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Abstract

Motivation: Circulating-free DNA (cfDNA) profiling by sequencing is an important minimally inva-

sive protocol for monitoring the mutation profile of solid tumours in cancer patients. Since the

concentration of available cfDNA is limited, sample library generation relies on multiple rounds of

PCR amplification, during which the accumulation of errors results in reduced sensitivity and lower

accuracy.

Results: We present PCR Error Correction (PEC), an algorithm to identify and correct errors in short

read sequencing data. It exploits the redundancy that arises from multiple rounds of PCR amplifica-

tion. PEC is particularly well suited to applications such as single-cell sequencing and circulating

tumour DNA (ctDNA) analysis, in which many cycles of PCR are used to generate sufficient DNA

for sequencing from small amounts of starting material. When applied to ctDNA analysis, PEC sig-

nificantly improves mutation calling accuracy, achieving similar levels of performance to more

complex strategies that require additional protocol steps and access to calibration DNA datasets.

Availability and implementation: PEC is available under the GPL-v3 Open Source licence, and is

freely available from: https://github.com/CRUKMI-ComputationalBiology/PCR_Error_Correction.git.

Contact: ged.brady@cruk.manchester.ac.uk or crispin.miller@cruk.manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next Generation Sequencing (NGS) of circulating tumour DNA

(ctDNA) from patient blood has the potential to revolutionize cancer

genomics by supporting non-invasive tumour genotyping using

blood-based ‘liquid’ biopsies (Bettegowda et al., 2014; Bratman et al.,

2015; Butler et al., 2015; Diaz and Bardelli, 2014; Diehl et al., 2008;

Heitzer et al., 2015; Kurtz et al., 2015). It is challenging because

ctDNA accounts for as little as 0.01% of the total circulating free

DNA (cfDNA) population (Bettegowda et al., 2014; Bratman et al.,

2015; Newman et al., 2014; Schmitt et al., 2012). Reliable variant de-

tection therefore requires high sequencing depth and many rounds of

amplification. This results in elevated PCR error rates and reduced

mutation calling accuracy. PCR errors arise from a variety of sources

including DNA damage, structure induced template-switching, PCR-

mediated recombination and polymerase misincorporation (Potapov

and Ong, 2017). Together, these lead to a mixture of systematic and

random changes to the amplified molecular sequence.

A number of methodologies have been developed to correct PCR

errors (Kennedy et al., 2014; Newman et al., 2014, 2016; Schmitt

et al., 2012), including Duplex Sequencing (DS) (Kennedy et al.,

2014; Newman et al., 2014; Schmitt et al., 2012), which relies on

barcodes to track the PCR products arising from each DNA frag-

ment. This allows them to be grouped together, and the consensus

between their sequences used to identify and correct errors.
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A recently developed method, iDES (Newman et al., 2016), uses

DS in combination with a second ‘background-polishing’ step that

corrects systematic errors found preferentially within certain sequen-

ces. These have the potential to act as a major confounding factor,

since they can accumulate across specific loci, mimicking a bona

fide variant allele. To do this, iDES uses a background model built

from healthy normal volunteer (HNV) blood samples to identify

‘hotspot’ regions with disproportionately high error rates. Variants

at these loci are then filtered from the results. While a significant

advance, iDES requires high sequencing depths, access to HNV

datasets, and an additional barcoding step. These add cost and com-

plexity to the protocol, and may to reduce the efficiency of library

preparation—particularly undesirable when dealing with limited

amounts of ctDNA material. A similarly sensitive and barcode-free

approach that does not require extremely high-depth sequencing

and external HNV calibration data would therefore further advance

the field.

Here, we describe PCR Error Correction (PEC), a new algorithm

for short-read sequencing data. PEC uses an in silico, barcode-free,

strategy to exploit the redundancy that arises when multiple PCR

amplicons are derived from the same initial DNA fragment. Since

these duplicate reads can confound statistical analyses, they are

typically discarded following alignment, leaving only a single read,

presumed to represent the original cfDNA molecule. Typically, the

terms ‘Sequencing Depth’ and ‘Read Depth’ are used to refer to

the number of overlapping reads before and after de-duplication.

For the purposes of this manuscript, it is useful to define a third

term ‘Duplicate Depth’ to refer to the number of PCR duplicates in

an amplicon cluster.

De-duplication is commonly done using the MarkDuplicates al-

gorithm from Picard (DePristo et al., 2011). MarkDuplicates relies

on the fact that at typical sequencing depths, the likelihood of two

read fragments originating from exactly the same genomic region is

negligible (Methods). It therefore identifies all reads with the same

5’ end (taking into account strandedness) and retains the read with

the highest overall base quality score. While this deals well with

errors resulting from low-quality sequencing, it makes no attempt to

identify high quality reads that nevertheless incorporate PCR errors.

These are then able to propagate to subsequent stages of the analysis

pipeline.

PEC first identifies reads expected to arise from the same initial

starting molecule, using a similar strategy to MarkDuplicates.

However, rather than retaining the read with highest quality score,

it instead uses a local sequence assembly to generate the consensus

sequence for each PCR amplicon set (Fig. 1A). While doing this, it

learns the ‘intrinsic error pattern’ within the data, comprising the

most frequently corrected sequence patterns. This is then used to

identify and correct systematic errors in singleton reads. Here, we

show that this results in equivalent performance to iDES, but with-

out the need for a reference HNV control dataset or an additional

in vitro barcoding step.

2 Materials and methods

2.1 The Pec algorithm
PEC is implemented using the MapReduce-MPI Cþþ library

(Plimpton and Devine, 2011), an open-source implementation of the

Fig. 1. PCR Error Correction (PEC) algorithm. (A) Overview of PEC algorithm pipeline design. DeDuplicates: de-duplication using de novo assembly, in which con-

sensus reads and error k-mer lists are identified. (B) Each PCR duplicate set is independently assembled using a k-mer assembler (based on a de Brujin graph) to

produce a consensus sequence. K-mers that do not match this consensus are flagged as ‘untrusted’, while those that match the consensus are flagged as

‘trusted’. (C) Untrusted k-mers that have never been flagged ‘trusted’ are considered to be error k-mers. These are used to identify errors in reads that are in low

coverage PCR amplicon sets with insufficient duplicate depth to allow a reliable consensus sequence to be generated. (D) In this way, error patterns learnt from

correcting errors in high-coverage PCR amplicon sets are used to correct errors in low-coverage and singleton reads
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MapReduce framework written for distributed memory parallel

machines on top of the open Message Passing Interface (MPI)

library. The overall pipeline can be parallelized across multiple pro-

cessors. It proceeds through several steps (Fig. 1A). The first identi-

fies and groups input reads that are likely to have been amplified

from the same cfDNA molecules. PEC assumes that paired-end

reads aligning to the same genomic location (by 5’ end) are PCR

products derived from the same initial DNA fragment. This is simi-

lar to the approach taken by MarkDuplicates (DePristo et al.,

2011). Locations are identified by aligning reads to the reference

genome using BWA (Li and Durbin, 2009). Each read is represented

by a key-value pair in a MapReduce implementation, with the gen-

omic locations providing the keys. Paired-end reads can then be clus-

tered by a single MapReduce step to produce sets of PCR duplicates,

each with the same genomic locations. It then performs two error

suppression steps. The first, DeDuplicates, applies only to sets with

a relatively high number of PCR duplicates (duplicate depth � 5 by

default; note that this refers to the number of read-pairs in the PCR

duplicate set, not the read depth following de-duplication).

A linear sequence assembly algorithm (Grabherr et al., 2011) is

applied to each set to generate its consensus sequence. At each nucleo-

tide in the sequence, the most common allele is selected at the represen-

tative nucleotide. Since the assumption is that all read-pairs mapping

to the same 5’ coordinates are likely to have originated from the same

DNA fragment, this serves to identify and correct PCR errors (Fig. 1B).

In parallel, PEC generates, for each set, the list of k-mers used in

the alignment. These are marked as ‘trusted’ or ‘untrusted’, such

that ‘trusted’ k-mers match the consensus sequences, while

‘untrusted’ k-mers include a potential error residue. Note that error

bases with a low base calling quality score are not considered to be

PCR errors (Phred quality score �20 by default). Since these have al-

ready been identified as potential errors by the scanner software,

PEC leaves them unchanged. Downstream analysis software is then

able to deal with them in the usual way.

The k-mer lists from each PCR-amplicon set are then merged in

order to generate a list of ‘error’ k-mers, comprising all ‘untrusted’ k-

mers that have never been flagged as ‘trusted’. This final list is then

applied only to singleton reads and PCR-amplicon sets with few PCR

duplicates (duplicate depth < 5 by default). For these, the paired-end

read with the highest overall base quality scores is selected as the repre-

sentative cfDNA molecule for each amplicon set. Candidate error bases

are then localized by the intersection of error k-mers (Kelley et al.,

2010) (Fig. 1C) and flagged within the representative reads by lowering

the base quality score for that nucleotide by setting the Phred score to

5 for that base, allowing them to be ignored in subsequent downstream

analyses (Fig. 1D). Since this second step learns error patterns from the

dataset itself, rather than an external reference set, we refer to it as

Intrinsic-Polishing. NGS aligners, such as BWA employ some degree of

compromise between speed and accuracy. The performance of BWA

also begins to degrade for longer reads and/or those with high error

rates (Li and Durbin, 2009). Since the de-duplicated dataset produced

by PEC is significantly smaller, and thus more computationally tract-

able, PEC employs a final step in which the de-duplicated reads are

realigned to the reference genome using the Smith-Waterman C/Cþþ
library (Zhao et al., 2013). This then generates the optimal alignment

for each read. The output of this software is an error-corrected set of

cfDNA reads in bam file format, which can be easily incorporated into

existing NGS data analysis pipelines.

2.2 Likelihood of cfDNA collisions
The strategy employed by PEC is dependent on individual ctDNA

molecules originating from distinct position on the genome. Here

we justify this assumption, using a derivation based on the Birthday

Paradox.

The probability CL of having at least one cfDNA collision at the

given locus can be defined as follows:

CL ¼ 1�
ML!

L
ML

� �

LML
(1)

where ML represents the expected number of cfDNAs of fixed

length L at a given locus.

In a real experiment, cfDNA fragments are of different lengths.

Since a collision occurs when two cfDNA fragments have identical

start and end points, cfDNA fragments with different lengths cannot

collide. We therefore model the fragment length distribution using a

normal distribution with mean l, r, to produce a distribution for

ML, given the cfDNA depth, D:

M̂L ¼ D�NðLjl; rÞ (2)

Third, the probability p of having any cfDNA collisions at each

locus with varying length L can be defined as,

p ¼
ð

CLN Ljl; rð ÞdL ¼
X

L

CLN Ljl;rð Þ (3)

With cfDNA prepared using the protocol described in Section

2.3.4, below, typical values of l ¼ 177; r ¼ 20 were determined using

an Agilent Bioanalyzer (data not shown). Using Equation (3), and these

values, p ¼ 0:047 with D¼300X, i.e. �4.7% of the target region is

expected to have cfDNA collisions (Supplementary Fig. S1).

While these are typical values for ctDNA library preparation,

much greater sequencing depths, longer fragments, or less variable

fragment sizes may increase the likelihood of collisions. We there-

fore recommend computing p to confirm that this collision assump-

tion holds, if the library preparation step is expected to generate a

dramatically different distribution. For example, once the cfDNA

depth (as distinct from the sequencing depth) exceeds 500� then the

likelihood of collision becomes prohibitive.

2.3 Evaluation datasets
2.3.1 Dataset 1

We used a previously published cfDNA-seq dataset (Newman et al.,

2016), comprising 4 samples of cfDNAs with simulated ctDNAs

(HD500; Horizon Diagnostics 500), a DNA diagnostic reference stand-

ard consisting of multiple clinically relevant variants with a range of

known allele fractions between 0.94 and 32.5%. The 4 sample repli-

cates were created with 5.0% dilution of acoustically shorn HD500

genomic DNA fragments added to cfDNAs from a healthy donor.

2.3.2 Dataset 2

We simulated the typical cfDNA nucleosomal fragmentation pattern

by applying a double-strand DNA specific endonuclease (EZ

Nucleosomal DNA Prep Kit, Zymo Research, Orange, CA) as per

the manufacturer’s instructions to generate nucleosomal DNA

fragments from both a well-characterized SCLC cell line H446 and

non-cancer control peripheral blood mononuclear cells (PBMCs).

Subsequently we prepared serial dilutions of the nucleosome frag-

mented DNA to generate PBMC/H446 mixtures where the H446

DNA was present at 100, 20, 10, 5 and 0%. These dilution samples

were further NGS whole genome library prepped at final concentra-

tions of 20 and 5 ng to mirror the input cfDNA concentrations from

patient samples for NGS whole genome library preparation. The

whole genome libraries were enriched for 15 genes using a
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SureSelectXT Custom DNA Kit (Agilent, Santa Clara, CA, USA) of

15 genes. The enriched DNA libraries were re-amplified using the

KAPA HiFi PCR Kits and Illumina sequencing primers for 13 cycles.

Paired end sequencing was performed for these enriched libraries on

the IlluminaVR NextSeq 500 (Illumina, San Diego, CA, USA) benchtop

sequencer with the NextSeq 500/550 Mid Output v2 kit (300 cycles).

2.3.3 Non-Cancer volunteer sample collection

Blood samples for cfDNA analysis were collected in a Cell-FreeTM

DNA BCT tubes (Streck, Omaha, NE). The blood samples were

transferred to the Clinical and Experimental laboratory for process-

ing. Samples were collected from a non-cancer control volunteer

(referred to as HNV or healthy normal volunteer and these were per-

sons recruited from within the CR-UK Manchester Institute that

was not currently suffering or being treated for cancer).

2.3.4 Circulating cell free DNA preparation and quantification

Blood samples collected using Cell-FreeTM DNA BCT tubes (Streck,

Omaha, NE), CellSave, Heparin and EDTA (ethylenediaminetetra-

acetic acid) Vacutainer tubes were used for extraction of circulating

cell free DNA from HNV. Plasma was separated from whole blood

by two sequential centrifugations (each 2000g, 10 min) followed by

upper phase plasma removal and stored at �80�C in 2 ml aliquots

(Rothwell et al., 2016). Cell-free DNA (cfDNA) was isolated from

upto 4 ml of double spun plasma using the QIAsymphony in conjunc-

tion with Circulating DNA Kit (Qiagen, Hilden, Germany).

Following isolation, cfDNA yield was quantified using the TaqManVR

RNase P Detection Kit (Life Technologies) as per manufacturer’s

instructions (Rothwell et al., 2016). Germline DNA (gDNA) was iso-

lated from EDTA whole blood using QIAmp Blood Mini Kit

(Qiagen, Hilden, Germany) as per manufacturer’s instructions.

2.4 Mutation calling using MuTect software
MuTect (Cibulskis et al., 2013), was run with default parameter set-

tings as per the GATK best practices recommendations (https://soft

ware.broadinstitute.org/gatk/best-practices/mutect1.php) with two

additional parameters: ‘-dt NONE -min_qscore 20’.

3 Results

We first evaluated PEC using the reference DNA dataset used by

Newman et al. to evaluate iDES (Newman et al., 2016). These data

were generated by mixing acoustically shorn HD500 genomic DNA

(Horizon Diagnostics) with cfDNA from a healthy donor. The re-

sultant data incorporate a set of known clinically relevant variants

with a wide range of allele frequencies (AF) (0.94% � AF �
32.5%). 4 technical replicates with 5% simulated ctDNA content

were generated.

Comparisons were made between PEC, the Background-

Polishing step of iDES and MarkDuplicates, using each algorithm

as a pre-processing step prior to mutation calling. Since no matching

genomic DNA was available, we were unable to use the standard

GATK pipeline for mutation calling, and instead adopted the ap-

proach used by Newman and colleagues: a Poisson model (Newman

et al., 2016), was used to define the theoretical minimum number of

variant alleles required to detect ctDNAs with 95% confidence. Loci

where the VAF exceeded this detection limit were called as variants.

Target sequences covered a total of 302 620 nucleotides. These

encompassed 239 known SNVs previously shown to be clinically

relevant in NSCLC (Newman et al., 2016) that were not present in

the data, alongside 26 True Positive (TP) SNVs that were present.

Data were evaluated using the widely adopted GATK pipeline,

configured according to the GATK ‘best practices recommendations’

(see Section 2). The performance of the standard pipeline was com-

pared to that achieved by substituting the MarkDuplicates step with

PEC. PEC exhibited improved specificity and positive predictive

value over MarkDuplicates, while matching the specificity and posi-

tive predictive value of the iDES Background-Polishing algorithm

(Fig. 2A–D). Importantly, PEC achieves these improvements with-

out the need to reference an external HNV dataset. As expected,

PEC also suppressed more background errors in regions known to

Fig. 2. Accuracy of each pipeline using Dataset 1. Each point represents an individual dataset. (A) Sensitivity %, (B) Specificity %, (C) Positive predictive value %,

(D) Negative predictive value %, (E) % Target loci (excluding 26 loci with known variations) with VAF ¼ 0, 0<VAF < 1% and VAF > 1% before and after error sup-

pression. (F) Substitution error rate estimated from PEC-DeDuplicates and summarized by nucleotide, and MD represents the error suppression by

MarkDuplicates. MD þ bP represents the error suppression by MarkDuplicates and Background-Polishing. PEC represents the error suppression by DeDuplicates.

PEC þ iP represents the error suppression by DeDuplicates and Intrinsic-Polishing
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be absent of SNVs compared to Extrinsic-polishing (Fig. 2E and

Supplementary Figs S2–S3). These errors included a disproportion-

ate number of G>T and C>T transitions (Fig. 2F), as previously

reported (Newman et al., 2016).

We further evaluated PEC using a second reference dataset gener-

ated by mixing acoustically shorn reference DNA derived from H466

cells with cfDNA from a healthy normal donor (see Section 2). Three

samples were generated at different concentrations along with 100%

HNV cfDNA and 100% H466 DNA were also sequenced and ana-

lyzed using the unmodified GATK best practices workflow

(McKenna et al., 2010), in order to identify SNVs specific to the cell

line. These were then used as a ‘gold standard’ True Positive set for

subsequent analyses. In total, 109 variant alleles were selected as TP

SNVs with VAFs > 25% (Supplementary Fig. S4). Having established

a ground truth for evaluation, comparisons were then made between

PEC and MarkDuplicates, using each algorithm as a pre-processing

step prior to mutation calling using MuTect (Cibulskis et al., 2013).

As before, PEC exhibited increased sensitivity over

MarkDuplicates at all dilutions (Fig. 3). Importantly, 4 SNVs were

only called when Intrinsic-Polishing was employed. In all four cases,

these loci had low, but significant VAF (>2%) in the 100% HNV

cfDNA sample (Supplementary Fig. S5); these variant alleles in the

normal input were removed by Intrinsic-Polishing, leading to the cor-

rect mutation calls at these loci. Finally, we compared the error cor-

rection patterns between the two datasets, to reveal substantial

differences between the two datasets (Supplementary Fig. S6).

Background polishing algorithms that take these error patterns into

account must therefore be able to model different error patterns for

each dataset presented. The intrinsic polishing approach described

here is therefore particularly appealing since it does not require access

to multiple external reference datasets in order to learn these patterns.

Taken together, these data demonstrate that when PEC is incor-

porated into the GATK best practices variant calling pipeline it leads

to improved sensitivity and specificity when used as a direct replace-

ment of MarkDuplicates. It achieves similar performance to the

Background-Polishing approach used by iDES, even though it does

this without recourse to a reference HNV dataset. Since PEC’s con-

tribution is to correct errors by improving the de-duplication step, it

is likely to have general utility beyond the GATK best practices pipe-

line. However, careful validation will be required before adopting it

in each alternate setting. Thus, although the data we present here

demonstrates the utility of PEC in the context of ctDNA data, we

expect it to be widely applicable to other NGS datasets including

those arising from single cell analyses.

Acknowledgements

This work used the Cirrus UK National Tier-2 HPC Service at EPCC (http://

www.cirrus.ac.uk).

Funding

This work was supported by Cancer Research UK via core funding to Cancer

Research UK Manchester Institute (C5759/A20971), and funding to the

Medical Research Council Manchester Single Cell Research Centre (MR/

M008908/1 to CSK) and AstraZeneca (D1330N00013 to SM).

Conflict of Interest: none declared.

Fig. 3. Comparison of the sensitivity of each pipeline using Dataset 2. 5 dilutions were generated (simulating 0, 5, 10, 20, 100% ctDNA). Sensitivity was calculated

using 109 True Positive loci with VAFs > 25% in the 100% H446 sample. In all panels, each column corresponds to a target locus. (A) VAFs of True Positive loci for

each sample data (see also Supplementary Fig. S4). (B) Mutation calls from each pipeline using MuTect software. White: no mutation call, grey: called by all pipe-

lines, red: called correctly by some pipelines. MD: MarkDuplicates pipeline. PEC: PEC DeDuplicates pipeline. PEC þ iP: PEC DeDuplicates and Intrinsic-Polishing

pipeline. (C) Number of mutation calls and sensitivity. In (A) and (B), each column corresponds to a known SNV and each row represents a simulated ctDNA

sample
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