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Abstract

Motivation: Cell shape provides both geometry for, and a reflection of, cell function. Numerous

methods for describing and modeling cell shape have been described, but previous evaluation of

these methods in terms of the accuracy of generative models has been limited.

Results: Here we compare traditional methods and deep autoencoders to build generative mod-

els for cell shapes in terms of the accuracy with which shapes can be reconstructed from mod-

els. We evaluated the methods on different collections of 2D and 3D cell images, and found that

none of the methods gave accurate reconstructions using low dimensional encodings. As

expected, much higher accuracies were observed using high dimensional encodings, with

outline-based methods significantly outperforming image-based autoencoders. The latter

tended to encode all cells as having smooth shapes, even for high dimensions. For complex 3D

cell shapes, we developed a significant improvement of a method based on the spherical har-

monic transform that performs significantly better than other methods. We obtained similar

results for the joint modeling of cell and nuclear shape. Finally, we evaluated the modeling of

shape dynamics by interpolation in the shape space. We found that our modified method pro-

vided lower deformation energies along linear interpolation paths than other methods. This

allows practical shape evolution in high dimensional shape spaces. We conclude that our

improved spherical harmonic based methods are preferable for cell and nuclear shape model-

ing, providing better representations, higher computational efficiency and requiring fewer train-

ing images than deep learning methods.

Availability and implementation: All software and data is available at http://murphylab.cbd.cmu.

edu/software.

Contact: murphy@cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The shapes of cells vary during movement, development and in re-

sponse to environmental changes such as drug treatment. Thus the

study of cell shape is important to understanding fundamental bio-

logical processes. There are two different approaches for such stud-

ies: discriminative methods that try to capture just enough

information about shapes to be able to distinguish previously

defined classes, or generative methods that try to capture as much

information as possible in order to be able to estimate the shape dis-

tribution of a population. For either approach, the native represen-

tation of cell shapes can be through a mask indicating which pixels

in an image are contained within a cell, or through identification of

points on the cell boundary; both of these are high dimensional and

are therefore difficult to use directly for discrimination or gener-

ation. The discriminative task is typically accomplished by
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characterizing shapes using many different types of descriptive fea-

tures: simple ones such as eccentricity or convex deficiency, or more

complex features such as scale invariance feature transform (SIFT)

(Lowe, 2004) and speed up robust feature (SURF) (Bay et al., 2008).

These may work well for a particular classification task (where

shapes are quite different), but they are typically not useful for the

generative task since trying to reconstruct a shape from such features

can produce too many shapes that are not similar to the original in

ways not captured by those features. For generative modeling, a

higher dimensional, more complete description is typically used and

the high dimensional cell shape representations are embedded to a

low dimensional shape space. In this case, it is easy to visualize dif-

ferent cell shape populations and compare cell shapes of different

cell types or states. The shape spaces can be viewed as a generative

model of the cell shapes, from which every point in the space repre-

sents a possible cell shape, and a trajectory in shape space can repre-

sent shape dynamics (Johnson et al., 2015b). There are two

traditional approaches to building shape spaces. The first is a linear

shape model based upon the parameterization of the cell boundary

followed by linear methods, like PCA or ICA (Pincus and Theriot,

2007). The second uses manifold learning methods combined with

deformation based methods. Large deformation diffeomorphic met-

ric mapping (Beg et al., 2005), is an example of the latter approach

that has been successfully applied to nuclear and cell shape (Johnson

et al., 2015b; Rohde et al., 2008; Roybal et al., 2016). A significant

disadvantage of diffeomorphic approaches is that the training pro-

cess typically takes much longer than other methods.

A classical approach to performing shape analysis is using

Principal Component analysis (PCA) on some kind of parameteriza-

tion that captures shape variances (Dryden and Mardia, 2016). PCA

is simple and fast, but it yields a linear model, and may not perform

well for some tasks. Shape component analysis (SCA) was proposed

by Lee et al. (2016), and seeks non-linear dimension reduction of 2D

and 3D biological shape representations which were shown to be

suitable for clustering.

Though similar in many aspects, 3D shapes are usually challeng-

ing to model because unlike 2D shapes that can be easily represented

with ordered arrays of outline landmarks that are comparable to

each other, it is not trivial to represent 3D surfaces with similar fea-

tures, as the shape variance has more degrees of freedom and there

is no established ordering of surface coordinates in 3D space. For

3D shapes, a traditional approach is to represent shapes as surfaces

and convert surfaces to shape descriptors. Among various descrip-

tors, spherical harmonic descriptors are widely used (Kazhdan et al.,

2003; Tangelder and Veltkamp, 2008). The basic idea is to map the

surface to a unit sphere and perform a spherical harmonic trans-

form; the coefficients can be used as features (Kazhdan et al., 2003)

to compare different shapes or reconstruct the original shapes. An

example scheme is shown in Figure 1. An advantage of the descrip-

tor is that it is invariant under translations and scalings. However,

the descriptors rely on the quality of the spherical parameterization,

which may be challenging for complex cell shapes. Various methods

have been developed for spherical parameterization (Brechbühler

et al., 1995; Shen and Makedon, 2006). Some previous work has

applied the spherical harmonic representations to cell shapes

(Ducroz et al., 2012; Du et al., 2013) and other biological shapes

(Lee et al., 2016).

Recently, deep learning techniques have shown powerful repre-

sentation ability for various types of data, especially when a large

number of samples are available. Unsupervised learning techniques

such as autoencoders (Hinton and Salakhutdinov, 2006) and genera-

tive adversarial networks (Goodfellow et al., 2014) provide

powerful alternatives for building shape spaces that have recently

been applied to build cell shape space or whole cell generative mod-

els (Johnson et al., 2017; Osokin et al., 2017).

As proposed by Rumelhart et al. (1986), an autoencoder learns

some low dimensional representation such that the representation

can be restored to the original input as accurately as possible. An

autoencoder has an encoder and a decoder. The encoder uses the ori-

ginal data as input and learns some low dimensional representation.

The decoder uses the low dimensional representation as input and

produces an output with the same size as the original input.

Training is performed to minimize the difference between the output

and the original input. Many variants of autoencoders have been

developed, such as convolutional autoencoder (Masci et al., 2011),

variational autoencoder (Kingma and Welling, 2013) and adversar-

ial autoencoder (Makhzani et al., 2015). An approach for represent-

ing cell and nuclear shapes based on adversarial autoencoders has

been recently described (Johnson et al., 2017).

An important consideration in shape modeling is whether size or

orientation is considered implicitly or explicitly. Statistical shape

analysis provides hierarchical definitions of shape configuration in

terms of shape with or without size and/or rotation (Dryden and

Mardia, 2016). However, deep learning methods usually use as in-

put raw pixel images without removal of scale and orientations. To

make fair comparisons between different methods, the total number

of variables involved in constructing models (whether latent or ex-

plicit) must be considered.

In this paper we explore various methods for cell shape represen-

tation. Our focus is on accurate unsupervised representation, which

is necessary for the creation of synthetic cell models, rather than

supervised learning, since good discriminative models might not be

adequate for generation.

2 Methods and datasets

2.1 Datasets and processing of data
CYTO Challenge 2 dataset: This dataset consists of raw 2D fluores-

cence microscope images from the CYTO 2017 Image Analysis

Challenge (http://cytoconference.org/2017/Program/Image-Analysis-

Challenge.aspx). The cell types are not specified in the dataset. We

segmented the images from Challenge 2 using the watershed algo-

rithm (Vincent and Soille, 1991). The images were downsampled by

a factor of 2 and each cell placed in the center of a 512 � 512 image.

We randomly chose 20 000 segmented images and used 10 000

images as the training set and the remaining images as the testing

set. Examples from the dataset are shown in Supplementary Figure

S1.

HPA cell lines (HPA CL) dataset: This dataset was downloaded

from the Human Protein Atlas (HPA, https://www.proteinatlas.org/

). It contains about 200 fluorescence microscope images for each of

10 cell lines. The images were processed in the same way as above.

We randomly selected about 1500 segmented cells for each cell line

to create a training set of 10 000 images and a testing set of 4900

images. Examples from the dataset are shown in Supplementary

Figure S2.

H1299 dataset: This dataset was downloaded from the Kahn

Dynamic Proteomics Database (Sigal et al., 2006, 2007), which was

also used in Johnson et al. (2015b) (also available from murphylab

http://murphylab.web.cmu.edu/software/2015_MBoC_Cell_And_

Nuclear_Shape/). It consists of 2D images from movies of H1299

non-small cell lung carcinoma cell lines expressing different proteins

tagged with yellow fluorescent protein (YFP). We used the image
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processing pipeline from Johnson et al. (2015b), and obtained 6495

segmented cells, and we selected 5500 images as the training set and

the remaining 995 images as the testing set. Examples from the data-

set are shown in Supplementary Figure S3.

Simulated Neuron-Like cell (SNL) 2D dataset: To illustrate the

modeling of different cell types other than typical squamous cells,

we simulated neuron-like cells with long thin neurites; the simula-

tion process is described in Supplementary Methods. For the dataset,

the number of neurites was fixed as 2. We simulated 20 000 cells

and randomly selected 10 000 cells as the training set and the other

half as the testing set. Examples from the dataset are shown in

Supplementary Figure S4.

MCF7 dataset: This was image set BBBC021v1 (Caie et al.,

2010), available from the Broad Bioimage Benchmark Collection

(http://data.broadinstitute.org/bbbc/BBBC021/). We used the image

processing pipeline from Johnson et al. (2015b), and picked 13 com-

pounds as representative drugs for different mechanisms of action

and combined their images together. This produced a dataset of 16

000 cells and we randomly selected 10 000 images as the training set

and the remaining 6000 images as the testing set. Examples from the

dataset are shown in Supplementary Figure S5.

HeLa dataset: This dataset (Velliste and Murphy, 2002) was

downloaded from the Murphy Lab (http://murphylab.web.cmu.edu/

data/3Dhela_images.html). It contains 500 3D fluorescence micro-

scope images of HeLa cells with both cell and nuclear markers, with

size 256� 256� 24. We randomly selected about 400 segmented

cells as the training set and used the remaining 100 images as the

testing set.

SNL 3D dataset: This is a synthetic dataset, based on the simula-

tion process used for SNL 2D cells to generate a central slice, which

was used to generate slices above and below. The detailed simula-

tion method is described in Supplementary Methods. The images

were finally converted to size 256� 256� 24. For this dataset, the

number of neurites was randomly sampled from 0 to 2. 1500 cells

were simulated, with 1200 cells as the training set and the remaining

cells as the testing set.

SNL NR2 3D dataset: This is also a synthetic dataset, with the

same generation method as SNL 3D dataset, except the number of

neurite was fixed as 2. 1000 cells were simulated with 800 as the

training set and 200 as the testing set.

2.2 2D shape outline extraction
For 2D outline-based PCA (outline PCA) and SCA models, evenly-

spaced outline coordinates were extracted from the binary cell and/

or nuclear shape images as previously described (Pincus and Theriot,

2007). Starting from the leftmost point in the boundary, evenly-

spaced points were traced along each outline. We used 2000 points

for outlining cell shape and 1000 points for nuclear shape. The

ordered outline was further processed by alignment and/or size nor-

malization as described below.

2.3 Outline PCA
The method was basically the same as in Pincus and Theriot (2007).

First, the cell or nuclear images were converted to a shape vector as

described above. Outline coordinates were centralized and aligned

along the major-axis. Then, PCA was applied to the vectors

for all cells or nuclei. The mean l, and the principal vectors Uk ¼
½u1;u2; . . . ;uk� 2 R

nd�k were kept as the model parameters (where

k was the desired number of latent dimensions). For a shape

x 2 R
d�n, where d is the dimension of the shape, and n is the number

of outline points, the low dimensional representation was

b ¼ UT
k ðvecðxÞ � lÞ, where vec(�) is the operator to reshape a matrix

to a column vector. The reconstructed shape was x̂ ¼ Ukbþ l,

where x̂ is then reshaped to d�n. The reconstruction errors are

computed using x and x̂ as described below.

2.4 SCA
The SCA model (Lee et al., 2016) is a variant of outline PCA

method. It requires converting the outline coordinates to a preshape,

which is defined as a shape with scale and location removed. Briefly,

the matrix C ¼
P

j xT
j xj was first calculated, where xj 2 R

d�n is the

j-th preshape. Then, eigen decomposition was performed over C and

the first r eigenvectors were used and put as columns into a matrix

R. The representation was the vector normalized by the Frobenius

norm, x̂j ¼ xjR=jjxjRjjF. In the original paper, the model was only

used for reconstruction of training data. Here we make an extension

of the method to the representation and reconstruction of testing

data. Given a preshape xo, the representation is bo ¼ xjR=jjxjRjjF
and the reconstruction is x̂o ¼ boRT . x̂o and xo were used for recon-

struction error calculation.

2.5 Spherical harmonic descriptor based models
2.5.1 Spherical harmonic transform

Similar to the Fourier transform, the spherical harmonic (SPHARM)

transform provides a representation in an orthogonal space. In order

to use it, the original shape, represented as a mesh of equal area ele-

ments converted from a voxel image, must first be mapped to a

sphere. In theory, any genus-0 shape (one without holes or ring

structure) can be so mapped. However, the quality of the mapping is

critical, as will be discussed below. In the transform, the basis is the

solution of the spherical harmonic function (Press et al., 2007).

It has the form:

Ym
l ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
ðl �mÞ!
ðl þmÞ!

s
Pm

l ðcos hÞeim/ (1)

where Pm
l are associated Legendre polynomials with form:

Pm
l ðwÞ ¼

ð�1Þm

2l l!
ð1�w2Þ

m
2

dmþl

dwmþl
ðw2 � 1Þl (2)

The above equation is based on the spherical parameterization

of the original surface, which means all points in the surface are

mapped to the unit sphere as rðh;/Þ ¼ ðxðh;/Þ; yðh;/Þ; zðh;/ÞÞ.

Fig. 1. Illustration of Shape modeling using Spherical Harmonic transform. In the first step, the 3D surface mesh is mapped to a unit sphere. This results in spher-

ical coordinates for each vertex in the original mesh. The spherical harmonic transform is then performed to get coefficients to represent the surface. A recon-

struction of the original 3D surface mesh can be obtained by inverse transform followed by reversing the mapping
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After parameterization, each point can be (approximately) repre-

sented as

rðh;/Þ ¼
XL

l¼0

Xl

m¼�l

cm
l Ym

l ðh;/Þ (3)

where L is the maximum order, and c ¼ ðc0
0; c
�1
1 ; . . . ; cl

lÞ 2 C
L2

is the

coefficient vector, which is used as the shape descriptor (SPHARM

descriptor). The descriptor can be used to retrieve the original

shapes via reverse transform or used as features for comparison or

classification of shapes. The accuracy of the descriptor is controlled

by the maximum order of spherical harmonics L. The higher the

maximum order, the more accurate the representation is, yet the

higher the computing cost is. For the methods in the following sec-

tion, the SPHARM features were reduced to a specified number of

dimensions using PCA. For reconstruction, vertices in the sphere

were chosen to be evenly distributed so that the vertices on the

reconstructed shapes are in general evenly spaced.

2.5.2 SPHARM descriptor based methods

2.5.2.1 SPHARM-MAT. SPHARM-MAT is MATLAB software

intended to analyze brain images (Shen et al., 2009). The spherical

parameterization method in the software is the Control of Area and

Length Distortions (CALD) algorithm (Shen and Makedon, 2006).

Though the software is for brain images, it has been used to analyze

cell images (Ducroz et al., 2012; Du et al., 2013). Here, we use the

software to perform spherical parameterization, and use the spheric-

al harmonics descriptors as features for shape modeling methods.

2.5.2.2 Weighted SPHARM. Weighted SPHARM (WSPHARM) was

developed by Chung et al. (2007). It is a generalization of SPHARM

where exponential weights for the basis are applied. Compared to

the traditional SPHARM method, the representation converges faster

and ringing artifices can be reduced significantly. For the spherical

parameterization, we first smoothed the voxel image and converted

the image to a quadrilateral mesh, and then used the initialization

method in SPHARM-MAT to get a spherical mapping. After that,

the descriptor was calculated with the weighted-SPHARM package.

The reconstruction was also calculated with the package.

2.5.2.3 SPHARM-PDM. SPHARM-PDM was developed by Styner

et al. (2006) to perform statistical shape analysis of brain structures,

based on the algorithm in Brechbühler et al. (1995). It was also used

as parameterization method in a previous cell analysis pipeline (Du

et al., 2013). The software package contains 4 steps: preprocessing,

spherical parameterization, spherical harmonic transform and

alignment and statistical analysis. We found a small bug in the

spherical parameterization function that may cause it to be stuck in

an infinite loop, which we fixed by setting a stopping criterion.

2.5.2.4 SPHARM-RPDM. As discussed in the Section 3, we

observed that the SPHARM-PDM package frequently failed in the

spherical parameterization step, especially for complicated shapes

such as cells with neurites. We therefore produced a Matlab package

based upon SPHARM-PDM, which we refer to as SPHARM-RPDM

(for robust SPHARM-PDM), that has a number of modifications as

summarized below. First, we perform very rigorous topology fix-

ation via image processing. This consists of checking the character

numbers after converting the voxel images to surfaces, and if the

character number does not fulfill that of the genus-0 surface, per-

forming image closing operations with increasing kernel size to

remove holes, small gaps or small protrusions (until the requirement

is met). Second, for the initial mapping, instead of picking two

points with the largest and smallest Z-coordinates as two poles, we

treat the mesh as a graph and find the two points that form the

diameter of the graph (the largest shortest distance in the graph).

This guarantees that the two poles will be as farther away from each

other as possible, which can reduce the distortion of initial param-

eterization. We also adapt the method in SPHARM-MAT to get the

initial parameterization. Third, instead of using the finite difference

method to calculate the Jacobian matrix and gradient in the algo-

rithm, the analytic ones using symbolic computing are used (which

is much more efficient and accurate). Fourth, we use better linear

solvers from Matlab for the update, clip the gradient and Jacobian

to make sure the update does not diverge, and use constrained up-

date methods to make sure the system is stable. We implemented a

simple and efficient algorithm for constrained least squares with the

ADMM (alternating direction method of multipliers) framework,

which works if the condition number of the Jacobian is large. Fifth,

we implemented a method to check whether the spherical param-

eterization is successful by checking the error between the recon-

structed and original shapes. If it fails, we smooth the surface and

use a different initialization method, i.e. the original ones in

SPHARM-PDM or SPHARM-MAT, and redo the parameterization.

2.5.3 Shape alignment with SPHARM descriptors

To make different parameterizations comparable and to remove rota-

tion in shapes (especially good for small-scale datasets), the shapes can

be aligned. As described previously (Shen et al., 2009; Styner et al.,

2006), there are two main approaches for alignment: alignment based

on major axis or first-order ellipse (FOE). We used FOE here. Cells

were aligned (rotated) only in the XY-plane since that is the plane of

the substrate to which they are attached. To do this, we adapted the

FOE alignment implementation in SPHARM-MAT. However, we

rotated only around the Z-axis so that the major axis of the ellipse

was in the XZ-plane. The skewness of the projection in the XY-plane

was calculated, and if the X-axis skewness was negative, the cell was

rotated 180
�

around the Z-axis, so that all cells were aligned in the

same direction. In color figures showing example shapes (available on-

line), each face in a surface is colored by its order in the z-axis.

2.6 Diffeomorphic model
We used the diffeomorphic modeling approach described previously

(Rohde et al., 2008) and used CellOrganizer (http://cellorganizer.org/

) functions to build the model. Cells were aligned using major axis ro-

tation. The model for the training set was inferred by matrix comple-

tion from the distances between 250 randomly chosen shapes as

reference points. For prediction, the coordinates for test shapes were

inferred from their diffeomorphic distances to reference points, and

the inferred coordinates were used to produce reconstructed shapes.

2.7 Deep autoencoders
2.7.1 Basic frameworks

General descriptions of the different autoencoders examined are pre-

sented below; the details of network structures and settings are

described in Supplementary Methods. The first three kinds of

autoencoders used images as input, while the last used a feature

representation.

Valina autoencoder (AE): This autoencoder uses residual net-

work blocks (He et al., 2016) as its basic blocks, where there is a

shortcut connection between intermediate and final layers in a

block. The encoder and decoder consist of multiple residual network
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blocks and they are basically symmetric. The latent representation is

the encoded output of encoders with specific dimensions (latent

dimensions that control the capacity of model). Because the image

size varies across datasets, the network structures were slightly

different.

Variational autoencoder (VAE): The setting for Variational

autoencoders follows that in Kingma and Welling (2013). The basic

structure was similar to the structure of Valina autoencoders, except

that the outputs of residual network blocks in the encoder were used

as input for the two different fully connected layers to get mean and

log-variances as in variational autoencoder.

Structure reference autoencoder (SRAE): This autoencoder was

proposed in Johnson et al. (2017). It aims to learn the framework

(cell/nuclear shape) of a cell, and is variant of adversarial autoen-

coder (Makhzani et al., 2015). We followed the structure and

parameters in their paper, with some adaption to our datasets be-

cause of different image sizes.

Outline autoencoder (O-AE): This autoencoder consists of stacks

of fully-connected layer, batch normalization and ReLu layers, with

the sum of squared difference between the original and recon-

structed shapes used as the loss function. The input was either out-

lines for 2D shapes or spherical harmonic descriptors for 3D shapes.

2.7.2 Loss function and image augmentation

Hinge loss was used as the loss function for valina autoencoders.

For variational autoencoders, hinge loss was used as the reconstruc-

tion loss function and Kullback-Leibler divergence was used for

matching the distribution, as originally described (Kingma and

Welling, 2013). For the structure reference autoencoder, the loss

functions and other parameters followed those in Johnson et al.

(2017).

Image augmentation was used to preprocess input images for the

autoencoders in order to improve the training process. The image

augmentations included random translation and random rotation.

For 3D shapes, random rotation was only allowed in the XY-plane.

2.8 Reconstruction error
We used Hausdorff distance throughout our studies for measuring

the quality of shape reconstruction. It has the following form:

DðX;YÞ ¼ maxðmax
x2X

min
y2Y

dðx; yÞ;max
y2Y

min
x2X

dðx; yÞÞ (4)

where X and Y are two sets, and d(x, y) is the distance metric

(Euclidean in our case). Intuitively, Hausdorff distance finds the

worst match between a pair of points for two surfaces, making it a

more strict criterion for matching two curves or surfaces than root

mean square error, which has been used previously (Du et al., 2013;

Lee et al., 2016). For 2D images, we converted the original and

reconstructed images (if the reconstructed shape is an image) to out-

line landmarks, and calculated Hausdorff distances. For 3D images,

we converted volume images to meshes, and calculated Hausdorff

distances between the original and reconstructed meshes. We used

the mean Hausdorff distance of all shapes in a dataset as the recon-

struction error for a given method.

For the performance of joint modeling methods (described in

Section 2.10), the average reconstruction errors of the cell and nu-

clear shapes were calculated. The overall error was the average of

the average cell and nuclear shape errors (it thus equally weighted

errors in each).

2.9 Shape evolution
An important consideration in using shape spaces is how shape evo-

lution or dynamics may be modeled. If information is available

about likely trajectories in a shape space (e.g. from movies), shape

dynamics can be generated that mimic real cell shape changes

(Johnson et al., 2015b). In the absence of such information, a rea-

sonable assumption is that evolution from one shape towards an-

other should follow a path involving only minimal changes. We can

capture this using an energy function to measure how far the shapes

along a path of evolution of one shape to another deviates from

both of them, as follows:

Eðx1; x2Þ ¼
Ð x2

x1
ðDðf ðxÞ; f ðx1ÞÞ þDðf ðx2Þ; f ðxÞÞÞjL0ðxÞjdx

2
Ð x2

x1
jL0ðxÞjdx

(5)

where L(x) is the path, x is a point in the latent space, f(x) is the

shape at x. Dðf ðxÞ; f ðx1ÞÞ is the Hausdorff difference between f(x)

and f ðx1Þ. It is critical to note that the distances are measured be-

tween the shapes in the original coordinate space, not the shape

space embedding.

For a linear path, the embedding can be approximated with lin-

ear interpolation in discrete steps, that is, the form can be simplified

and discretized as

Eðx1; x2Þ ¼
1

2N

XN
i¼1

ðDðf ðx̂iÞ; f ðx1ÞÞ þDðf ðx2Þ; f ðx̂iÞÞÞ (6)

where x̂i ¼ ½ix1 þ ðN � iÞx2�=N, and N is the number of steps.

We calculated the average energies using 50 000 randomly-

chosen pairs of points for 2D datasets, and 5000 for 3D datasets

(4950 for HeLa dataset). To facilitate comparisons, a normalized

energy was calculated by dividing Eðx1; x2Þ by Dðf ðx1Þ; f ðx2ÞÞ for

each pair (before averaging).

2.10 Joint modeling of cell and nuclear shape
2.10.1 Joint outline PCA and SCA

For these two methods, a ‘separate’ model was defined by forming a

reduced dimensionality model separately for cell and nuclear shape.

The ‘joint’ model was defined as a model learned simultaneously

from both cell and nuclear outline points. To achieve this, the cell

and nuclear shapes/preshapes of a given cell were concatenated, and

PCA or SCA was performed over the concatenated features to ob-

tain joint low dimensional representations. In both cases, the loca-

tion (center) and orientation of nuclear shape relative to cell shape

were included as features to permit reconstruction with the proper

relationship between them. To make a fair comparison of methods,

the same total number of dimensions for different methods was used

(for separate models, half of the allowed dimensions were used for

cell shape and half for nuclear).

2.10.2 Joint autoencoders

For ‘separate’ models, the autoencoder structures described above

were used for modeling of cell and nuclear shapes separately. For

joint modeling with the Valina autoencoder, two network structures

were used. The ‘united’ model used the basic autoencoder structures

as before, but the input was indexed images of cell and nuclear

shapes, i.e. the pixel values of cell, nuclear and background are 1, 2

and 0, respectively. The softmax cross entropy was used as the loss

function for the training. The ‘joint’ model was created as a multi-

modal autoencoder (Ngiam et al., 2011). Encoders and decoders

were created (separately) for both cell and nuclear shape as before.

The outputs of both encoders were then used as inputs for a joint
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encoding layer with a specified number of latent dimensions. The

networks were trained jointly by reducing the sum of the losses.

Because we found that reconstruction using the variational

autoencoder had similar yet slightly worse performance than the

Valina autoencoder, results for joint modeling with the variational

autoencoder are not shown. For joint modeling with structure refer-

ence autoencoder, the structures and settings follow those in

Johnson et al. (2017).

2.11 Latent dimension correction across methods
As mentioned above, different methods may take as input raw

shapes or shapes normalized for size and/or orientation. For 2D

models, all methods except the SCA model have an explicit normal-

ization parameter from alignment of shape, while since the SCA

model used preshapes (size normalized), an explicit normalization

parameter for size was included. The latent dimension numbers

shown in figures and tables do not include these explicit parameters.

For 3D models, the latent dimension was set with the same prin-

ciple. Autoencoders and SPHARM-RPDM methods were considered

to have one normalization parameter because of alignment or image

augmentation, while the WSPHARM method had no normalization

parameters (and thus 8 or 101 latent dimensions used).

For comparing the joint/separate autoencoders, all the methods

had 1 normalization parameter because of joint normalization of

rotation.

2.12 Implementations
The networks were implemented using TensorLayer (Dong et al.,

2017) and Tensorflow (Abadi et al., 2016). The detailed description

of the networks used in this paper is described in Supplementary

Methods. For the SCA model, the code provided by Lee et al. (2016)

in github (https://github.com/ccdlcmu/shape_component_analysis_

Matlab) was used with some changes in terms of efficiency and

adaptation to our analysis pipeline.

3 Results

3.1 2D cell shape modeling
We began by trying to determine the best available method for mod-

eling 2D cell shapes, as defined by reconstruction error. These meth-

ods typically consist of a step to find a representation of shape and a

step to reduce the dimensionality of that representation in a model.

We could not compare all possible combinations of methods and

focused on commonly used approaches. Since as discussed below,

outline-based methods performed the best, we did add one combin-

ation not previously used: outline extraction followed by an autoen-

coder. In order to compare methods in a fair manner, we used the

same combined number of parameters or dimensions for each. As

discussed in the Methods, that number of dimensions included any

explicit parameters, such as size that were removed before model

training, and any latent dimensions from embedding; for simplicity,

we refer to this sum just as the number of latent dimensions through-

out. As illustrations of ‘low’ and ‘high’ dimensional models, models

were constructed for each method for latent dimensions of 7 and

100; the reconstruction errors are shown in Table 1. For the diffeo-

morphic model, due to memory constraints and extremely long com-

puting times, only errors for latent dimension 7 for CYTO and HPA

CL were calculated. Surprisingly, we found that autoencoders did

not perform better than traditional methods. Valina autoencoders

generally performed better than other autoencoders. As shown in

the table, the outline autoencoder and outline PCA perform

similarly for most datasets using 7 dimensions, while outline PCA

achieves the best performance across all datasets in 100d. Also,

when the dimension was high, the reconstruction errors for all meth-

ods were drastically reduced, as expected.

To illustrate how well the shapes were reconstructed by the dif-

ferent methods, some examples of cell shapes are shown for HPA

cell lines in Figure 2. The representative cells shown were chosen

using quantiles of errors from the outline PCA model with dimen-

sion 100 for the dataset. For low latent dimension for all methods

and all quantiles, the reconstructed shapes are quite distinct from

the original shapes: the diffeormorphic model reconstructs winding

shapes with sharp turns, and its outline matches very poorly with

the ground truth, while the other three methods generate very

smooth shapes, yet the shapes are still quite different from the ori-

ginal. For the higher latent dimensions, outline PCA, SCA and AE

reconstruct better shapes, especially outline PCA and SCA. The

reconstructed shapes of outline PCA, SCA and AE have nearly per-

fect match to the ground truth, especially in dimension 100, while

the reconstruction of AE is somewhat smoother than the original

images. Similar conclusions can be drawn for the other datasets

(Supplementary Figs S6–S9). Interestingly, the pixel-level reconstruc-

tion errors (which were defined as the area of non-overlapping region

between original and reconstructed images over the area of the original

image) as shown in Supplementary Table S1, shows that AE is slightly

better than outline PCA and SCA in low dimensional space and has

more or less similar performance in high dimensional space. This is be-

cause pixel-level reconstruction errors are influenced more by the large

number of potential matches inside shapes and do not measure how

well the boundaries of shapes are matched. AE can generally cover the

main parts of the shape, but it typically not able to match local shape

variance (that is, the reconstructed shapes are smoother).

From the above, we can conclude that for 2D cell shapes, for all

methods, low dimensional space representations are unable to re-

construct accurate cell shapes, and high dimensional encoding is

needed for realistic reconstruction. Outline-based methods are gen-

erally better for shape reconstruction, compared with image-based

methods. The outline autoencoder works well for low dimensional

space but cannot compete with outline PCA in high dimensional

space. This is expected because the optimization process in the out-

line autoencoder tries to find the globally optimal representation by

search, while PCA can calculate it directly (the search is harder

when the latent dimension is high). Among the various methods, the

outline PCA method achieves the best reconstruction performance.

3.2 3D cell shape modeling
3.2.1 Comparison of spherical parameterization methods

Modeling 2D shapes is generally easy and even simple methods can

achieve desirable performance, but this is much less true for 3D

shapes. As mentioned before, usually shapes are parameterized as

features that capture shape variance. The parameterization is very

important and frequently determines the accuracy of models. Before

comparing different methods for modeling 3D shapes, we first

focused on how the parameterization approach affected perform-

ance of one of those methods, SPHARM descriptors. We compared

several previously described parameterization methods, with typical

results shown in Figure 3, Supplementary Figures S10 and S11.

None of the existing methods worked well for all kinds of cell

shapes, whether round cell shapes or complex cell shapes with neu-

rites. However, we found the method in SPHARM-PDM was prom-

ising, as it performed well for some cell shapes if the

parameterization was successful. However, SPHARM-PDM failed

2480 X.Ruan and R.F.Murphy

Deleted Text: &hx2009;
Deleted Text: &hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty983#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty983#supplementary-data
Deleted Text: 5
https://github.com/ccdlcmu/shape_component_analysis_Matlab
https://github.com/ccdlcmu/shape_component_analysis_Matlab
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx201D; 
Deleted Text: &hx201D; 
Deleted Text: &hx201D; 
Deleted Text: &hx201D; 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty983#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty983#supplementary-data
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty983#supplementary-data


to obtain a parameterization in quite a few cases (Table 2). To get

successful parameterization for all shapes (or most shapes), we made

several improvements resulting in a method we refer to as

SPHARM-RPDM (for Robust SPHARM-PDM). As described in the

Methods, these included improvements in the surface preparation,

initial parameterization and optimization. As shown in Table 2 and

Supplementary Figure S12, none of the cell shapes failed in param-

eterization with our method, and the improved method needed

fewer steps to converge. Though our method is implemented in

MATLAB, the convergence times were similar to those in the Cþþ
implementation in SPHARM-PDM. Figure 3, Supplementary

Figures S10 and S11 illustrate the successful parameterization per-

formance of our method.

3.2.2 Comparison of reconstruction errors

Once shape parameterizations (descriptors) were obtained, PCA was

used to project the parameterization to a low dimensional latent

space (as SCA is a variant of PCA and we found it did not provide

significant improvement, we did not include it in further compari-

sons). For comparison, auteoncoders were used to directly perform

dimension reduction from images. To decide which method is the

best for 3D shape modeling, and how the dimensionality contributes

to the shape reconstruction, shape spaces were built for 7 and 100

latent dimensions; the reconstruction errors are listed in Table 3.

For all three datasets, in both 7d and 100d, SPHARM-RPDM per-

formed the best among all methods. For some other spherical har-

monic based methods i.e. SPHARM-MAT and SPHARM-PDM,

unbounded reconstruction errors from failed parameterizations for

some shapes led to very large average errors so these are not shown.

The autoencoders did not perform as well as SPHARM-RPDM, and

the Valina AE performed better than other AEs.

The reconstructions of representative shapes across different la-

tent dimensions are shown in Figure 4 and Supplementary Figures

S13–S17. For all methods, similar to our findings for 2D, we observe

that low dimensional encodings can only reconstruct smooth shapes.

As the dimension increases, more shape variance can be captured.

However, even in high dimensional space, AE are not able to cap-

ture fine shape variances.

3.3 Shape evolution
An important application of shape space methods is to model shape

evolution. This is relevant to studying cell dynamics, e.g. during cell

movement and cell growth. Neuron differentiation from an approxi-

mately round cell to a neuron with neurites is a particular example.

Table 1. Reconstruction errors for 2D cell shapes for the five datasets

Dim Datasets Outline PCA SCA Diffeomorphic AE SRAE VAE Outline AE

7 CYTO 26.2 37.7 65.0 34.5 66.5 34.7 24.9

HPA CL 24.2 34.9 54.5 30.2 55.9 29.7 23.1

H1299 1.22 1.78 – 1.62 1.89 2.49 1.32

MCF7 8.63 11.6 – 8.93 23.2 9.10 8.13

SNL 17.3 40.9 – 143.7 106.5 143.3 9.32

100 CYTO 4.20 4.41 – 10.5 34.0 13.5 17.0

HPA CL 3.76 3.95 – 8.80 15.9 12.4 15.4

H1299 0.219 0.289 – 1.11 1.78 3.63 1.07

MCF7 1.38 1.41 – 2.70 5.44 4.55 5.44

SNL 3.08 3.26 – 4.90 11.5 12.3 7.33

Compute Time 30 min 30 min �3.0E4hr � 13hr 18hr 13hr 1hr

Note: For diffeomorphic model, only the errors for CYTO and HPA CL datasets in 7d are shown. The computing times are CPU time for outline PCA, SCA

and diffeomorphic models and GPU time for autoencoders.

Fig. 2. Illustration of representative reconstructions for HPA cell lines

dataset. The cells in each row are chosen to represent different quantiles

of reconstruction errors from the 100 dimension outline PCA model.

The shapes for the original image, diffeomorphic model, outline PCA,

SCA and valina autoencoder are represented with black, pink, blue, red

and green colors. The columns are for different number of latent

dimensions

Fig. 3. Illustrations of HeLa 3D parameterization reconstruction with different

methods. Three cells are randomly picked with the reconstructions for differ-

ent methods for the same cell in a row
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As described in the Methods section, interpolation in the shape

space can be applied to find intermediate shapes between source and

target shapes. Some examples are shown in Figure 5, Supplementary

Figures S18 and S19. These figures illustrate that SPHARM-RPDM

performs well for simulating this transition. The results are especial-

ly noteworthy for SNL 3D shapes, in that it simulates a process of

neurite growth, even though no knowledge of how a neurite grows

is used in the model.

These simulations assume that no information is available about

the likely changes that might occur between two specific shapes

(or even if they are likely to occur at all). In this case, a reasonable as-

sumption is that the evolution between two shapes takes place along a

path that minimizes the total difference between the intermediate

shapes and the starting and ending shape. Depending on the method

used for shape space construction, finding this path is typically quite

expensive. In diffeomorphic methods, extensive computation is done

to find the minimum energy path, and hence the distance, between all

pairs of shapes before the shape space is constructed, and synthesizing

along this path is therefore inexpensive. In other methods that are

faster, the minimal energy path would need to be found by search after

the construction of the shape space. Thus, minimum energy evolution

is expensive either way (especially in high dimensions). As a practical

consideration, we therefore investigated whether simply interpolating

along a linear path would give a reasonably low energy. Using an evo-

lution energy measure based on Hausdorff distance as described in the

Methods, the results of linear interpolations in shape space are shown

for SPHARM-RPDM and AE in Table 4. For each method, the evolu-

tion energy is smaller when the latent dimension is high, consistent

with our previous observation that intermediate shapes in higher

dimensions are more like the source and target shapes. Again our

method (SPHARM-RPDM) performs better than Valina AE for both

low and high dimensional space in terms of shape evolution.

Table 2. Performance of spherical parameterization

Failure rate Convergence time (s)

Methods RPDM PDM RPDM PDM

Dataset Training Testing Overall Training Testing Overall

Hela 0 0 0 0.225 0.170 0.214 2.20E3 2.71E3

SNL 3D 0 0 0 0.441 0.443 0.441 9.83E2 9.52E2

SNL NR2 0 0 0 0.711 0.725 0.714 1.74E3 1.77E3

Note: The left side shows the percentage of cells that have failed parameterizations for SPHARM-RPDM and SPHARM-PDM methods. A parameterization is

considered failed if the reconstruction error (for the original descriptor) is greater than 100 pixels. The right side shows the average convergence times.

Table 3. Reconstruction error for 3D shapes for the three datasets

Dim Datasets SPHARM-RPDM WSPHARM Diffeomorphic AE SRAE VAE O-AE

7 HeLa 8.38 20.4 14.8* 16.2 16.9(17.0) 16.2 40.9

SNL 3D 8.64 21.4 – 52.7 132.0(42.5) 52.7 57.9

SNL NR2 12.7 24.6 – 80.1 143.8(51.6) 80.2 73.1

100 HeLa 4.89 20.2 – 7.93 16.9(17.6) 10.4 42.4

SNL 3D 4.02 16.3 – 7.45 147.3(10.0) 28.4 56.5

SNL NR2 5.28 21.3 – 8.19 135.0(13.1) 80.1 81.5

Note: Same as 2D datasets, we only show the results for 7 dimensions for HeLa 3D dataset for diffeomorphic model. In the parenthesis, we show the recon-

struction errors after filtering out isolated voxels in the reconstruction. *The reconstruction error for the diffeomorphic model was calculated with only a subset

of the shapes because it failed for many of them.

Fig. 4. Illustration of HeLa 3D reconstruction with SPHARM-RPDM method.

The cells are chosen based on the quantiles of reconstruction errors in latent

dimension 300, which are listed in the left side. The reconstructions of differ-

ent latent dimensions are shown with same cell in the same row, along with

the ground truth

Fig. 5. Illustrations of shape evolutions for SNL 3D dataset. Four pairs of cells

are randomly selected. The source, target and intermediate shapes in the lin-

ear path are shown, with the title showing the distance to the source. The

source and target are labeled as 0 and 1
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3.4 Joint modeling of cell and nuclear shape
The relationship between cell and nuclear shape is also an important

aspect that may be involved in cellular processes. Previous work has

shown that there are dependency relationship between the two

(Johnson et al., 2015b) that may be disrupted under certain condi-

tions. We therefore next evaluated the performance of various meth-

ods on the task of modeling both cell and nuclear shape. One

potential criterion for reconstruction error for joint modeling is to

apply Hausdorff distance for both cell and nuclear shapes, however,

in this case, the errors for nuclear shapes will be missed because of

the dominance of cell shape errors. Therefore, we calculated the re-

construction errors for cell and nuclear shapes separately and aver-

aged them as the joint error. Reconstruction errors for both separate

and joint models are shown in Tables 5 and 6, with the errors for

cell and nuclear shapes shown in Supplementary Tables S2 and S3.

Some example shapes are illustrated in Figure 6 and Supplementary

Figure S20 for 2D and 3D, respectively. As seen in the tables, for

each method, the differences of the reconstruction accuracy for joint

modeling and separate modeling are small for the same method in

the same latent dimension. Again among all methods, outline PCA

for 2D and our method for 3D have the best performances either

with joint or separate modeling. As shown in Supplementary Tables

S2 and S3, for outline PCA methods, joint model errors for cell

shape decrease while the errors for nuclear shape increase, compared

with the separate models, indicating that greater overall weight was

put on the cell shape in the joint models. However, here we should

stress that the success of separate modeling does not imply that there

is no relationship between the two components (that relationship is

captured by explicit features). It simply means that there is no ad-

vantage to taking that relationship into account when learning the

component shape models themselves.

4 Discussion

We have compared various approaches for modeling of cell and/or

nuclear shape. For 2D cell shapes, in low dimensional space, all of

these methods reconstruct overly-smooth shapes that are not realis-

tic. When increasing latent dimension, these methods can all

achieve better reconstruction performances, however, deep autoen-

coders are not as good as outline PCA and SCA methods, which

can well preserve local variance and thus reconstruct shapes nearly

perfectly. For 3D cell/nuclear shapes, we describe an improved

method that achieves the best performance when compared to

previous methods, and is especially useful for modeling complex

cell shapes. Our method improves the robustness of the mapping of

the original cell shape to a sphere, and works well even for highly

non-spherical shapes. We also showed, as may be expected, that

these methods (outline PCA for 2D/SPHARM-RPDM PCA for 3D)

also perform better at shape evolution, with computationally effi-

cient, linear interpolation in the shape space coming close to the

minimum deformation energy.

Therefore, we suggest that if shape representation/evolution is

the major consideration for the modeling of cell shapes, these meth-

ods would be the best choice, due to their computational efficiency

and strong performance. Deep learning methods typically require a

Table 4. Energies of shape evolution

Latent dimensions 7 100

Methods

Dataset

AE Outline

PCA/RPDM

AE Outline

PCA/RPDM

2D CYTO 0.714 0.604 0.556 0.539

HPA CL 0.698 0.599 0.551 0.536

H1299 0.674 0.586 0.619 0.521

MCF7 0.656 0.620 0.549 0.545

SNL 1.61 0.565 0.527 0.534

3D HeLa 0.869 0.586 0.875 0.545

SNL 3D 1.35 0.576 0.588 0.538

SNL NR2 1.80 0.621 0.640 0.555

Note: The energies for dimensions 7 and 100 for AE and outline PCA (2D)

and SPHARM-RPDM (3D) are shown. The normalized energies by the

Hausdorff distance between the source and target are shown in the table (the

optimal value is 0.5). Smaller energies mean more efficient transformations.

Fig. 6. Illustrations of joint modeling of cell and nuclear shapes for different

methods for CYTO dataset. Here we choose a cell in the quantile of 0.65 for

the joint outline errors for PCA joint models in 200d. The original shape is

shown in black and the reconstruction is shown in red. This cell is shown

across different methods and different latent dimensions, which are indicated

in the title and the Y-axis, respectively

Table 5. Reconstruction errors of 2D joint modeling

Outline PCA SCA AE SRAE

Dim Datasets sep joint sep joint sep united joint sep joint

14 CYTO 16.1 16.6 20.5 20.6 20.2 17.6 20.0 36.2 55.8

HPA CL 14.9 15.4 19.2 19.3 17.9 16.0 17.6 30.7 32.7

H1299 1.20 1.35 1.70 1.68 5.43 1.37 1.43 5.56 1.90

MCF7 5.25 5.21 6.02 6.04 5.32 4.88 5.22 12.4 6.43

200 CYTO 2.43 2.03 2.54 2.12 6.16 5.47 5.95 17.9 14.2

HPA CL 2.20 1.86 2.31 1.95 5.30 4.87 5.08 8.82 10.7

H1299 0.168 0.194 0.199 0.215 7.77 1.01 4.08 8.34 2.21

MCF7 0.918 0.928 1.02 0.939 1.92 2.00 1.99 3.29 4.60

Note: The table shows two latent dimensions 14 and 200 for the four 2D

datasets for four representative methods. ‘sep’, ‘joint’ and ‘united’ means sep-

arate models, joint models and united models for corresponding methods as

described in Methods, respectively.

Table 6. Reconstruction errors for the joint modeling of HeLa 3D

dataset

SPHARM-RPDM AE SRAE

Dim sep joint sep united joint sep joint

14 5.78 5.72 9.72 56.0 8.48 10.0 –

200 3.45 3.42 5.12 5.56 6.02 9.63 –

Note: The errors for the three representative methods with dimensions 14

and 200 are shown. Errors of SRAE separate models are unavailable because

SRAE nuclear model fails in reconstruction.
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lot more computing resources and more training data (of course,

deep learning methods are continuously evolving and this may

change). Moreover, we recommend that outline/surface-based shape

models are a better choice than whole shape-based methods.

However, our results do not necessarily mean that other methods

are inferior in all aspects of cell analysis. As shown previously, dif-

feomorphic models work well for mapping protein distributions in-

side cells (Roybal et al., 2016). In addition, supervised deep learning

methods often significantly outperform traditional methods for clas-

sification tasks (in which detailed cell shape information may not be

needed). Thus, careful consideration should be given based on the

specific task when working with cell images.

It should be noted that depictions of cell shape changes such as

those in Figure 5 are not necessarily accurate. In the absence of any

additional information, however, they represent the best prediction

that can be made. When available, movies can be used to calculate

vector fields in the shape space that may give more accurate cell

shape changes (Johnson et al., 2015b). Even so, they can only be ac-

curate up to the temporal resolution of the movies.

We have focused here on the task of accurate cell and nuclear shape

reconstruction from models. Such models have two major uses. The

first is to provide a more complete lower dimensional representation

that arbitrarily chosen descriptive features (a goal often referred to as

compression). Such a representation is useful for improving compari-

son of different populations and for clustering. It is also useful to pro-

vide a basis for learning the dependency of other cell components upon

cell and/or nuclear shape, or for removing that dependency to enable

comparison of subcellular distributions for cells that different in shape

(Zhao and Murphy, 2007). Of course the second major use is for the

synthesis of new cell and nuclear shapes. These are useful in themselves

for illustrative or educational purposes, especially for the production of

movies that show learned or predicted shape dynamics. They can also

be used to produce well-characterized geometries (either static or dy-

namic) for simulations of cell biochemistry or behavior that may be

better than geometries derived directly from individual cell images or

movies. This is in part because models learned from many cells may be

able to fill in some spatial frequencies or structures not contained in

single acquired images. Lastly, but perhaps most importantly, genera-

tive models can combine information from different image sets to pro-

duce images or movies representing components that were not imaged

in the same cell (Murphy, 2012). This can be done by separately learn-

ing models of the spatiotemporal dependencies of components upon a

reference structure (such as cell shape) and then predicting a joint distri-

bution by combining the models (Johnson et al., 2015a, 2017).
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