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Abstract

Motivation: The prediction of protein–protein interaction (PPI) sites is a key to mutation design,

catalytic reaction and the reconstruction of PPI networks. It is a challenging task considering the

significant abundant sequences and the imbalance issue in samples.

Results: A new ensemble learning-based method, Ensemble Learning of synthetic minority oversam-

pling technique (SMOTE) for Unbalancing samples and RF algorithm (EL-SMURF), was proposed for

PPI sites prediction in this study. The sequence profile feature and the residue evolution rates were

combined for feature extraction of neighboring residues using a sliding window, and the SMOTE

was applied to oversample interface residues in the feature space for the imbalance problem. The

Multi-dimensional Scaling feature selection method was implemented to reduce feature redundancy

and subset selection. Finally, the Random Forest classifiers were applied to build the ensemble learn-

ing model, and the optimal feature vectors were inserted into EL-SMURF to predict PPI sites. The per-

formance validation of EL-SMURF on two independent validation datasets showed 77.1% and 77.7%

accuracy, which were 6.2–15.7% and 6.1–18.9% higher than the other existing tools, respectively.

Availability and implementation: The source codes and data used in this study are publicly avail-

able at http://github.com/QUST-AIBBDRC/EL-SMURF/.

Contact: yubin@qust.edu.cn or maqin2001@gmail.com.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interaction (PPI) is the basis for cells to carry out

activities and the key to the realization of cell functions. It plays a

vital role in biocatalysts, organism immunity, cell regulatory net-

work construction, etc. (Gavin et al., 2002; Han et al., 2004). Since

it is not realistic to carry out wet-lab experiments for PPI identifica-

tion (Ezkurdia et al., 2009; Giot et al., 2003; Hamp and Rost,

2015), the computational prediction of PPI has become one of the

primary goals in bioinformatics and biomedical studies

(Aumentado-Armstrong et al., 2015; Northey et al., 2018).
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The computational PPI prediction methods were developed

mainly based on the (i) diverse genomic information, (ii) evolution-

ary information and (iii) protein structure information. The diverse

genomic information-based methods include, but not limited to, (i–1)

the phylogenetic profiling method, which annotates functional pro-

teins by identifying the relationship between the adjacent genes and

is suitable for the early evolutionary structure of simple organisms

(Pellegrini et al., 1999); (i–2) the gene neighborhood method, which

refers to the functional identification of gene products through the

adjacency gene relationships (Dandekar et al., 1998; Overbeek

et al., 1999; Tamames et al., 1997) and (i–3) the gene fusion

method, which was used in metabolic proteins but lack of the ability

to determine whether the fusion proteins directly exposed (Enright

et al., 1999; Marcotte et al., 1999). The mirror tree algorithm is one

representative method based on evolutionary information, which

identifies the common evolutionary characteristics among functional

proteins. Specifically, Goh et al. (2000) introduced a linear correl-

ation coefficient to quantify the similarity of trees, and Pazos and

Valencia (2001) used the same method to successfully predict 2742

pairs of proteins from a population of 67 000 Escherichia coli pro-

tein pairs. The protein structure information-based methods were

first proposed by Sprinzak and Margalit that using sequence domain

signals to reduce the experimental search space for PPI identification

(Sprinzak and Margalit, 2001). Gomez et al. (2003) constructed an

interaction attraction model by linking PPI to the protein domain

interactions.

A PPI site is the position where proteins interact with neighbor

residues that are the remaining structures of peptide bonds other

than amino acids. The identification of PPI sites is the premise of PPI

prediction, contributes to the extensive clinical and industrial appli-

cations and promote the identification of pharmacological targets

and the drug design. The selection of different features based on the

diversity of protein biochemical properties affects the prediction ac-

curacy of PPI sites. Li et al. (2012) and Liu et al. (2010) identified

residues using the random forest (RF) method based on sequence

structural information. Zhou and Shan (2001) used the Position-

Specific Score Matrix (PSSM) and solvent accessible surface area to

extract features. Fariselli (2002) used the Homology-derived

Secondary Structure of Proteins (HSSP) for feature vector extrac-

tions and Yan et al. (2004) extracted the feature of 19 adjacent resi-

dues to predict interfacial residues, leading to the sequence

information-based PPI sites prediction.

The rapid development of machine learning provided unprece-

dented opportunities for the computational analysis and prediction

of PPI sites (Krüger and Gohlke, 2010). Multiple classifiers have

been applied to the prediction of PPI sites, such as neural networks

(Gomez et al., 2001; Ofran and Rost, 2003, 2007), Markov model

(Friedrich et al., 2006), Naı̈ve Bayes (NB) (Lin and Chen, 2013;

Neuvirth et al., 2004), support vector machine (SVM) (Li et al.,

2008; Porollo and Meller, 2007; Sriwastava et al., 2015), RF (Hou

et al., 2017), ensemble learning (Lei et al., 2009; Porollo and Meller,

2007; Yan et al., 2004), conditional random field (Li et al., 2007)

and minimum covariance determinant (Qiu et al., 2017). Ofran pro-

posed a neural network-based classifier for PPI sites prediction and

found most of the interface residues in continuous sequences (Ofran

and Rost, 2003, 2007). Other tools, e.g. cons-PPISP (Chen and

Zhou, 2005) and meta-PPISP (Qin and Zhou, 2007), were devel-

oped based on the same neural network strategy. Porollo and Meller

proposed the SPPIDER server to identify residues involved in PPI

and improved the accuracy by integrating SVM and neural network

(Porollo and Meller, 2007). Neuvirth et al. (2004) used the NB clas-

sifier to predict the interface residues and achieved a better classifier

performance, and Murakami and Mizuguchi improved the perform-

ance by training the NB classifier with the kernel density estimation

(Murakami and Mizuguchi, 2010). Chen and Liu (2005) proposed a

new method based on protein domain prediction, which can explore

all possible domain interactions. Considering the effect of neighbor-

ing residues on target residues, Mihel et al. (Mihel et al., 2008) com-

bined a sliding window and RFs to identify interaction sites which

get better precision and F-measure. Hou et al. (2017) evaluated the

importance of various features using RF and included a new feature

backbone flexibility predicted from sequences to further optimize

PPI sites prediction. As new classifiers have springing up in recent

years, Dhole’s team developed Sequence-based predictor of

PRotein–protein InteractING Sites (SPRINGS) (Singh et al., 2014)

and L1-regularized LOgistic Regression-based PPI Sites predictor

(LORIS) (Dhole et al., 2014) through integrating the neural network

and L1-regularized logistic regression. Friedrich et al. (2006) used

the Markov model, Li et al. (2007) utilized conditional random

fields and Qiu et al. (2017) used minimum covariance determinant

and machine learning in the identification of PPI sites.

Although the existing methods for PPI sites prediction have achieved

good prediction performance, the sample imbalance issue can decrease

the performance of traditional learning algorithms (Japkowicz and

Stephen, 2002; Kim et al., 2015; Yu et al., 2013, 2014) and deflect pre-

dictions towards the non-interface residues in most classifiers. We pro-

posed a new PPI sites prediction algorithm, Ensemble Learning of

synthetic minority oversampling technique (SMOTE) for Unbalancing

samples and RF algorithm (EL-SMURF), which integrated the SMOTE

and the RF methods to oversample interfacial residues in the feature

space through generating new data from two types of sample data

(Blagus and Lusa, 2013; Chawla et al., 2002; Dı́ez-Pastor et al., 2015;

Ma and Fan, 2017). For the first time, the fusion of sequence profile fea-

ture in PSSM (PSSM-SPF) and residue evolution rate (RER) was applied

for feature extraction of neighboring residues with a sliding window.

SMOTE was then applied to oversample interface residues in the feature

space to deal with the imbalance problem. In addition, we optimized

the parameters of RFs and selected a different number of decision trees

for different classifications by the leave-one-out cross-validation.

Meanwhile, we used the Multi-dimensional Scaling (MDS) feature se-

lection method to reduce the feature redundancy and improved the clas-

sification performance. Finally, the ensemble learning model was

obtained by integrating the above optimized RF classifier. One training

dataset (Dset186) and two independent validation datasets (Dtestset72

and PDBtestset164) were used to perform the leave-one-out cross-valid-

ation, and EL-SMURF showed the highest accuracies of 79.1%, 77.1%

and 77.7% on the three datasets, respectively. The experimental results

demonstrated that EL-SMURF can improve the state-of-the-art accur-

acy of PPI sites prediction.

2 Materials and methods

2.1 Datasets
Three datasets, namely Dset186, Dtestset72 (Murakami and

Mizuguchi, 2010) and PDBtestset164 (Singh et al., 2014), were used

to validate the effectiveness of EL-SMURF in this study. Dset186

consists 186 protein sequences extracted from 108 heterodimeric

protein complexes in the PDB database (Berman et al., 2000), used

as the training dataset, with sequence homology less than 25% and

solved by X-ray crystallography with the resolution less than 3.0 Å.

To generate Dset186, protein complexes were filtered by six steps:

(i) remove protein complexes with missing residues ratio higher than

30%, (ii) remove complexes with two chains assigned by the same
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UniProt (Boutet et al., 2007) accessions or the same SCOP Concise

Classification Strings (Murzin et al., 1995), (iii) remove transmem-

brane proteins listed in PDBTM (Tusnády et al., 2004), (iv) remove

proteins with structure included a large structures found in other

PDB entries by scanning against the BLAST PDB database with

threshold greater than 95%, (v) remove protein complexes with

interface buries surface accessibility of �500 Å2 or �Å2 and inter-

face polarity less than 25% and (vi) cluster the remaining sequences

and keep those with over 90% of pair-wise sequence identity. The

two independent datasets, Dtestset72 and PDBtestset164, were con-

structed following the same process of Dset186 generation but using

different annotated proteins, giving rise to 72 and 164 protein

sequences, respectively.

On the other hand, we defined a residue to be interfacial if its ab-

solute solvent accessibility is less than 1 Å2, before and after the

binding of protein in the binding form; otherwise, non-interfacial

(Aloy and Russell, 2002; Jones and Thornton, 1997). By using

Protein Structure and Interaction Analyzer (Mihel et al., 2008), the

number of interfacial residues was identified. As a result, 15.2%

(5517/36 219), 10.6% (1923/18 140) and 18.1% (6096/33 681) of

the residues in Dtestset72, Dset186 and PDBtestset164, respectively,

are interfacial, indicating that sample imbalance issues exist among

all the three datasets.

2.2 PSSM-SPF and RER features
The PSSM-SPF and RER were used to obtain protein sequence fea-

tures. The SPF recorded in PSSM is a sequence characteristic table

constructed by the entire information of the multiple sequence align-

ment results, which describes the substitution, insertion and deletion

of each residue (Zhou and Zhou, 2004). It can be used as a feature

of protein by the multiple alignments of homologous sequences.

Moreover, PSSM-SPF is constructed by all members of the homolo-

gous family, thus, can adequately reflect the long-distance hom-

ology. The other protein sequence feature, RER, can be used to

describe the evolutionary information based on the statistical know-

ledge in estimating the position of amino acids by conservatism

scores. Since RER differs at various locations, the phylogenetic rela-

tionship between sequences and their random evolutionary proc-

esses can be determined. The RER method was designed based on

the hypothesis that more interaction of proteins with other macro-

molecules, such as proteins, ligands and DNA molecules, can lower

the evolutionary rate of the surface residues (Armon et al., 2003;

Landgraf et al., 1999; Lichtarge et al., 1996). The ConSurf method

(Armon et al., 2003) constructed by the Matching Pursuit algorithm

was used to extract evolutionary rate of target residues and their

neighboring residues of the three datasets, giving rise to an 11-di-

mensional RER feature.

2.3 SMOTE
SMOTE was used to solve the imbalance problem that leads biased

classifications to the non-interfacial due to a large amount of non-

interfacial residues in the three datasets (Blagus and Lusa, 2013;

Chawla et al., 2002; Dı́ez-Pastor et al., 2015; Ma and Fan, 2017).

Specifically, it generated new data from two types of sample data to

oversample a small number of sample sets. The synthesis strategy is

to find the K-nearest neighbor of the sample xi from the samples of

the interface residue, denoted by xiðnearÞ;near 2 f1; . . . ;kg. Then, a

sample xiðnnÞ and a random number f1 of 0 to 1 were generated from

the K-nearest neighbor, and a new sample was synthesized: xi1.

xi1¼xi þ f1ðxiðnnÞ � xiÞ (1)

Repeat the above procedure N times until we got N new sam-

ples: xiðnewÞ; new 2 1; . . . ;N.

2.4 EL-SMURF
Ensemble learning has been frequently applied to the field of ma-

chine learning due to its ‘fault-tolerant rate’ (Afolabi et al., 2018; Jia

et al., 2015) which shows better classification prediction results

compared with individual classifiers. To improve the prediction ac-

curacy of PPI sites, an EL-SMURF model was constructed following

the three steps below (Fig. 1). The framework of EL-SMURF has

been implemented in MATLAB 2014 b and R3.4.2 on a PC with

system configuration Inter (R) Xeon (R) E5-2650 V3 CPU

@2.30 GHz 2.30 GHz. Intel (R) Xeon (TM) CPU E5-2650 @

2.30 GHz 2.30 GHz with 32.0 GB of RAM.

Step 1: Data acquisition and feature extraction. For a known PDB ID,

we downloaded its FASTA sequence from the PDB database. For a query

protein sequence, we used BLASTþ to search the NCBI non-redundant

database for three times with E�value ¼ 0:001(Wei et al., 2016) as the

cutoff for multiple sequence alignment against the query sequence

(Camacho et al., 2009). Then we got an n-by-20 matrix with each row

representing a 20-dimensional vector of the position of an amino acid,

and each element in a vector representing the frequency at which 20

amino acids appear. This matrix is so-called a PSSM, and the corre-

sponding feature is named as PSSM-SPF. Considering the effect of neigh-

boring residues on the target residues, we fused the RER features and

PSSM-SPF in each residue, giving rise to a 21-dimensional feature vector.

Residues are not only determined by the target residues but also closely

related to the properties of the residues adjacent to the target residues

Fig. 1. The flowchart of EL-SMURF with three steps: (A) Data acquisition and

feature extraction. The PDB file and the FASTA file are downloaded from the

PDB database, and the feature subsets of protein sequences are obtained by

the combination of RER features and PSSM-SPF where a 231-D subset can be

obtained by the sliding window. (B) Sampling and feature selection. A small

number of samples (interface residues) were oversampled by SMOTE algo-

rithm to get the balanced samples, and the MDS was used to reduce the fea-

ture redundancy and improve the classification performance. (C) Classifier

modeling and classification. Using the optimal feature subset as the input

vector, the majority voting method is used as the ensemble learning strategy

to integrate the RF classifier and construct the integrated learning model EL-

SMURF. The comparison of Acc, Se, Sp, Pr, F-Measure and MCC was carried

out among several classifiers and prediction methods

EL-SMURF 2397



(Wei et al., 2016). Hence, we set a sliding window of 11 (Dohkan et al.,

2004) which includes the target residue at the center and 10 neighbor

residues to extract the PSSM-SPF and the RER features. Then a 231-di-

mensional feature vector (21 x 11) was created to predict the PPI sites as

the input feature of the following two steps.

Step 2: Sampling and feature selection. To solve the imbalance problem

of sample classes, we used the SMOTE algorithm to sample a small num-

ber of class samples of three datasets and form balanced samples with

the same number of positive and negative samples. Then we used MDS

to reduce the feature redundancy and got the new feature subset as the

input of the next step. (Supplementary Fig. S1).

Step 3: Classifier modeling and classification. RF was used as an individ-

ual classifier to the ensemble, and the integration strategy is the expert

system voting method,

result ¼ sgn
Xn

i¼1

predict label

 !
(2)

where, result is the final result of the EL-SMURF, sgn is the normal sign

function, predict label equals þ1 or –1 indicating the predicted result of

each RF, n indicates the number of ensemble RF. The balanced samples

were integrated into the EL-SMURF model the prediction results can be

generated by formula (2).

Sensitivity (Se), Specificity (Sp), Accuracy (Acc), Precision (Pr), F-

measure and Matthews correlation coefficient (MCC) were used for

evaluation. Se (3) and Sp (4) reflect the performance of classifier

interface residues; Acc (5) reflects the prediction ability of classifier

for the test set; MCC (6) demonstrates the correlation between pre-

diction results and real data; Pr (7) describes the random error;

F-measure (8) indicates the harmonic mean of Se and Pr. The for-

mula of six indexes are shown as follows (Wei et al., 2016):

Se ¼ TP

TPþ FN
(3)

Sp ¼ TN

TNþ FP
(4)

Acc ¼ TPþ TN

TPþ TNþ FPþ FN
(5)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ

p (6)

Pr ¼ TP

TPþ FP
(7)

F �measure ¼ 2� Se� Pr

Seþ Pr
(8)

where TP is the number of correctly classified interface residues, FP

is the number of incorrectly classified non-interface residues, TN is

the number of correctly classified non-interface residues and FN is

the number of wrongly classified interface residues. Also, the ROC

curve was used to check the generalization performance of the con-

struction model. The higher value of the area under the ROC curve

(AUC) indicates a more robust and generalized model.

3 Results

Dset186, Dtestset72 and Dtestset164 contain far more non-interface

residues than interface residues. The performances of traditional

learning algorithms will decrease naturally, and the classification results

are mostly biased to the non-interface residues. The classifier parame-

ters, feature extraction methods, classifier performance and comparison

with other methods were performed on the balanced samples.

3.1 Parameter optimization for the RF model
In an RF algorithm, the number of decision trees has a significant in-

fluence on the accuracy of the model and the running speed of the

model (Chung and Chen, 2012). The training data Dset186 was

transferred to balanced dataset after the SMOTE step. The param-

eter ntree was chosen from 100 to 1000, with tolerance at 100, for

achieving the best accuracy value (Supplementary Table S1 and

Supplementary Fig. S2). The Acc index achieved the highest value

when ntree equals to 300. Hence, we set ntree equals 300 in this study.

3.2 Determination of the number of integrating RFs on

Dset186
In EL-SMURF, the majority voting method was used to integrate the

RF classifier. The number of the individual RF classifier used for in-

tegration was decided by the balanced sample treated by SMOTE.

As shown in Table 1, a different number of RF classifiers were

chosen for optimizing the prediction accuracy in the training dataset

Dset186. Overall, the seven RF classifier integration showed better

performance than the other two options, especially in Acc, Sp and

Pr. On the other hand, the running time of EL-SMURF increased

along with the increase of the RF number, and it may take days for

an RF number larger than seven. Considering the efficiency and the

maximization of model accuracy, we used seven RF classifiers to

construct the EL-SMURF model.

3.3 Comparison of feature extraction methods
A protein sequence and its RER were commonly used as the feature

attributes to empower a classifier, which was used to study the fea-

ture extraction degree of the protein sequence information.

Meanwhile, the feature fusion of PSSM-SPF and RER, and each of

the two features, were used to extract the features of the protein se-

quence. After SMOTE, the extracted feature vectors were classified

and predicted by the EL-SMURF model, in support of the compari-

son of the feature extraction effects of two individual feature attrib-

utes and the effect of feature fusion on the prediction performance.

The effects of different feature extraction methods on EL-SMURF

classification were shown in Table 2.

Table 1. Influence of different number of RFs on Dset186

RF number Acc (%) Se (%) Sp (%) Pr (%) F-Measure MCC

3 72.0 96.3 47.7 64.8 0.775 0.503

5 71.8 96.4 47.2 64.6 0.773 0.501

7 73.1 91.7 54.5 66.8 0.773 0.498

Note: Bold numbers in the table indicate the highest Acc result.

Table 2. Influence of different features extraction methods on

Dset186

Features Acc (%) Se (%) Sp (%) Pr (%) F-Measure MCC

SPF 71.3 96.4 46.2 75.4 0.770 0.491

RER 68.9 96.7 41.1 62.1 0.756 0.454

Feature fusion 73.1 91.7 54.5 66.8 0.773 0.498

Note: Bold numbers in the table indicate the highest Acc result.
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As shown in Table 2, the feature extraction methods of feature

fusion reached the maximum Acc, Sp, Pr, F-measure and MCC. This

indicated that feature extraction based on feature fusion plays a vital

role in accurately identifying PPI sites. To compare the effect of the

three feature extraction methods on the performance of the classi-

fier, the ROC curves of the three methods on three datasets were

showcased in Figure 2.

Based on the ROC curves in Figure 2, the algorithms utilizing

the feature fusion of RER and SPF had the highest AUC values

across the three datasets. For all three datasets, the fusion of SPF

and RER yielded the higher AUC value of 0.885, 0.854 and 0.887,

respectively, than individual SPF and RER methods. As a result, the

feature fusion extraction method has the better extraction effect and

the feature vectors extracted from feature fusion can be more com-

prehensive to reflect the sequence information of protein than the

feature vectors obtained from the single feature extraction method.

By comparing the effects of different feature extraction methods on

the results, the robustness of feature extraction algorithms was

derived from the ROC curve and the feature fusion was determined

as the best feature extraction method in this study.

3.4 Effect of feature selection algorithm on results
To reduce the computational complexity and feature redundancy, we

carried out feature selection among features extracted in Section 3.3,

using MDS (Taguchi and Oono, 2005), Locality Preserving Projection

(LPP) (Heidari et al., 2018), Locally Linear Embedding (LLE) and

Factor Analysis (FA) (Salas-Gonzalez et al., 2010). First, we used the

maximum likelihood estimator for estimating essential dimensions. The

feature was reduced to 20 on Dset186, 19 on Dataset72 and 18 on

PDBtestset164. The parament k in LLE and LPP was set to 12 to dis-

cover the 12 nearest neighbor points for each sample point. The com-

parison of different feature selection methods on three datasets is shown

as Figure 3A. We also use other feature selection methods such as

Linear Discriminant Analysis (Wang and Yue, 2018), Neighborhood

Preserving Embedding (Lee et al., 2015) and Auto-encoder (Deng et al.,

2017), with more details in Supplementary Table S2.

As shown in Figure 3A, feature selection has a significant improve-

ment on the classification performance. The ACC achieved 79.1%

with the MDS method on Dset186, which increased by 6% compared

with the original method. Feature selection methods also achieved an

improvement on F-Measure and MCC, which is an increase by 1.1%

and 6.8%, respectively, from 0.773 and 0.498 of the original method

to 0.784 and 0.584 of MDS on Dset186. The ACC achieved 77.1%

and 77.7% with the MDS method on Dtestset72 and PDBtestset164,

which increases by 4% and 5.7% respectively compared with the ori-

ginal method. The F-measure and MCC also achieved the highest val-

ues with the MDS method on the independent test sets. In conclusion,

MDS, as a global algorithm that utilizes the similarity between pairs

of samples, is more reliable than local feature selection methods, since

it had the most significant effect on the three datasets. The purpose is

to use this information to construct a suitable low-dimensional space

so that the distance between the samples in this space and the similar-

ity between the samples in the high-dimensional space are as consist-

ent as possible. The result showcased that the importance of feature

selection in reducing the computational complexity and feature redun-

dancy and improving the prediction performance.

3.5 Performance comparisons with other methods
To evaluate the prediction performance of the EL-SMURF method,

its results were compared with NB (Supplementary Method

Illustration Si 1), SVM (Supplementary Method Illustration Si 2)

and RF (Supplementary Method Illustration Si 3) on the three data-

sets (Supplementary Tables S3–S5). To compare the robustness of

the prediction model under different classifiers, the ROC curve of

NB, SVM, RF classifiers was plotted on the three datasets

(Supplementary Figs S3–S5). We also planned to compare our classi-

fication method with seven others such as SPRINGS (Singh et al.,

2014), PSIVER (Murakami and Mizuguchi, 2010), SPPIDER

(Porollo and Meller, 2007), CRF (Wei et al., 2015), DC-RF-RUS-RF

(Liu et al., 2016), LORIS (Dhole et al., 2014) and SSWRF (Wei

et al., 2016), which have solved the imbalance problem in different

evolution index. Due to the unavailability of the source code of

SPRINGS and SPPIDER were and the evolution index on Dset186

are not offered, the comparison was only carried among the rest six

methods on Dset186 (Fig. 3B).

The results performance (Fig. 3B) demonstrated that EL-SMURF

performed the best for almost all the indexes among three datasets

only except the Se which was slightly lower than the performance of

SPPIDER in PDBtestset164. Specifically, on Dset186, the ACC

index of EL-SMURF reached the maximum 79.1%, which is much

higher than the other five methods. Meanwhile, Sp, Se, Pr, F-meas-

ure and MCC also reached the highest by the EL-SMURF on this

dataset. On the independent validation Dtestset72, the ACC index

of EL-SMURF achieved 77.1%, which is 6.2% higher than the se-

cond highest CRF method with 70.6%. Compared with the other

seven methods in F-measure and MCC, EL-SMURF achieved 0.775

and 0.542, which means the F-measure and MCC have been signifi-

cantly improved 33.5–53.4% and 19.1–46.5%, respectively. For the

independent validation dataset PDBtestset164, every index has a

noticeable improvement by EL-SMURF. The ACC index had an in-

crease of 6.1%% from 71.6% of SPPIDER to 77.7% of EL-

SMURF. F-measure and MCC achieved the highest, respectively,

0.782 and 0.554 by EL-SMURF. Detailed results can be found in

Supplementary Tables S6–S8.

Fig. 2. Comparison of feature fusion, PSSM-SPF and RER methods on three datasets. (A) The ROC curves on Dset186. (B) The ROC curves on Dtestset72. (C) The

ROC curves on PDBtestset164

EL-SMURF 2399

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty995#supplementary-data


According to the classification effect of the above three datasets,

the proposed EL-SMURF method achieved better prediction accur-

acy than other methods in the training dataset Dset186, and the two

independent validation sets Dtestset72 and PDBtestset164. The

above results fully demonstrated that the prediction model con-

structed in this study can significantly improve the accuracy of PPI

sites prediction, with satisfactory prediction results.

4 Conclusion

With a large number of protein sequences in the public domain, the

traditional biological experiments are difficult to meet the demands

in the PPI research field. The critical challenge of bioinformatics is

to develop computational methods for efficiently and accurately

determining the structures and functions of proteins (Afolabi et al.,

2018; Lei et al., 2016, 2018; Song et al., 2017; Wang et al., 2017;

Yu et al., 2018). In this study, we presented a machine learning

method EL-SMURF to predict the PPI sites from protein sequences,

whose prediction accuracies achieve 79.1%, 77.1% and 77.7%, re-

spectively, on the datasets Dest186, Dtestset72 and PDBtestset164.

Compared with other existing methods, the results showed that EL-

SMURF can effectively improve the prediction accuracy of PPI sites.

We expect this method to be a powerful tool for researchers in bio-

informatics, proteomics and molecular biology. Although EL-

SMURF improved the accuracy of PPI sites prediction to a certain

extent, there is still a big room for improvement of prediction accur-

acy and algorithm efficiency. In the future, we will try more feature

selection methods to improve the performance of EL-SMOTE and

implement deep learning for the PPI sites identification.
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