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Abstract

Motivation: The efficacy of a chemical compound is often tested through dose–response experi-

ments from which efficacy metrics, such as the IC50, can be derived. The Marquardt–Levenberg al-

gorithm (non-linear regression) is commonly used to compute estimations for these metrics. The

analysis are however limited and can lead to biased conclusions. The approach does not evaluate

the certainty (or uncertainty) of the estimates nor does it allow for the statistical comparison of two

datasets. To compensate for these shortcomings, intuition plays an important role in the interpret-

ation of results and the formulations of conclusions. We here propose a Bayesian inference meth-

odology for the analysis and comparison of dose–response experiments.

Results: Our results well demonstrate the informativeness gain of our Bayesian approach in compari-

son to the commonly used Marquardt–Levenberg algorithm. It is capable to characterize the noise of

dataset while inferring probable values distributions for the efficacy metrics. It can also evaluate the

difference between the metrics of two datasets and compute the probability that one value is greater

than the other. The conclusions that can be drawn from such analyzes are more precise.

Availability and implementation: We implemented a simple web interface that allows the users to

analyze a single dose–response dataset, as well as to statistically compare the metrics of two

datasets.

Contact: s.lemieux@umontreal.ca

1 Introduction

Drug discovery is a highly multidisciplinary process that encom-

passes the domains of biology, chemistry, computer science and

mathematics (Rudin, 2006). A relevant therapeutic target is first

identified, then different experiments are set up to analyze its activ-

ity under various conditions (Szyma�nski et al., 2011). Such an ap-

proach makes it possible to deploy research efforts in a relevant and

precise way, as well as in a context where there is a demand and a

need for novel therapies.

The drug discovery process generates a very large amount of

data, which often makes it difficult to manage and analyze experi-

ment results. Analyses are thus often limited and omit a large

amount of information. Intuition hence plays an important role

when interpreting the results which can easily lead to biased conclu-

sions. This work aims at developing a methodology that addresses

these important issues in the specific context of dose–response

experiments.

1.1 Dose–response experiments
The technological and biomedical advancements made in recent

years have helped to accelerate the drug discovery process. For a

specific assay, various chemical compounds are tested in order to

identify those capable of generating a satisfactory response. The

studied response is specific to the assay setup and can represent in-

hibition of cell growth, proliferation of cells etc. High-throughput

screening (HTS) allows to quantitatively characterize a very large

number of compounds (several thousands per day) in an in vitro or

in vivo setting. HTS also allows the rapid elimination of unfit com-

pounds in the context of a specific study (Szyma�nski et al., 2011).

Screen assays are often used to assess the effectiveness of a chem-

ical compound: it evaluates the biological response for a given dose

of the compound of interest. It is possible to study single-dose

responses as well as a set of responses for a dose gradient (dose–re-

sponse screen). Assays can also be designed to study the effect of a

combination of chemical compounds (synergistic screen). The
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proposed methodology described in this article is primarily applic-

able to dose–response screens, but its application could be widen to

the other types of assay mentioned.

Dose–response screens are what we could refer to an idealized

HTS experiment. It is quite typical that the effectiveness of a set of

hits identified through a single-dose assay is validated by a dose–re-

sponse screen (Editorial, 2007). For a gradient of concentrations, a

compound of interest is added to well containing cells (cell lines,

patient-derived cells etc.). The set of responses obtained (one for

each concentration times the number of replicates) is then used to

model a dose–response curve from which efficacy metrics are

derived (Pabst et al., 2014) (Fig. 1).

From a dose–response curve, four efficacy metrics can be

derived:

IC50: the dose needed to generate a mean response equidis-

tant from minimal and maximal responses (low-dose

response (LDR) and high-dose response (HDR)];

HDR–LDR: the asymptotic responses generated for very low and

very high doses of the compound, also referred to as

the plateaus of the curve; and

S: the steepness of response transition between the two

plateaus.

These metrics can be embedded into a mathematical model, the log-

logistic (Equation 1), in which a response f(x) is modeled in terms of

a dose x. Although there are different models (Brain and Cousens,

1989; Calabrese, 2002) that can be used for dose–response analysis,

the log-logistic is by far the most commonly used (Ritz, 2010).

f xð Þ ¼ LDRþ HDR� LDR

1þ 10S� log 10IC50� log 10xð Þ (1)

We often seek to identify the compound with the lowest IC50

(Pabst et al., 2014), that is the compound capable of generating a

maximal response for the lowest dose.

1.2 Marquardt–Levenberg
The process by which the metrics (or the model’s parameters) are

normally estimated is called non-linear regression. The experimental

data are used to adjust the parameters of the model such that the dif-

ference between the experimental data and the dose–response curve

is minimized. The regression can be identified with algorithms such

as gradient descent, Gauss-Newton and Marquardt–Levenberg

(Levenberg, 1944), the latter being the most widely implemented.

Various software tools are available to estimate a dose–response

curve and its associated metrics (Gadagkar and Call, 2015; Naqa

et al., 2006; Veroli et al., 2015). Other tools include GraphPad,

ActivityBase, the R environment and multiple Python libraries. The

vast majority of these tools are not accessible to everyone, either be-

cause they are costly or because of they are complex to use. None of

them allows for the comparison of two curves which limits the com-

parative analyzes to a qualitative numerical comparison of param-

eter estimates.

The non-linear regression approach, as implemented by the

Marquardt–Levenberg algorithm, greatly limits the conclusions that

can be made: it does not take into account the uncertainty of the

estimated efficacy metrics. The certainty of the adjusted parameters

and of the dose–response curve in regards to the experimental data

is generally evaluated on the basis of intuition, based on visual in-

spection of the model fit. Complementary methodologies to the non-

linear regression are sometimes used to compute confidence inter-

vals. Bootstrap re-sampling (Efron, 1992) and Monte-Carlo simula-

tion are among the most popular.

There is a significant need for a methodology that explicitly

quantifies the reliability of the efficacy metrics taking into account

the noise over the data, while adjusting the log-logistic model.

1.3 Bayesian inference
Bayesian inference refers to the process of fitting a probabilistic

model to a specific dataset and to represent the fitted parameters by

probability distributions. The results obtained are both representa-

tive of observed and unobserved data Gelman et al., 2014).

Bayesian inference aims to infer the posterior probability of a hy-

pothesis H given a dataset of evidence E and previous knowledge

about H. As more elements of E are presented to the model, the pos-

terior of H is updated. The final results are a posterior distribution

of the probability of H as described by Bayes Theorem (Equation 2).

P H jEð Þ ¼ P E jHð Þ � P Hð Þ
P Eð Þ

(2)

The probability of H given E is directly proportional to the likeli-

hood P E jHð Þ and to the prior distribution P(E). The latter repre-

sents our intuition regarding the value of H. The prior is often

defined by anterior evidence and observations, as well as theoretical

knowledge. The likelihood evaluates the probability of obtaining E

given H (Bernardo and Smith, 2001).

Given a parametric model of data y � f x j hð Þ, it is assumed that

h is a random variable which uncertainty can be described by a dis-

tribution, hence the prior. Defining the prior is not a trivial task and

using a suboptimal prior can be detrimental to the analysis. In the

context of dose–response, y represents an experimental response to

dose x, and h ¼ {IC50, HDR, S, LDR} defines the log-logistic model.

Various works have already been published on the application of

Bayesian inference to the analysis of dose–response experiments

(Collis et al., 2017; Cummings et al., 2003; Johnstone et al., 2016;

Messner et al., 2001; Smith and Marshall, 2006). Although they

span a wide range of experimental contexts and their applications

are well demonstrated, most methodology lacks flexibility in the

type of data it can analyze. To our knowledge, no work has been

done on Bayesian comparative methodology which could be benefi-

cial to dose–response analysis. From a software development per-

spective, there currently exists various platforms to facilitate the

implementation and execution of probabilistic analyses. Among the

most frequently cited are Stan (Carpenter et al., 2017) and PyMC3

(Salvatier et al., 2016).

Fig. 1. Dose–response curve and efficacy metrics. Example of dose–response

curve modeled by non-linear regression. The four commonly reported effi-

cacy metrics are identified in red
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1.4 Objectives
The methodologies currently in place limit the analysis of dose–re-

sponse screens. To overcome these limitations, a significant weight

is given to the intuition of the experimenter which can easily results

in incomplete, biased and difficult to reproduce conclusions. These

methodologies do not exploit the experimental data to their full in-

formational potential and thereby impede the drug discovery

process.

We aim at developing and implementing a Bayesian model for

the analysis and comparison of dose–response datasets. The model

incorporates the notion of intuition through prior distributions and

computes the most probable value distribution for each of the effi-

cacy metrics that define the log-logistic model. The comparison ap-

proach computes the most probable value distribution for

differences between the metrics of two experiments. Finally, we

want to redefine the way experimenters, such as medicinal chemists,

analyze and interpret dose–response experiments by including un-

certainty in their reasoning and providing them a simple and visual

approach to do so.

2 Materials and methods

We separated our work in three main axes: (i) the probabilistic ana-

lysis of a single dose–response dataset, (ii) the comparative analysis

of two dose–response datasets and (iii) the development of a web

interface. The latter encapsulated the methodologies developed in

the two first axes.

2.1 Inferring a dose–response curve
We used a hierarchical Bayesian model (Equation 3) to infer the

parameters of the log-logistic model (Equation 1) given a dataset y

of dose–response data.

P h j yð Þ ¼ P y j hð Þ � P hð Þ
P yð Þ

(3)

For each component of h we define a prior distribution P hð Þ. We

assume that the dose–response data are normally distribution

around f x; hð Þ and for some shared value of r (Equation 4). The

value of r is also inferred but without prior. Its posterior is represen-

tative of the noise in the dataset.

P y j hð Þ � N f x; hð Þ;r2
� �

(4)

To obtained the posterior distribution P h j yð Þ we use the

Markov chain Monte Carlo approach with the No-U-Turn sampler

(Carpenter et al., 2017). Summarily, we define a chain as an ensem-

ble of values that approximate P h j yð Þ. For every i iterations of I, a

set of values h is proposed. It is obtained by sampling a multivariate

normal distribution centered at hi. The posterior P h j yð Þ is calculated

and the values of H are appended to the chain with a probability

given by the ratio of likelihood of h and hi. If H is accepted, i

becomes i þ 1 and hiþ1 ¼ h; if h is not accepted we say that the iter-

ation as resulted in a divergence and hiþ1 ¼ hi. Once i as reach I, a

number w of the first iterations is discarded as they are warm-up

iterations. Multiple chains C can be run in parallel and their results

concatenated to generate the final posterior distribution, which is

thus composed of C� I �wð Þ values.

Once P h j yð Þ is obtained, we compute N f x; hð Þ;r2
� �

for a wide

continuous range of hypothetical x. This allow use to derive an

inferred dose–response curve, which is really the sequence of median

responses for hypothetical and very close to each other doses x. In

the same fashion, we are also able to derive a confidence interval

around the curve by aligning the 100�ath
2 percentiles of every

N f x; hð Þ; r2
� �

for the lower bound, and the 100� 100�ath
2 percentiles

for the upper bound. By doing so, we are capable to analyze what

the responses might be for untested experimental doses while char-

acterizing their uncertainty. The data can also be analyzed by plot-

ting the histograms of the posterior distributions of h. Confidence

interval and median values can easily be derived from these

distributions.

We tested our Bayesian model for various setups and multiple

contexts (see Section 3). As demonstrated in the following section,

an important aspect of Bayesian inference is the definition of the

prior distributions. The current paper only presents analyzes done

on inhibition rate (%) responses (see Section 2.4), that is responses

that range from more or less 0 to 100, and increase as the doses in-

crease. Our general intuition regarding the values of the efficacy

metrics is as follow:

• We would expect the IC50 to be around the median experimental

dose (assuming an appropriate range of doses has been tested);

We are assuming its value could span a very large range of hypo-

thetical doses while above the absence of compound dose;
• The LDR should have a positive value and should more or less

have a maximal value of 100%; We do not assume that its value

is caped at nor will reach 100%;
• We would expect the slope (S) to be positive (inhibition rate re-

sponse); We do not restrict it to have a positive value;
• The LDR should be somewhere around the 0% mark.

Following these elements of intuition, we tested different prior

distribution in order to assess their effects on the inferred posterior

distributions. Our model could easily be applicable to other type of

responses (e.g. survival rate) by adjusting the prior.

2.2 Comparing two dose–response curves
To further our analysis approach and to propose a novel method-

ology, we adapted our Bayesian model so that we can infer the prob-

ability that two curves have significantly different components of h.

Given two dose–response datasets D1 and D2, we are asking

What is the probability that hk of D1 will be greater than that of D2?

In order to answer this question, we evaluate the posterior of differ-

ences between h1k and h2k (Equation 5)

P Dh j h1; h2ð Þ (5)

Posterior distributions are inferred for D1 and D2 in parallel. For

every accepted H appended to the chain, Dh ¼ h2 � h1 is computed

and stored. In the end, the w first elements are discarded, just as for

the other posterior. We can evaluate the probability that each data

has the largest value for hk by calculating the ratios of positive (D1)

and negative (D2) posterior values. To facilitate the interpretation,

we plot the histogram of the differences posterior with a contrasted

vertical segment marking the median difference. It is also easy to cal-

culate confidence interval and evaluate the reliability of the

comparison.

This comparative methodology takes into account the uncer-

tainty of h which is currently ignored when comparing two dose–re-

sponse curves. We tested our approach on both synthetic and

experimental results, and the results proved to be more informative

than the simple qualitative comparison.

2.3 Implementation
Our Bayesian model is implemented in the modeling language Stan

(Carpenter et al., 2017). We use 4 chains of 2000 iterations and

i466 C.Labelle et al.



1000 warm-ups to compute the posterior. We use the PyStan inter-

face (v2.18.0.0) to work with Stan in the Python (v3.0.0) environ-

ment. Our plots are generated with Matplotlib (v3.0.2). When

comparing our model to the Marquardt–Levenberg algorithm, we

used the optimize package of Scipy (v1.2.0) with default settings to

implement the non-linear regression.

For our web interface, we use Flask (v1.0.2) and Python on the

server side. On the client side, standard HTML5 and JavaScript is

used as well as Jinja and Bootstrap (v3.3.7). Interactivity is mainly

provided by the use of jQuery (v2.1.1).

2.4 Dose–response data
We use various datasets to test and demonstrate the efficacy of our

proposed approach. We use both synthetic and experimental datasets.

Using synthetic data allow us to evaluate the efficacy of the vari-

ous approaches tested in a controlled environment. These data are

generated from the log-logistic model (Equation 1). For a given set

of 10 hypothetical doses x and defined h ¼ {IC50, HDR, S, LDR},

we compute the associated f x; hð Þ responses. Noise is added to data-

set by sampling from N yj; r2
� �

for each response yj. We used mul-

tiple r to test how well our methodology dealt with noise. The

various synthetic datasets used in Section 3 are described in Table 1.

When referencing a synthetic dataset, we use the label of Table 1 to

which we add the r value in subscript. For instance, A0 would de-

scribe a dataset with an IC50 of 2.15, a HDR of 60 and a Gaussian

noise of r ¼ 0:1.

We also used real experimental data to demonstrate the applica-

tion of our proposed methodology. The datasets E1, E2 and E3 are

from a single assay and represents different compounds. The com-

pounds were tested at eight concentrations against patient-derived

leukemic cell. The response measured is representative of cell

growth inhibition rate (%). The experimental data were obtained

through the Leucegene project.

Our proposed Bayesian model is unaffected by the number of

replicates R (number of measured responses for each concentration).

R varies from one experimental setting to another: to demonstrate

the flexibility of our approach, we generated synthetic datasets with

R ¼ 1;3f g and used experimental datasets with R ¼ 2.

3 Results and discussion

Results presented in this section are obtained by analyzing both syn-

thetic and experimental datasets (Section 2.4). Most of the figures

adaptation from our web interface (Section 3.3).

3.1 Bayesian inference on dose–response data
We evaluated the efficacy and limits of our Bayesian model in vari-

ous experimental contexts. We first compared its results to those

obtained by non-linear regression (Marquardt–Levenberg algo-

rithm). We then assessed the effects of various prior in order to de-

fine the most appropriate. Last, we discussed the inferred r

posterior distributions for multiple datasets.

3.1.1 Marquardt–Levenberg versus Bayesian inference

We did not optimized the Bayesian prior but they were chosen wise-

ly. As for the Marquardt–Levenberg algorithm, we tested it for both

the four-parameters (4P) log-logistic model (Equation 1) and a two-

parameters model (2P). In the 2P model, only the IC50 and slope (S)

parameters are estimated: the HDR and LDR are fixed to constant

values, 100 and 0, respectively. These three approaches are applied

to two synthetic datasets with varying noise (A0 and A10) and on an

experimental dataset (E1). The results are reported in Figure 2.

Both Bayesian inference and Marquardt–Levenberg 4P generate

the expected values when the data has very little noise (A0, black

dataset). The median HDR and adjusted HDR are the same (60.1)

and contrary to the Marquardt–Levenberg 2P, they stay around the

60% mark. As expected, Marquardt–Levenberg 2P generates a

dose–response curve that is not representative of the dataset as its

HDR is fixed at 100%. This forces the IC50 to shift to the right

(3.62) and the slope to flatten (0.286).

When the data are noisier (A10, orange dataset), Marquardt–

Levenberg 4P generates curves that resemble the expected model the

most. Its curve is steeper (1.36), which can be explained by its high

LDR (11.1). The estimated HDR is as expected (58.9) and there is a

small shift in the IC50 (2.00). The Marquardt–Levenberg 2P curve is

mostly the same as for the A0 dataset. Interestingly, the Bayesian in-

ference results differ from the previous ones. First, the CI (95%) sur-

rounding the curve is significantly larger. Second, the median HDR

now reaches well above 60% (86.5), creating a shift in the IC50 to

the right (2.60) and a flatter response (slope of 0.290). Even though

the curve seems to represent well the data, the median parameters

do not approximate those expected, with the exception of the LDR

(�3.17).

When compared with the two datasets presented above, E1 (blue

dataset) completely breaks both Marquardt–Levenberg 4P and 2P.

The latter is simply unable to converge (when using Scipy’s imple-

mentation, see Section 2.3). As for the former, it returns a very low

Table 1. Synthetic datasets

Label HDR IC50 r

A 60 2.15 {0.1, 10 }

B 60 2.0 {0.1, 5, 10 }

C 90 2.15 {0.1, 5, 10 }

S ¼ 0.8 and LDR ¼ 0.0

Fig. 2. Marquardt–Levenberg versus Bayesian inference. Both synthetic data-

sets A0 (black) and A10 (orange) have triplicate (R ¼ 3). The experimental data-

set E1 (blue) displays no response in the range of doses tested. Our Bayesian

model is used to estimate dose–response curves with a 95% CI. Marquardt–

Levenberg estimates the parameters of the 4P log-logistic model (Equation 1)

and of the 2P model (only the IC50 and S parameters are estimated: the HDR

and LDR are fixed to constant values, 100 and 0, respectively). HDR and LDR

(median values for Bayesian Inference) are represented by horizontal black

segments; IC50 (median value for Bayesian Inference). Root mean square

error (RMSE) value is identified for each curve. For Bayesian Inference, we

used the median curve to compute the residuals
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HDR (15.2) and an unrealistically steep slope (18.9). Confusingly,

the IC50 estimated could lead to erroneously conclude that the com-

pound is active (IC50 ¼ 2.58). The Bayesian inference curve better

models the absence of response over the range of doses tested. The

curve’s inflexion, or IC50, is largely out of the experimental range

and reaches a median value of 6.23. The confidence interval sur-

rounding the right side of the curve (outside of the experimental

doses range) is extremely wide: its bound span from �120 to 0%.

The dataset E1 is not sufficient to infer precisely efficacy metrics,

but sufficient to clearly indicate the lack of response for this com-

pound over the range of doses tested. Finally, since the Marquardt–

Levenberg 4P directly minimizes the RMSE, it is not surprising that

it achieves overall lower values.

It is interesting to interpret the results of Figure 2 by comparing

how each methodology handles the concept of intuition.

Marquardt–Levenberg 4P has no implemented consideration for it:

only the data are considered when computing the estimates for the

parameters of the model. This greatly limits the analysis to the range

of experimental doses, as the approach assumes that the lower and

upper response plateaus have been experimentally observed. This

explained the unrealistic dose–response curve obtained for E1 (ab-

sence of the high dose plateau). If we were to analyze this dataset

only by looking at its IC50, which is common practice, we would

conclude that the tested compound is somewhat active. If we were

to further our analysis to the other parameters, we would be puzzled

by the very low HDR. The dataset would most likely be discarded

because of the small distance between the LDR and HDR estimates

and/or because of the unusual shape of the curve. The decision to

discard E1 is entirely based on intuition from the experimenter. The

Marquardt–Levenberg 2P does take into account the notion of intu-

ition in its implementation, but in an extreme way. By fixing the

HDR and LDR to constant values, we imply that our intuition is ra-

ther a certitude. Again, this methodology is highly limiting, since

our intuition prevails over the data. This is exactly what happened

during the analysis of A0. In the case where the data do not fit our

intuition (E1), the algorithm simply does not converge and the data-

set is discarded. Neither of the Marquardt–Levenberg methodolo-

gies are capable of considering both the data and our intuition in a

complementary fashion: it is one or the other. As demonstrated in

Figure 2 this can highly bias our conclusions.

Our proposed Bayesian inference methodology is a good alterna-

tive to the problematic Marquardt–Levenberg. The use of prior

allows us to incorporate the notion intuition into the computation

in a less drastic way than Marquardt–Levenberg 2P. Thus, the

resulting dose–response curve can be expanded to doses that were

not tested experimentally. This approach also allows for the quanti-

fication of uncertainty, which neither of the Marquardt–Levenberg

approaches do. For instance, we can conclude with certainty that E1

does not support an IC50 within the range of doses tested and the

compound can be eliminated from further studies. Even though

Bayesian inference is better suited for the analysis of dose–response

data than the Marquardt–Levenberg algorithm, it still presents some

limitations as demonstrated by the analysis of A10: inappropriate

prior combined with high noise can skew the results (Fig. 2). The

following section discusses this topic in more details.

3.1.2 Defining prior distributions

We must think of prior as safety nets: when the data are insufficient,

the inference gradually falls back on the prior distributions. It is thus

important to use appropriate prior that best represent the experi-

mental context. The process of defining the most suitable prior for h

is referenced as prior elicitation. It can either be based on consensus

notions regarding h (Chen et al., 1999), or on beliefs (Albert et al.,

2012). The latter corresponds to our aim of mathematically imple-

menting the notion of intuition.

We describe prior in terms of their informativeness which refers

to the information that they provide. More informative prior are not

necessarily better: they may be too restrictive which can be highly

detrimental if they do no complement the data. A prior should be a

representation of intuition rather than certitude of what the unob-

served data would be. To demonstrate the effects prior informative-

ness, we tested two sets of prior for the analysis of the synthetic

dataset A0 with R ¼ 1. All prior are normally distributed and for a

given parameter, centered around the same value. ‘Informative’

prior have very narrow distributions, while ‘Less Informative’ prior

have wider distributions with r five times bigger than that of the

‘Informative’ (Fig. 3).

When comparing both Bayesian inferences, it is clear that the

‘Informative’ prior are not suited to the data (Fig. 3). Even though

both HDR prior are centered at 100%, the ‘Less Informative’ prior

does not prevail over the data and parameters can be inferred as

expected (2.14, 60.1, 0.801, 0.032 for the IC50, HDR, S and LDR,

respectively). The second curve is reminiscent of the one obtained

when using Marquardt–Levenberg 2P (Fig. 2). In such case, the prior

are highly restrictive and do not complement the data, causing the

inferred curve to mainly be representative of the prior themselves.

Figure 3 illustrates the effect of prior informativeness on 10 data

points (R ¼ 1). The undesirable effects of ‘Informative’ prior can be

counterbalanced by giving more data points to the Bayesian model.

For example, A0 dataset with R ¼ 5 prevails on the ‘Informative’

setup. In the context of dose–response analysis, it is not always pos-

sible to generate large dataset due to cost and material limitations.

Prior should thus be defined by less informative distributions.

We tested various setups of prior distributions (Table 2) in order

to establish the ones that can generalized to multiple experiments

with similar contexts. Again, we used the synthetic dataset A10 with

R ¼ 1. The dose–response curves and posterior distributions are pre-

sented in Figure 4.

The ‘More Informative Normal Dist.’ prior resulted in a higher

than expected HDR (96.0) which generates a shift to the right in the

IC50 (3.40). The slope is also flattened by this high HDR and its

value diverges greatly from the expected one. Interestingly, the

HDR posterior is highly similar to the prior. Similarly, the LDR

posterior is also matching its prior. When looking at the data, we

Fig. 3. Prior informativeness. Informativeness can be described by the wide-

ness of the distribution. ‘Informative’ (narrow) prior prevail on the data and

the inference is biased. ‘Less Informative’ (wide) prior do not overshadow the

data and the curve is inferred with high certainty. We used the A0 dataset

with R ¼ 1. The median HDR and LDR are represented by black horizontal seg-

ments, and the median IC50 vertical segments. RMSE value is identified for

each curve. We used the median curve to compute the residuals
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notice that there are no clearly define upper and lower plateaus: the

inference must thus rely mainly on the prior to define these regions

of the dose–response curve. Even though the prior distributions are

not highly informative, they are still too informative and force the

HDR to reach the theoretical optimal 100.0% even though it is not

directly supported by the data.

The ‘Less Informative Uniform Dist.’ prior is the less informative

out of the three settings. Only the median HDR is approaching the

expected values (59.1) but its CI (95%) is quite large. The other

inferred parameters do not resemble those expected, which is not

surprising considering the noise present in the data. When compar-

ing the posterior distributions to the prior, we noticed that they

were bound by very similar limits with the exception of the slope,

which has a lower bound of 0.

The ‘Less Informative Normal Dist.’ prior seems to be a good

compromise between the two previously described settings. The me-

dian values are not as expected but this can be explained by the

noise in the data, mainly in the low dose region. The median HDR

is however not too far from the 60% mark. It is interesting to notice

the shift between the posterior and the prior of that parameter,

which is not observed in the other two settings.

Overall, normally distributed prior (N l;r2
� �

) appear more ap-

propriate. The uniform distributions prior (U a; bð Þ) are too unin-

formative: when data are insufficient, the distribution values

suggested by the prior are all equally probable which has the same

effect as adding a large amount of new noisy data. This could ex-

plain the very large confidence intervals when using uniform prior,

with the exceptions of the slope. In addition to the lack of inform-

ativeness in regards to the most probable value, uniform distribu-

tions are constrained by their a and b parameters. For instance, the

slope posterior abruptly stops at 10 which is incidentally the defined

b we selected for the slope uniform prior. Comparatively, the nor-

mal distribution is not bound and each distribution values as its own

probability. We also adjusted our intuition of l for both the IC50

and slope prior (Table 2). Assuming the experimental doses are suf-

ficient and range on a 2-fold scale, we could expected the IC50 to be

near the median experimental dose.

We will be using the ‘Less Informative Normal Dist.’ prior as de-

fault settings for now on.

3.1.3 Unresponsive data

So far, we mainly used synthetic datasets to explore the application

of our Bayesian model to the analysis of dose–response data. To as-

sess the extend of the applicability of our approach, we applied it to

the analysis of a seemingly unresponsive experimental dataset, E1

(Fig. 5). This type of response is frequent during the drug discovery

process and it is of the utmost importance that the analysis approach

applied can confidently assess that this compound has an IC50 value

above the range of doses tested and must be discarded.

On this specific dataset, the responses never reach >30% and

there is no clear tendency. The inferred dose–response curve is main-

ly flat for the entire experimental doses range. The median IC50 is

high (9.37). As we expected it, the HDR posterior is highly reminis-

cent of the prior: the data did not give any indication regarding the

response at very high doses. All the parameters’ confidence intervals

are quite large. We are not able to determine with certainty the effi-

cacy metrics of the tested compound. We can however conclude

with certainty its IC50 is bigger than 5 log 10nM, which is enough to

discard this compound as ineffective. Such a high certainty conclu-

sion cannot be made on seemingly unresponsive dataset with
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Fig. 4. Effects of various prior. Three different prior settings (Table 2) are tested on the A10 synthetic dataset with R ¼ 1. Dose–response curves are plotted against

the data and with a 95% CI. The posterior of each parameter is represented by an histogram. The colored vertical segments represent the median value (continu-

ous) and its 95% CI (hashed). The numerical median value is indicated in the legend. The expected values (used to generate the synthetic data) are identified by a

red arrow on the x-axis. The light gray segment superimposed on the histogram illustrates the contour of the prior distribution

Table 2. Distributions parameters

Description IC50 HDR S LDR

More Informative

Normal Dist.

Nð2:5; 5Þ N ð100; 10Þ N ð1; 5Þ N ð0; 10Þ

Less Informative

Uniform Dist.

Uð�15; 45Þ Uð0; 150Þ Uð�10; 10Þ Uð�50; 50Þ

Less Informative

Normal Dist.

Nðx̂; 10Þ N ð100; 20Þ N ð0:5; 10Þ N ð0; 20Þ

Note: x̂, median of experimental doses.
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commonly used Marquardt–Levenberg algorithm methodology,

without resorting to ad hoc rules.

3.1.4 Inferring noise

Our Bayesian model also infers a posterior distribution for r

(Equation 4), which describe the amount of noise in the dataset. For

synthetic datasets (A0 and A10), the median r is close to the actual r

used to generate the data (Fig. 6). It is true that we used a Gaussian

noise when generating the data, and that our Bayesian model

assumes that the responses are from independent identical normal

distributions. That being said, the median r for the experimental

dataset E1 is very close to the standard deviation of responses for

this dataset (Fig. 6), which corresponds to interpreting the dose–re-

sponse as flat and corresponding to the LDR plateau.

3.2 Comparison of two dose–response datasets
To further the analysis of dose–response data, we proposed a novel

comparison methodology.

As mentioned in Section 2.2, the comparison is done by inferring

the posterior of the difference between two values of an efficiency

metric. From these posterior, we can derive the probability that a

dataset has the largest value for a given efficiency metric. The uncer-

tainty identified through the individual dose–response inference is

carried to our comparison analysis, which allows to characterize the

uncertainty of the difference.

When comparing the synthetic datasets B0 and C0 (Fig. 7), we

can conclude with great certainty that the C0 IC50 is larger than that

of B0, even though the difference between the value is quite small

(�0.15). We can also conclude with great certainty that C0 has a

higher HDR than B0. The precision of both datasets (r ¼ 0:1)

allows us to draw these conclusions without doubt.

In contrast, when comparing B5 to C5 (Fig. 7) we cannot make

such conclusion. These two datasets share the same parameter val-

ues as B0 and C0, respectively, but they were generated with

increased noise (r ¼ 5). The inferred IC50 are more uncertain and

their posterior distributions overlap. When comparing their respect-

ive median IC50, one could easily concludes that the B5 dataset has a

larger IC50 than the C5 dataset (2.29 > 2.15) and that the B5 com-

pound is thus less effective than that of C5. This conclusion is highly

biased: the uncertainty of the inferred IC50 does not allow for the

identification of significantly greater value as demonstrated by the

DIC50 posterior. If we take a look at the comparison of HDR values,

we notice that the uncertainty does not affect the comparison: the

values are different enough that the two posterior do not overlaps.

We thus can conclude with certainty the C5 HDR is greater than the

B5 HDR even when considering their respective uncertainty.

Similar results have been observed when comparing the two

highly noisy (r ¼ 10) that are B10 and C10 (Fig. 7). The difference in

median IC50 is even greater but the D IC50 posterior tends more to-

ward the expected conclusion. The HDR comparison is still highly

convincing despite an higher level of uncertainty in the individual

HDR posterior.

To highlight the informative gain of our comparative approach,

we compared and analyzed two experimental datasets (E2 and E3)

using two methodologies: (i) the commonly used numerical com-

parison of IC50 and (ii) our differences posterior approach.

3.2.1 Numerical comparison

When comparing the IC50 median values, we notice they differ by

0.11 log10 nM (Fig. 8A) which is equivalent to �32 nM. We would

conclude that the E3 dataset has a larger IC50 than that of the E2

dataset. The E2 compound is thus seemingly more effective than the

E3 compound.

3.2.2 Differences posterior

When we first look at the D IC50 posterior we cannot conclude that

one of the IC50 is greater than the other. The IC50 were not inferred

with enough certainty, because of the noise present in the data, for

us to conclude that their values are significantly different. The HDR

are however significantly different, despite the great uncertainty of

E2 HDR (Fig. 8A). The D HDR posterior identify the E3 dataset as

the one with the overall largest HDR. It is also interesting to note

that the difference between the two HDR is quite large, with median

difference of almost 23% (Fig. 8A). The E3 also have the overall

largest S (Fig. 8A). When combining all of these information, we can

conclude that the E3 compound is more effective at generating a

maximal response than the compound of E2.
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Fig. 5. Bayesian inference applied to seemingly unresponsive experimental

data. Results obtained for the experimental data E1 using our default prior

settings. Parameters posterior are represented by histograms. Their median

values are identified by the colored full vertical segments and the values are

reported in the legend. The colored dashed vertical segments mark the 95%

CI bounds. The light gray segment superimposed on the histogram illustrates

the contour of the prior distributions

Fig. 6. A posterior distribution of r. posterior distributions obtained by apply-

ing our Bayesian model to the synthetic datasets A0 and A10 (black and or-

ange respectively), and to experimental dataset E1 (blue). The median r are

represented by the full segments and their values are reported in the legend.

The dashed segments mark the bounds of a 95% CI. For the two synthetic

datasets, the real value of r is identified by a red arrow on the x-axis. For the

experimental dataset, the standard deviation of the responses is represented

by the red full segment and its value is reported in the legend
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The two conclusions greatly differ and the one drawn from the

numerical comparison is biased. The numerical comparison method-

ology is highly limited as it only considers one efficacy metric and

does not consider the uncertainty associated to its values. It is prefer-

able to consider all four metrics to get a more complete characteriza-

tion of the efficacy of a compound. We must also evaluate the

probabilities of certainty on the metrics as well as on the comparison

itself to ensure our conclusions are as precise as is appropriate.

Last, interpreting pairwise plots of the posterior distributions

can also help to draw informed conclusions. This sort of representa-

tion can identify inter-parameter dependencies which should be con-

sidered when analyzing posterior distributions. We can observe in

Figure 8B that both datasets are distinguishable by pairing their

HDR and S, which was not observable from the analysis of the his-

tograms of Figure 8A.

3.3 BiDRA: an online tool
The two previous sections demonstrated how well and how much

more information can be gathered when using our proposed

Bayesian methodology for the analysis and comparison of dose–re-

sponse data. The conclusions drawn from such analyses are less

prone to bias compared with other commonly used methodologies.

We are aware that the implementation and subsequent application

of our Bayesian approach is not within everyone’s reach. We thus

decided to develop an easy-to-use web interface, BiDRA (Bayesian

inference for dose–response analysis).

The interface proposes both the analysis of a single dataset

(Sections 2.1 and 3.1) and the comparison of two datasets (Sections

2.2 and 3.2). For both analyses, the user simply uploads the data-

set(s) in a comma-separated values (CSV) format with the first col-

umn corresponding to the doses and the second representing the

associated responses. It is important that the doses be log-

transformed since we are using the log-logistical model

(Equation 1). The data type must then be specified: Inhibition if the

response increases with the dosage; Activity is the response decreases

as the dosage increases. The HDR and LDR prior are adjusted

according to the response type. We suggest default prior distribu-

tions (Section 3.1.2), assuming the data represent some sort of rate

(%). The user can however easily specify his own l and r for each

parameter.

The results are returned in both a figure and in a table. For the

single dataset inference, the median dose–response curve as well as
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the posterior of all efficacy metrics and the r are plotted. The

returned results are similar to Figure 5. For the two datasets ana-

lysis, the individual inference plots are returned as well a figure

describing the comparison. The latter includes the stacked individual

posterior as well as the differences posterior. As an example, Figure

8A was obtained from BiDRA. For every computed posterior, we re-

turn its median and the bounds for 10, 5 and 1% CIs in a table.

The interface is accessible (https://bidra.bioinfo.iric.ca/) and does

not require any authentication. The interface is not connected to any

database and the analysis is not saved. We plan on adjusting the

interface as our work progresses (see Section 4).

4 Implications

We propose in this article a Bayesian inference methodology for the

analysis of dose–response data. This approach is then extended to

directly infer differences in efficacy metrics between two dose–

response experiments.

Our approach addresses two limitations of the commonly used

Marquardt–Levenberg algorithm: first, it yields a single point esti-

mate for each efficacy metrics, with no assessment of the uncertainty

for these values. The experimenter is then left to decide on whether

to accept or reject a given fit based on its intuition. This process is

typically manual leading to possible biases and difficulty to repro-

duce analysis results. The second limitation is that the Marquardt–

Levenberg algorithm relies entirely on the experimental data to esti-

mate the efficacy metrics. In cases where the data are insufficient to

determine one of the efficacy metrics, this algorithm will settle for

the mostly likely value without consideration for experimentally

sound boundaries. These limitations are compounded by the fact

that there exists no methodology to support direct comparison of

dose–response curves besides numerically comparing the efficacy

metrics. The Bayesian inference approach we describe here allows us

to incorporate in the analysis of dose–response the notion of experi-

mental intuition to guide the identification of plausible ranges for

each of the efficacy metrics. This reduces the necessity for careful in-

spection of curve fitting and provides a sound statistical framework

to communicate the reliability of estimates to the experimenter. Our

approach shares similarities to the ones presented in Collis et al.

(2017), Cummings et al. (2003), Johnstone et al. (2016), Messner

et al. (2001) and Smith and Marshall (2006); as it implements a sim-

ple hierarchical Bayesian model. We consider as part of our analysis

all efficacy metrics of the log-logistic model (Equation 1). We also

propose a novel and informative approach to compare two dose–re-

sponse curves, again unambiguously conveying estimates uncer-

tainty as posterior distributions of the differences for efficacy

metrics of interest. In practice, these distributions are either commu-

nicated as a probability that one value is larger for one experiment

than in the other, or as a confidence interval on the difference.

As mentioned by Johnstone et al. (2016), the Bayesian inference

still have some limitations even though it provides numerous advan-

tages when compared with the usual non-linear regression approach.

As for Marquardt–Levenberg, computation time increases with the

number of data points under consideration: the analysis of A10 (R ¼
3) (Fig. 2) took �0.8 s, while the analysis of A10 (R ¼ 1) (Fig. 4)

took �0.5 s (Intel, i9-7920X). Comparatively, the comparison of

B10 and C10 (both R ¼ 1) (Fig. 7) took �3 s. In most practical set-

tings, the computational time necessary for these analyses is insig-

nificant to the time required for actually performing the experiments

being analyzed. A more important limitation to consider is the diffi-

culty to clearly express the relative weight of the prior in the

analysis. As shown in Section 3.1.2, an inappropriate prior can

greatly alter the posterior distributions. This effect is mostly seen for

the HDR and LDR as they often depend on extrapolation of the ex-

perimental data. As a general rule of thumb, the prior informative-

ness should not outweigh the data information and least informative

prior should be favored in most situations.

That being said, we do think our approach to directly compare

two dose–response will provide a useful tool to support the drug dis-

covery process, either at the stage of secondary validation following

a primary screen or during compound optimization. Considering

distributions of probable values instead of single point estimates

brings more depth to interpretation efficacy metrics and supports

better informed decision from the experimenters. These benefits are

also attained through a method that better support automated ana-

lysis as we greatly reduced the necessity for manual inspection of

each fit.

Finally, we would also like to emphasis the flexibility of the pro-

posed framework. We are currently exploring the use of this ap-

proach in the context of primary screens based on high-throughput,

single-dose assays or to the more complex context of two-

compounds synergistic dose–response assays. There are currently no

established methodologies for the analysis of these types of assay.

We think that Bayesian inference would be highly beneficial and

could help to more reliably identify compound hits as well as better

quantification of compounds interactions.
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