, there is no guaran-

tee that Lasso can capture those non-linear relationships or an ap-

propriate effect size to represent them.

In the past decade, several non-linear feature selection algo-

rithms for high-dimensional datasets have been proposed. One of

the most widely used, called Sparse Additive Model, or SpAM

(Ravikumar et al., 2009), models the outcome as a sparse linear

combination of non-linear functions based on kernels. However,

since SpAM assumes an additive model over the selected features, it

cannot select important features if the phenotype cannot be repre-

sented by the additive functions of input features—for example, if

there exist a multiplicative relationship between features (Yamada

et al., 2014).

Another family of non-linear feature selectors are association-

based: they compute the statistical association score between each in-

put feature and the outcome, and rank features accordingly. Since

these approaches do not assume any model about the output, they can

detect important features as long as an association exists. When using

a non-linear association measure, such as the mutual information

(Cover and Thomas, 2006) or the Hilbert–Schmidt Independence

Criterion (HSIC) (Gretton et al., 2005), they select the features with

the strongest dependence with the phenotype. However, association-

based methods do not account for the redundancy between the fea-

tures, which is frequent in biological datasets, since they do not model

relationships between features. Hence, many redundant features are

typically selected, hindering interpretability. This is important in appli-

cations like drug target discovery, where only a small number of tar-

gets can be validated, and it is crucial to discriminate the most

important target out of many other top-ranked targets.

To deal with the problem of redundant features, Peng et al.

(2005) proposed the minimum redundancy maximum relevance

(mRMR) algorithm. mRMR can select a set of non-redundant fea-

tures that have high association to the phenotype, while penalizing

the selection of mutually dependent features. Ding and Peng (2005)

used mRMR to extract biomarkers from microarray data, finding

that the selected genes captured better the variability in the pheno-

types than those identified by state-of-the-art approaches. However,

mRMR has three main drawbacks: the optimization problem is dis-

crete; it must be solved by a greedy approach and the mutual infor-

mation estimation is difficult (Walters-Williams and Li, 2009).

Moreover, it is unknown whether the objective function of mRMR

has good theoretical properties such as submodularity (Fujishige,

2005), which would guarantee the optimality of the solution.

Recently, Yamada et al. (2014) proposed a kernel-based mRMR

algorithm called HSIC Lasso. Instead of mutual information, HSIC

Lasso employs the HSIC (Gretton et al., 2005) to measure depend-

ency between variables. In addition, it uses an ‘1 penalty term to se-

lect a small number of features. This results in a convex

optimization problem, for which one can therefore find a globally

optimal solution. In practice, HSIC Lasso has been found to outper-

form mRMR in several experimental settings (Yamada et al., 2014).

However, HSIC Lasso is memory intensive: its memory complexity

is Oðdn2Þ, where d is the number of features and n is the number of

samples. Hence, HSIC Lasso cannot be applied to datasets with

thousands of samples, nowadays widespread in biology. A

MapReduce version of HSIC Lasso has been proposed to address

this drawback, and it is able to select features in ultra-high dimen-

sional settings (106 features, 104 samples) in a matter of hours

(Yamada et al., 2018). However, it requires a large number of com-

puting nodes, inaccessible to common laboratories. Since it relies on

the Nyström approximation of Gram matrices (Schölkopf and Smola,

2002), the final optimization problem is no longer convex, and hence

finding a globally optimal solution cannot be easily guaranteed.

In this article, we propose block HSIC Lasso: a simple yet effect-

ive non-linear feature selection algorithm based on HSIC Lasso. The

key idea is to use the recently proposed block HSIC estimator

(Zhang et al., 2018) to estimate the HSIC terms. By splitting the

data in blocks of size B� n, the memory complexity of HSIC Lasso

goes from Oðdn2Þ down to OðdnBÞ. Moreover the optimization

problem of the block HSIC Lasso remains convex. Through its ap-

plication to synthetic data and biological datasets, we show that

block HSIC Lasso can be applied to a variety of settings and com-

pares favorably with the vanilla HSIC Lasso algorithm and other

feature selection approaches, linear and non-linear, as it selects fea-

tures more informative of the biological outcome. Further consider-

ations on the state of the art and the relevance of block HSIC Lasso

can be found in Supplementary File 1.

2 Materials and methods

2.1 Problem formulation
Assume a dataset with n samples described by d real-valued features,

each corresponding to a biomolecule (e.g. the expression of one

transcript, or the number of major alleles observed at a given SNP),

and a label, continuous or binary, describing the outcome of interest

(e.g. the abundance of a target protein, or disease status). We denote

the ith sample by xi ¼ ½xð1Þi ; x
ð2Þ
i ; . . . ;x

ðdÞ
i �
> 2 R

d, where > denotes

transpose; and its label by yi 2 Y, where Y ¼ f0; 1g for a binary out-

come, corresponding to a classification problem, and Y ¼ R for a

continuous outcome, corresponding to a regression problem. In add-

ition, we denote by f k ¼ ½x
ðkÞ
1 ; x

ðkÞ
2 ; . . . ; x

ðkÞ
n �> 2 R

n the kth feature in

the data.

The goal of supervised feature selection is to find m features

(m� d) that are the most relevant for predicting the output y for a

sample x.

2.2 HSIC Lasso
Measuring the dependence between two random variables X and Y

can be achieved by the HSIC (Gretton et al., 2005):

HSICðX;YÞ ¼ Ex;x0 ;y;y0 ½Kðx; x0ÞLðy; y0Þ�

þEx;x0 ½Kðx;x0Þ�Ey;y0 ½Lðy; y0Þ�
�2Ex;y½Ex0 ½Kðx;x0Þ�Ey0 ½Lðy; y0Þ��;

(1)

where K : Rd � R
d ! R and L : Y � Y ! R are positive definite

kernels, and Ex;x0 ;y;y0 denotes the expectation over independent pairs

(x, y) and ðx0; y0Þ drawn from p(x, y). HSICðX;YÞ is equal to 0 if X

and Y are independent, and is non-negative otherwise.

In practice, for a given Gram matrix Kk 2 R
n�n, computed from

the kth feature, and a given output Gram matrix L 2 R
n�n, the nor-

malized variant of HSIC is computed using its V-statistic estimator

as (Yamada et al., 2018)

HSICvðf k; yÞ ¼ trðKk LÞ; (2)

where for a Gram matrix K 2 R
n�n; K is defined as K ¼

HKH=jjHKHjjF with H 2 R
n�n a centering matrix defined by

Hij ¼ dij � 1
n. Here dij is equal to 1 if i¼ j and 0 otherwise, and tr

denotes the trace. Note that we employ the normalized variant of

the original empirical HSIC.

The largest the value of HSICvðf k; yÞ, and the more dependent

the kth feature and the outcome are. Song et al. (2012) therefore
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proposed to perform feature selection by ranking the features by

descending value of HSICvðf k; yÞ.
With HSIC Lasso, Yamada et al. (2014) extend the work of Song

et al. (2012) so as to avoid selecting multiple redundant features.

For this purpose, they introduce a vector a ¼ ½a1; . . . ; ad�> of feature

weights and solve the following optimization problem:

max
a�0

Xd

k¼1

akHSICvðf k; yÞ �
1

2

Xd

k;k0¼1

akak0HSICvðf k; f k0 Þ � kjjajj1: (3)

The first term enforces selected features that are highly depend-

ent on the phenotype; the second term penalizes selecting mutually

dependent features and the third term enforces selecting a small

number of features. The selected features are those that have a non-

zero coefficient ak. Here k > 0 is a regularization parameter that

controls the sparsity of the solution: the larger k, the fewer features

have a non-zero coefficient.

The HSIC Lasso optimization problem can be rewritten as

min
a�0
jjvecðLÞ � ½vecðK1Þ; . . . ; vecðKdÞ�ajj22 þ kjjajj1;

where vec : Rn�n ! R
n2

;K 7!½K11; . . . ;K1n;K21; . . . ;Knn� is the vec-

torization operator. Using this formulation, we can solve the prob-

lem using an off-the-shelf non-negative Lasso solver.

HSIC Lasso performs well for high-dimensional data. However,

it requires a large memory space (Oðdn2Þ), since it stores d Gram

matrices. To handle this issue, two approximation methods have

been proposed. The first approach uses a memory lookup to dramat-

ically reduce the memory space (Yamada et al., 2014). However,

since this method needs to perform a large number of memory look-

ups, it is computationally expensive. Another approach (Yamada

et al., 2018) is to rewrite the problem using the Nyström approxima-

tion (Schölkopf and Smola, 2002) and solve the problem using a

cluster. However using the Nyström approximation makes the prob-

lem non-convex.

2.3 Block HSIC Lasso
In this article, we propose an alternative HSIC Lasso method for

large-scale problems, the block HSIC Lasso, which is convex and

can be efficiently solved on a reasonably sized server.

Block HSIC Lasso employs the block HSIC estimator (Zhang

et al., 2018) instead of the V-statistics estimator of Equation (2).

More specifically, to compute the block HSIC, we first partition the

training dataset into n=B partitions ffðx‘i ; y‘i Þg
B
i¼1g

n=B
‘¼1, where B is the

number of samples in each block. Note that the block size B is set to

a relatively small number such as 10 or 20 (B� n). Then, the block

HSIC estimator can be written as

HSICbðf k; yÞ ¼
B

n

Xn=B
‘¼1

HSICvðf ð‘Þk ; yð‘ÞÞ;

where f
ð‘Þ
k 2 R

B represents the kth feature vector of the ‘th partition.

Note that the computation of HSICvðf ð‘Þk ; yð‘ÞÞ requires OðB2Þ mem-

ory space. Therefore, the required memory for the block HSIC esti-

mator is OðnB2Þ, where nB� n2.

If we denote by K
ð‘Þ
k 2 R

B�B the restriction of Kk to the ‘th parti-

tion, and by L
ð‘Þ 2 R

B�B the restriction of L to the ‘th partition, then

HSICv

�
f
ð‘Þ
k ; yð‘Þ

�
¼ tr

�
K
ð‘Þ
k L

ð‘Þ� ¼ vec
�

K
ð‘Þ
k

�>
vec
�

L
ð‘Þ�

:

Block HSIC Lasso is obtained by replacing the HSIC estimator

HSICv with the block HSIC estimator HSICb in Equation (3):

max
a�0

Xd

k¼1

akHSICbðf k; yÞ �
1

2

Xd

k;k0¼1

akak0HSICbðf k; f k0 Þ � kjjajj1:

Using the vectorization operator, the block estimator is written as

HSICbðf k; f k0 Þ ¼ u>k uk0 ; HSICbðf k; yÞ ¼ u>k v;

where

uk ¼
ffiffiffiffi
B

n

r
vec
�

K
ð1Þ
k

�>
; . . . ; vec

�
K
ðn=BÞ
k

�>� �>
2 R

nB;

v ¼
ffiffiffiffi
B

n

r
vec
�

L
ð1Þ�>

; . . . ; vec
�

L
ðn=BÞ�>� �>

2 R
nB:

Hence, block HSIC Lasso can also be written as

min
a�0
jjv� U>ajj22 þ kjjajj1;

where U ¼ ½u1; . . . ;ud� 2 R
nB�d.

Since the objective function of block HSIC Lasso is convex, we

can obtain a globally optimal solution. As with HSIC Lasso, we can

solve block HSIC Lasso using an off-the-shelf Lasso solver. Here, we

use the non-negative least angle regression-LASSO, or LARS-

LASSO (Efron et al., 2004), to solve the problem in a greedy man-

ner. Rather than setting the hyperparameter k, for example by cross-

validation, which would be computationally intensive, this allows us

to use a predefined number of features to select.

The required memory space for block HSIC Lasso is O(dnB),

which compares favorably to vanilla HSIC Lasso’s Oðdn2Þ; as the

block size B� n, the memory space is dramatically reduced.

However, the computational cost of the proposed method is still

large when both d and n are large. Thus, we implemented the pro-

posed algorithm using multiprocessing by parallelizing the computa-

tion of K
ð‘Þ
k . Thanks to the combination of block HSIC Lasso and

the multiprocessing implementation, we can efficiently find solu-

tions on large datasets with a reasonably sized server.

2.4 Improving selection stability using bagging
Since we need to compute block HSIC of the paired data

ffðx‘i ; y‘i Þg
B
i¼1g

n=B
‘¼1 with a fixed partition, the performance can be

highly affected by the partition. Thus, we propose to use a bagging

version of the block HSIC estimator. Given M random permutations

of the n samples, we define bagging block HSIC as

HSICbbðf k; yÞ ¼
1

M

XM
m¼1

B

n

Xn=B
‘¼1

HSICv

�
f
ð‘;mÞ
k ; yð‘;mÞ

�
¼ u>k v;

where f
ð‘;mÞ
k is the kth feature vector restricted to the ‘th block as

defined by the mth permutation,

uk ¼
ffiffiffiffiffi
1

M

r
u
ð1Þ>
k ; . . . ;u

ðMÞ>
k

h i>
2 R

nBM;

v ¼
ffiffiffiffiffi
1

M

r
vð1Þ

>
; . . . ; vðMÞ

>
h i>

2 R
nBM;

and u
ðmÞ
k 2 R

nB and v
ðmÞ
k 2 R

nB are the vectors of the mth block

HSIC Lasso, respectively.

Hence, bagging block HSIC Lasso can be written as

min
a�0
jjv� U

>
ajj22 þ kjjajj1;

where U ¼ ½u1; . . . ;ud� 2 R
nBM�d.
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We consider the bagging part to be an integral part of the block

HSIC Lasso algorithm. That is why, in this text, every time we men-

tion ‘block HSIC Lasso’, we refer to bagging block HSIC Lasso.

Note that the memory space O(dnBM) required for B¼60 and

M¼1 is equivalent to B¼30 and M¼2. Empirically, we found that

they were providing equivalent feature selection accuracy (Section

4.4).

2.5 Adjusting for covariates
Data analysis tasks in bioinformatics can often be confounded by

technical (e.g. batch) or biological variables (e.g. age), which might

mask the relevant variables. To adjust for their effect, we consider

the following variant of the block HSIC Lasso:

min
a�0
jjv�U>a� bzjj22 þ kjjajj1;

where b � 0 is a tuning parameter and

z ¼
ffiffiffiffi
B

n

r
vec
�

K
ð1Þ
cov

�>
; . . . ; vec

�
K
ðn=BÞ
cov

�>� �>
2 R

nB

contains the covariate information. Kcov is the Gram matrix com-

puted from the covariate input matrix Xcov. Since for most purposes

in bioinformatics we want to remove all information from the cova-

riates, we set b to

b̂ ¼ HSICbðy;XcovÞ
HSICbðXcov;XcovÞ

¼ HSICbðy;XcovÞ;

which is the solution of minbjjv� bzjj22. Here, we used the property

HSICbðXcov;XcovÞ ¼ 1.

3 Experimental setup

3.1 Feature selection methods
HSIC Lasso and block HSIC Lasso: We used HSIC Lasso and block

HSIC Lasso implemented in the Python 2/3 package pyHSICLasso.

In block HSIC Lasso, M was set to 3 in all experimental settings; the

block size B was set on an experiment-dependent fashion. In all the

experiments, when we wanted to select k features, HSIC Lasso ver-

sions were required to first retrieve 50 features, and then the top k

features were selected as the solution.

In this article, we use the following kernels:

• The RBF Gaussian kernel for pairs of continuous variables, of

continuous outcomes, or one of each, and for pairs of a continu-

ous variable and categorical outcome:

K : x
ðkÞ
i ;x

ðkÞ
j 7! exp �

jjxðkÞi � x
ðkÞ
j jj

2
2

2r2

 !
;

where r2 > 0 is the bandwidth of the kernel;
• The normalized Delta kernel for categorical variables (or

outcomes):

L : yi; yj 7!
1

nc
if yi ¼ yj ¼ c

0 otherwise;

8<
:

where nc is the number of samples in class c.

mRMR: mRMR selects features that are highly associated with the

outcome and are non-redundant (Peng et al., 2005). To that end, it

uses mutual information between different variables and between

the outcome and the variables.

We used a Cþþ implementation of mRMR (Peng, 2005). The

maximum number of samples and the maximum number of features

were set to the actual number of samples and features in the data. In

regression problems, discretization was set to binarization.

LARS: LARS is a forward stage-wise feature selector (Efron

et al., 2004). It is an efficient way of solving the same problem as

Lasso. We used the SPAMS implementation of LARS (Mairal et al.,

2010), with the default parameters. Note that this is not the imple-

mentation of LARS that we use in (block) HSIC Lasso, which is the

non-negative LARS solver implemented in pyHSICLasso.

3.2 Evaluation of the selected features
Selection accuracy on simulated data: We simulated high-

dimensional data where only a few variables were truly related to

the outcome. We used these datasets to evaluate the ability of the

tested algorithms to find the true causal variables, instead of others,

likely spuriously correlated to the outcome. To that end, we

requested each algorithm to retrieve the known number of causal

features. Then, we studied how many of them were actually causal.

Classification with a random forest: In classification datasets, we

evaluated the amount of information retained in the features

selected by a given method by evaluating the performance of a ran-

dom forest classifier based only on those features. We used random

forests because of their ability to handle non-linearities. We split the

data between a training and a test set, and selected features on the

training set only. We estimated the best parameters by cross-

validation on the training set: the number of trees (200, 500), the

maximum depth of the threes (4, 6, 8), the number of features to

consider (
ffiffiffi
d
p

; log 2d), and the criterion to measure the quality of

the chosen features (Gini impurity, information gain). Then, we

trained a model with those parameters on the training set and made

predictions on a separate testing set to estimate prediction accuracy.

3.3 Datasets
We evaluated the performance of the different algorithms on syn-

thetic data and four types of real-world high-dimensional datasets

(Table 1). In our experiments on real-world datasets, we restricted

ourselves to classification problems. All discussed methods can how-

ever handle regression problems (continuous-valued outcomes) as

well, as we show on synthetic data.

Synthetic data: We simulated random matrices of features

X � Nð0; 1Þ. A number of variables were selected as related to the

phenotype, and functions that are non-linear in the data range were

selected (cosine, sine and square) and combined additively to create

the outcome vector y.

Images: Facial recognition is a classification problem classically

used to evaluate non-linear feature selection methods, as only a few

of all features are expected to be relevant for the outcome, in a non-

linear fashion. We used four face image datasets from the Arizona

State University feature selection repository (Li et al., 2018)):

pixraw10P, warpAR10P, orlraws10P and warpPIE10P.

Gene expression microarrays: We analyzed four gene expression

microarray datasets from Arizona State University feature selection

repository (Li et al., 2018). The phenotypes were subtypes of B-cell

chronic lymphocytic leukemia (CLL-SUB-111), hepatocyte pheno-

types under different diets (TOX-171), glioma (GLIOMA) and

smoking-driven carcinogenesis (SMK-CAN-187).

Single-cell RNA-seq: Single-cell RNA-seq (scRNA-seq) measures

gene expression at cell resolution, allowing to characterize the diver-

sity in a tissue. We performed feature selection on the three most

popular datasets in the Broad Institute’s Single Cell Portal, related to

i430 H.Climente-González et al.



mouse small intestinal epithelium (Haber et al., 2017), mouse hippo-

campus (Habib et al., 2016) and human blood cells (Villani et al.,

2017). Missing gene expressions were imputed with MAGIC (van

Dijk et al., 2018).

GWA datasets: We studied the WTCCC1 datasets (Burton et al.,

2007) for rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2

diabetes (T2D) (2000 samples each), using the 1958BC cohort as con-

trol (1504 samples). Affymetrix 500K was used for genotyping. We

removed the samples and the SNPs that did not pass WTCCC’s quality

controls, as well as SNPs in sex chromosomes and those that were not

genotyped in both cases and controls. Missing genotypes were

imputed with CHIAMO. Lastly, individuals with >10% genotype

missing rate, and SNPs with >10% genotype missing rate, MAF <

5% or not in HWE (P-value < 0.001) were removed. The remaining

missing genotypes were replaced by the major allele in homozygosis.

Preprocessing: Images, microarrays and scRNA-seq data were

normalized feature-wise by subtracting the mean and dividing by

the standard deviation. GWAS data did not undergo any

normalization.

3.4 Computational resources
We ran the experiments on synthetic data, images, microarrays and

scRNA-seq on CentOS 7 machines with Intel Xeon 2.6 GHz and 50

GB RAM memory. For the GWA datasets experiments, we used a

CentOS 7 server with 96 core Intel Xeon 2.2 GHz and 1 TB RAM

memory.

3.5 Software availability and reproducibility
Block HSIC Lasso was implemented in the Python 2/3 package

pyHSICLasso. The source code is available on GitHub (https://

github.com/riken-aip/pyHSICLasso), and the package can be

installed from PyPI (https://pypi.org/project/pyHSICLasso). All anal-

yses in this article and the scripts needed to reproduce them are also

available on GitHub (https://github.com/hclimente/nori).

4 Results

4.1 Block HSIC Lasso performance is comparable to

state of the art
At first, we worked on synthetic, non-linear data (Section 3.2). We

generated synthetic data with combinations of the following experi-

mental parameters: n ¼ f100;1000;10 000g samples; d ¼
f100;2500;5000;10 000g features; and 5, 10 and 20 causal features,

that is, features truly related to the outcome. We evaluated the per-

formance of different feature selectors at retrieving the causal features.

These conditions range from an ideal setting, where the number of fea-

tures is smaller than the number of samples, to an ultra-high dimen-

sional scenario, where spurious dependencies among variables, and

between those and the outcome are bound to occur.

Each of the methods was required to select as many features as the

number of true causal features. In Figure 1, we show the proportion of

the causal features retrieved by each method. The different versions of

HSIC Lasso outperform the other approaches in virtually all settings.

Block HSIC Lasso with decreasing block sizes results in worse per-

formances. As expected, vanilla HSIC Lasso outperforms the block

versions in accuracy, but increases memory use. Crucially, block HSIC

Lasso on a larger number of samples performs better than vanilla

HSIC Lasso on fewer samples. Hence, when the number of samples is

in the thousands, it is better to apply block HSIC Lasso on the whole

dataset, than to apply vanilla HSIC Lasso on a subsample.

We wanted to test these conclusions using a non-linear, real-world

dataset. We selected four image-based face recognition tasks (Section

3.3). In this case, we selected different numbers of features (10, 20, 30,

40 and 50). Then, we trained random forest classifiers on these subsets

of the features, and compared the accuracy of the different classifiers

on a test set (Supplementary Fig. S1). Block HSIC Lasso displayed a

performance comparable to vanilla HSIC Lasso, and comparable or

superior to the other methods. This is remarkable, since it shows that,

in many practical cases, block HSIC Lasso does not need more sam-

ples to achieve vanilla HSIC Lasso performance.

4.2 Adjusting by covariates improves feature selection
To evaluate the impact of covariate adjustment, we worked on a

synthetic dataset (Section 3.2) with the following experimental

Table 1. Summary description of benchmark datasets

Type Dataset Features (d) Samples (n) Classes

Image AR10P 2400 130 10

PIE10P 2400 210 10

PIX10P 10 000 100 10

ORL10P 10 000 100 10

Microarray CLL-SUB-111 11 340 111 3

GLIOMA 4434 50 4

SMK-CAN-187 19 993 187 2

TOX-171 5748 171 4

Haber et al. (2017) 15 972 7216 19

scRNA-seq Habib et al. (2016) 25 393 13 302 8

Villani et al. (2017) 23 395 1140 10

GWA data RA versus controls 352 773 3451 2

T1D versus controls 352 853 3443 2

T2D versus controls 353 046 3456 2
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Fig. 1. Percentage of true causal features extracted by different feature selec-

tors. Each data point represents the mean over 10 replicates, and the error

bars represent the standard error of the mean. Lines are discontinued when

the algorithm required more memory than the provided (50 GB). Note that in

some conditions mRMR’s line cannot be seen due to the overlap with LARS
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parameters: n ¼ 1 000; d ¼ f100;2500;5000; 10 000g features;

seven causal features. Two covariates were generated by taking two

causal features and adding Gaussian noise (mean ¼ 0; standard devi-

ation ¼ 0.5). In the experiment shown in Supplementary Figure S2,

we tested the ability of (block) HSIC Lasso to retrieve exclusively

the remaining five causal features adjusting for the covariates. We

observe that block HSIC Lasso is able to find more relevant features

when it adjusts for known covariates.

4.3 Block HSIC Lasso is computationally efficient
In our experiments on synthetic data, vanilla HSIC Lasso runs into

memory issues already with 1000 samples (Fig. 1). This experiment

shows how block HSIC Lasso keeps the good properties of HSIC

Lasso, while extending it to more experimental settings. Block HSIC

Lasso with B¼20 reaches the memory limit only at 10 000 samples,

which is already sufficient for most common bioinformatics applica-

tions. If larger datasets need to be handled, it can be done by using

smaller block sizes or a larger computer cluster.

We next quantified the computational efficiency improvement

the block HSIC estimator brings. We compared the runtime and the

peak memory usage in the highest dimensional setting where all

methods could run (n ¼ 1000; d ¼ 2500, 20 causal features)

(Fig. 2). We observe how, as expected, block HSIC Lasso requires

an order of magnitude less memory than vanilla HSIC Lasso. Block

versions also run notoriously faster, thanks to the lower number of

operations and the parallelization. mRMR is 10 times faster than

block HSIC Lasso, at the expense of a clearly lower accuracy.

However, a fraction of this gap is likely due to mRMR having been

implemented in Cþþ, while HSIC Lasso is written in Python. In this

regard, there is potential for other faster implementations of (block)

HSIC Lasso.

4.4 Block HSIC Lasso improves with more permutations
We were interested in the trade-off between the block size and the

number of permutations, which affect both the computation time

and accuracy of the result. We tested the performance of block

HSIC Lasso with B ¼ f5; 10; 15; 30; 60g and M ¼ f1; 2; 3; 5g in

datasets of n ¼ 1000; d ¼ 2500 and 20 causal features. As expected,

causal feature recovery increases with M and B (Fig. 2C), as the

HSIC estimator approaches its true value.

The memory usage OðdnBMÞ of several of the conditions was

the same, e.g. B¼10, M¼3 and B¼30, M¼1. Such conditions are

indistinct from the points of view of both accuracy, and memory

requirements. In practice, we found no major differences in runtime

between different combinations of B and M. Hence, a reasonable

strategy is to fix B to a given size, and tune the M to the available

memory/desired amount of information. This strategy, however,

should be adapted to fit properties of the data. More specifically,

GWAS data are notably sparse, and as result a small block size

would result in many blocks consisting entirely of zeros, which

would hence be uninformative. In such cases, it might be interesting

to prioritize larger block sizes, and fewer permutations.

4.5 Block HSIC Lasso finds more relevant features
We tested the dimensionality reduction potential of different feature

selectors. We selected a variable number of features from different

multi-class biological datasets, then used a random forest classifier

to retrieve the original classes (Section 3.2). The underlying assump-

tion is that only selected features which are biologically relevant will

be useful to classify unseen data. To that end, we evaluated the clas-

sification ability of the biomarkers selected in four gene expression

microarrays (Fig. 3) and three scRNA-seq experiments

(Supplementary Fig. S3). Unsurprisingly, we observe that non-linear

feature selectors perform notably better than linear selectors. Of the

non-linear methods, in virtually all cases block HSIC Lasso showed

similar or superior performance to mRMR. Interestingly, as little as

20 selected genes retain enough information to achieve a plateau ac-

curacy in most experiments.

Surveying 105 � 106 SNPs in 103 � 104 patients, genome-wide

association (GWA) datasets are among the most high dimensional in

biology, an unbalance which worsens the statistical and computa-

tional challenges. We performed the same evaluation on three

WTCCC1 phenotypes (Section 3.3). As a baseline, we also com-

puted the accuracy of a classifier trained on all the SNPs

(Supplementary Table S1). We observe that a feature selection prior

step is not always favorable: LARS worsens the classification accur-

acy by 5–10%. On top of that, LARS could not select any SNP in 2
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Fig. 2. Computational resources used by the different methods. (A) Time

elapsed in a multiprocess setting. (B) Memory usage in a single-core setting.

(C) Number of correct features retrieved on synthetic data

(n ¼ 1000; d ¼ 2500, 20 causal features) by block HSIC Lasso at different

block sizes B and number of permutations M

SMK_CAN_187 TOX−171

CLL−SUB−111 GLIOMA

10 20 30 40 50 10 20 30 40 50

0.5

0.6

0.7

0.8

0.5

0.6

0.7

0.8

Extracted features

M
ea

n 
ac

cu
ra

cy

Algorithm
HSIC Lasso mRMR

Block HSIC Lasso, B = 10 LARS

Block HSIC Lasso, B = 5

Fig. 3. Random forest classification accuracy of microarray gene expression

samples after feature extraction by the different methods. The gray line repre-
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out of the 15 experimental settings. On the other hand, non-linear

methods improve the classification accuracy by 10%, with mRMR

and block HSIC Lasso achieving similar accuracies. In fact, those

two selected the same 14 out of 30 SNPs when we selected 10 SNPs

in each the three datasets with each method (Supplementary Fig. 5).

4.6 Block HSIC Lasso is robust to ill-conditioned

problems
Single-cell RNA-seq datasets differ from microarray datasets in two

ways. First, the number of features is larger, equaling the number of

genes in the annotation (> 20 000). Second, the expression matrices

are very sparse, due to biological variability (genes actually not

expressed in a particular cell) and dropouts (genes whose expression

levels have not been measured, usually because they are low, i.e.

technical zeroes). In summary, the problem is severely ill condi-

tioned, and the feature selectors need to deal with this issue. We

observed that block HSIC Lasso runs reliably when faced with varia-

tions in the data, even on ill-conditioned problems like scRNA-seq.

In the different scRNA-seq datasets, LARS was unable to select the

requested number of biomarkers in any of the cases, returning al-

ways a lower number (Supplementary Fig. S4). mRMR did in all

cases. However, the implementation of mRMR that we used crashed

while selecting features on the full Villani et al. (2017) dataset.

4.7 Block HSIC Lasso for biomarker discovery
4.7.1 New biomarkers in mouse hippocampus scRNA-seq

To study the potential of block HSIC lasso for biomarker discovery in

scRNA-seq data, we focused on the mouse hippocampus dataset from

Habib et al. (2016), as a list of 1669 known biomarkers for the differ-

ent cell types is also provided by the authors. We requested block

HSIC Lasso, mRMR and LARS to select the best 20 genes for classifi-

cation of 8 cell types (Supplementary Table S2). The cell types were

four different hippocampal anatomical subregions (DG, CA1, CA2

and CA3), glial cells, ependymal, GABAergic and unidentified cells.

The overlap between the genes selected by different algorithms

was empty. We compared the selected genes to the known bio-

markers. Out of the 20 genes selected by mRMR, 14 are known bio-

markers, a number that goes down to 0 in the case of block HSIC

Lasso (Supplementary Fig. S4A). Hence, these 20 genes, which are

sufficient for accurately separating the cell types, are potential novel

biomarkers. However, we have no reason to believe that HSIC

Lasso generally has a higher tendency to return novel genes than

other approaches; we merely emphasize that it suggests alternative,

statistically plausible biological hypotheses that can be worth

investigating.

We therefore evaluated whether the novel genes found by block

HSIC Lasso participate in biological functions known to be different

between the cell classes. To obtain the biological processes respon-

sible for the differences between classes, we mapped the known bio-

markers to GO Biological process categories using the GO2MSIG

database (Powell, 2014). Then we repeated the process using the

genes selected by the different feature selectors, and compared the

overlap between them. The overlap between the different techniques

increases when we consider the biological process instead of specific

genes (Supplementary Fig. S4B). Specifically, one biological process

term that is shared between mRMR and block HSIC Lasso, ‘Adult

behavior’ (associated to Sez6 and Klhl1, respectively), is clearly

related to hippocampus function. This reinforces the notion that the

selected genes are relevant for the studied phenotypes.

Then we focused on potential biomarkers and biologically inter-

esting molecules among those genes selected by block HSIC Lasso.

As it is designed specifically to select non-redundant features, often-

used GO enrichment analyses are not meaningful: we expect genes

belonging to the same GO annotation to be correlated, and HSIC

lasso should not accumulate them. Among the top five genes, two

mapped to a biological processes known to be involved: the afore-

mentioned Klhl1 and Pou3f1 (related to Schwann cell development).

Klhl1 is a gene expressed in seven of the studied cell types and which

has been related to neuron development in the past (He et al., 2006).

Pouf1 is a transcription factor which in the past has been linked to

myelination, and neurological damage in its absence (Jaegle et al.,

1996). The only gene among the top five that was expressed exclu-

sively in one of the clusters is the micro RNA Mir670, expressed ex-

clusively in CA1. According to miRDB (Wong and Wang, 2015),

Mir670 top predicted target of its 3’ arm is Pcnt, which is involved

in neocortex development.

4.7.2 GWAS without assumptions on genetic architecture

We applied block HSIC Lasso (B¼60, M¼1) to three GWA data-

sets (Section 3.3). It is typical in GWAS to assume a genetic model

before performing statistical testing of associations between SNPs

and the phenotype. Two common, well-known models are the addi-

tive model—the minor allele in homozygosity has twice the effect as

the minor allele in heterozygosity—and the dominant model—any

number of copies of the minor allele have a phenotypic outcome.

Using non-linear models such as block HSIC Lasso to explore the re-

lationship between SNPs and outcome is attractive since no assump-

tions are needed on how individual SNPs affect the trait. The only

assumption is that the phenotype can be explained by a combination

of main effects, as block HSIC Lasso does not account for epistasis.

On top of that, by penalizing the selection of redundant features,

block HSIC Lasso avoids selecting multiple SNPs in high linkage

disequilibrium.

In our experiments, we selected 10 SNPs with block HSIC Lasso

for each of the three phenotypes. These are the SNPs that best bal-

ance high relatedness to the phenotype and not giving redundant in-

formation, be it through linkage disequilibrium or through an

underlying shared biological mechanism. We compared these SNPs

to those selected by the univariate statistical tests implemented in

PLINK 1.9 (Chang et al., 2015). Some of them explicitly account for

non-linearity by considering dominant and recessive models of in-

heritance. The number of SNPs that were positive in at least one test

were disparate between the studied phenotypes: all 10 in T1D, 5 in

RA, and only 2 in T2D.

Specifically, we compared the genome-wide genotypic P-values

to the SNPs selected by block HSIC Lasso (Fig. 4). In T1D, block

HSIC Lasso selected SNPs among those with the most extreme

p-values. However, not being constrained by a conservative P-value

threshold, block HSIC Lasso selects five and eight SNPs in RA and

T2D, respectively, with non-Bonferroni significant P-values when

they improve classification accuracy Interestingly, one of these SNPs

can be physically mapped to PFKM (Keildson et al., 2014), a gene

previously identified in genome-wide studies of T2D. The selected

SNPs are scattered all across the genome, displaying the lack of re-

dundancy between them. This strategy gives a more representative

set of SNPs than other approaches common in bioinformatics, like

selecting the smallest 10 P-values.

5 Discussion

In this work, we presented block HSIC Lasso, a non-linear feature

selector. Block HSIC Lasso retains the properties of HSIC Lasso
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while extending its applicability to larger datasets. Among the at-

tractive properties of block HSIC Lasso we find, first, its ability to

handle both linear and non-linear relationships between the varia-

bles and the outcome. Second, block HSIC Lasso has a convex for-

mulation, ensuring that a global solution exists, and that it is

accessible. Third, the HSIC score can be accurately estimated, as

opposed to other measures of non-linearity like mutual information.

Fourth, block HSIC Lasso’s memory consumption scales linearly

with respect to both the number of features and the number of sam-

ples. In addition, block HSIC Lasso can be easily adapted to differ-

ent problems via different kernel functions that better capture

similarities in new datasets. Lastly, block HSIC Lasso can be

adjusted for covariates known to affect the outcome, which helps

removing confounding effects from the analysis. Due to all these

properties, we show how block HSIC Lasso outperforms all other

algorithms in the tested conditions.

Block HSIC Lasso can be applied to different kinds of datasets.

As other non-linear methods, block HSIC Lasso is particularly use-

ful when we do not want to make strong assumptions about how

the causal variables relate to the outcome. Thanks to the advantages

mentioned above, HSIC Lasso and block HSIC Lasso tend to out-

perform other state-of-the-art approaches in terms of both causal

features retrieval in simulated data, and classification accuracy on

real-world datasets.

Whereas the Lasso is limited to selecting at most as many fea-

tures as there are available samples (n), for block HSIC Lasso the

limitation is nBM. Hence, even if the number of samples is small,

block HSIC Lasso can be used to select a larger number of features.

If nBM is still limiting, one could replace the ‘1 regularization with

an elastic-net regularization. However, in most cases, we expect

block HSIC Lasso to be used to select a small number of features.

Regarding its potential in bioinformatics, we applied block HSIC

Lasso to images, microarrays, single-cell RNA-seq and GWAS. The

two latter involve thousands of samples, making it unfeasible to run

vanilla HSIC Lasso on a regular server because of its memory require-

ments. The selected biomarkers are biologically plausible, agree with

the outcome of other methods and provide a good classification accur-

acy when used to train a classifier. Such a ranking is useful, for in-

stance, when selecting SNPs or genes to assay in in vitro experiments.

Block HSIC Lasso’s main drawback is the memory complexity,

markedly lower than in vanilla HSIC Lasso but still OðdnBÞ.
Memory issues might appear in low-memory servers in cases with a

large number of samples n, of features d, or both. However, through

our work on GWA datasets, the largest type of dataset in bioinfor-

matics, we show that working on these datasets is feasible. Another

drawback, which block HSIC Lasso shares with the other non-linear

methods, is their black box nature. Block HSIC Lasso looks for bio-

markers which, after an unknown, non-linear transformation,

would allow a linear separation between the samples.

Unfortunately, we cannot access this transformed space and explore

it, which makes the results hard to interpret.
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