
Building large updatable colored de Bruijn

graphs via merging

Martin D. Muggli 1,*, Bahar Alipanahi2 and Christina Boucher2,*

1Department of Computer Science, Colorado State University, Fort Collins, CO 80526, USA and 2Department of

Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32607, USA

*To whom correspondence should be addressed.

Abstract

Motivation: There exist several large genomic and metagenomic data collection efforts, including

GenomeTrakr and MetaSub, which are routinely updated with new data. To analyze such datasets,

memory-efficient methods to construct and store the colored de Bruijn graph were developed. Yet,

a problem that has not been considered is constructing the colored de Bruijn graph in a scalable

manner that allows new data to be added without reconstruction. This problem is important for

large public datasets as scalability is needed but also the ability to update the construction is also

needed.

Results: We create a method for constructing the colored de Bruijn graph for large datasets that is

based on partitioning the data into smaller datasets, building the colored de Bruijn graph using a

FM-index based representation, and succinctly merging these representations to build a single

graph. The last step, merging succinctly, is the algorithmic challenge which we solve in this article.

We refer to the resulting method as VariMerge. This construction method also allows the graph to

be updated with new data. We validate our approach and show it produces a three-fold reduction

in working space when constructing a colored de Bruijn graph for 8000 strains. Lastly, we compare

VariMerge to other competing methods—including Vari, Rainbowfish, Mantis, Bloom Filter Trie,

the method of Almodaresi et al. and Multi-BRWT—and illustrate that VariMerge is the only method

that is capable of building the colored de Bruijn graph for 16 000 strains in a manner that allows it

to be updated. Competing methods either did not scale to this large of a dataset or do not allow for

additions without reconstruction.

Availability and implementation: VariMerge is available at https://github.com/cosmo-team/cosmo/

tree/VARI-merge under GPLv3 license.

Contact: martin.muggli@colostate.edu or cboucher@cise.ufl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The money and time needed to sequence a genome have decreased

remarkably in the past decade. With this decrease has come an in-

crease in the number and rate at which sequence data are collected

for public sequencing projects. This led to the existence of

GenomeTrakr, which is a large public effort to use genome

sequencing for surveillance and detection of outbreaks of food-

borne illnesses. This effort includes over 50 000 samples, spanning

several species available through this initiative—a number that

continues to rise as datasets are continually added (Stevens et al.,

2017). Another example is illustrated by the sequencing of the

human genome. The 1000 Genomes Project Consortium (2015)

was announced in 2008 and completed in 2015, and now the

100 000 Genomes Project is well underway (Turnbull et al., 2018).

Unfortunately, methods to analyze these and other large public

datasets are limited due to their size.

Iqbal et al. (2012) presented one method for analysis of sequence

data from large populations (such as the ones described above)

which focuses on the construction of the colored de Bruijn graph.

To define the colored de Bruijn graph, we first define the traditional

de Bruijn graph and then show how it can be extended. Formally, a

de Bruijn graph constructed for a set of strings (e.g. sequence reads)

has a distinct vertex v for every unique ðk� 1Þ-mer (substring of

length k� 1) present in the strings, and a directed edge (u, v) for

every observed k-mer in the strings with ðk� 1Þ-mer prefix u and

ðk� 1Þ-mer suffix v. In the colored de Bruijn graph, the edge struc-

ture is the same as the classic structure, but now to each node

(ðk� 1Þ-mer) and edge (k-mer) is associated a list of colors

VC The Author(s) 2019. Published by Oxford University Press. i51

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i51–i60

doi: 10.1093/bioinformatics/btz350

ISMB/ECCB 2019

http://orcid.org/0000-0002-9283-0049
https://github.com/cosmo-team/cosmo/tree/VARI-merge
https://github.com/cosmo-team/cosmo/tree/VARI-merge
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz350#supplementary-data
https://academic.oup.com/

corresponding to the samples in which the node or edge label exists.

More specifically, given a set of n samples, there exists a set C of n

colors c1; c2; ::; cn where ci corresponds to sample i and all k-mers

and ðk� 1Þ-mers that are contained in sample i are colored with ci.

A bubble in this graph corresponds to an undirected cycle and is

shown to be indicative of biological variation. Iqbal et al. (2012)

show after constructing a colored de Bruijn graph, they can recover

all genetic variants in the underlying population by traversing the

graph, and finding paths with bubbles (‘bubble finding’).

A bottleneck in applying Cortex (Iqbal et al., 2012) to large

datasets lies in the amount of memory and CPU time required to

build and store the colored de Bruijn graph. Thus, Vari (Muggli

et al., 2017), Rainbowfish (Almodaresi et al., 2017), Mantis

(Almodaresi et al., 2019), the method of Karasikov et al. (2019), as

well as others, sought to overcome this limitation by building and/or

storing the colored de Bruijn graphs in a space- and time-efficient

manner. Vari was one of the first methods to build the colored de

Bruijn graph in a memory efficient manner. It extends the de Bruijn

graph construction of Bowe et al. (2012). Rainbowfish (Almodaresi

et al., 2017) was later developed. It uses Vari to build the colored de

Bruijn graph, which it further compresses by storing identical rows

in the Vari color matrix as a single row. Cortex, Vari and

Rainbowfish have bubble-calling methods that allow genetic vari-

ation between the datasets to be detected.

Mantis (Pandey et al., 2018) improves on Vari and Rainbowfish

by constructing a different data structure which is not reliant on

Vari. Most recently, the method of Almodaresi et al. (2019) was pre-

sented, which is referred to as an minimum spanning tree-based

color-class representation. This method first uses Mantis to build

the colored de Bruijn graph, which it then compresses by building

minimum spanning trees of the underlying graph and storing only

deltas between similar vectors. Both Mantis and the method of

Almodaresi et al. (2019) do not have bubble-calling procedures. We

note there exists more colored de Bruijn graph construction algo-

rithms, and give a comprehensive review in the next section.

Unfortunately, there does not exist a method to build the colored

de Bruijn graph in a manner that is scalable to large datasets and

allows for the addition of new data. This is important since one of

the original purposes of the colored de Bruijn graph was to analyze

population-level datasets—such as GenomeTrakr and 100 000

Genomes Project—which continually grow in size due to the add-

ition of new data. Existing colored de Bruijn graph methods either

cannot scale well enough to construct their data structure for large

datasets or cannot update the data structure without complete re-

construction. For example, Vari (Muggli et al., 2017), Rainbowfish

(Almodaresi et al., 2017), Mantis (Pandey et al., 2018) and the

method of Almodaresi et al. (2019) are efficient with respect to

memory and time but cannot be updated without reconstructing the

entire colored de Bruijn graph. Bloom Filter Trie (Holley et al.,

2016) and the method of Karasikov et al. (2019) allow for the add-

ition of new data but cannot scale to large datasets, as we show in

this article. Crawford et al. (2018) build a de Bruijn graph that can

be updated but restrict interest to the traditional (non-colored) de

Bruijn graph.

Here, we focus on scalable construction of the colored de Bruijn

graph in a manner that allows new data to be added without recon-

struction. One way to achieve this construction is to devise a divide-

and-conquer approach which will divide the dataset into smaller

sets, construct a succinct colored de Bruijn graph for each smaller

set, and merge these succinct colored de Bruijn graphs into progres-

sively larger graphs until a single one remains. The problem of merg-

ing succinct colored de Bruijn graphs efficiently is a challenging

problem but necessary to solve since it avoids memory, disk and

time overhead. This divide-and-conquer approach also allows the

graph to be updated. Given an additional dataset, a compressed col-

ored de Bruijn graph can be constructed for it, and then merged into

the existing (larger) compressed colored de Bruijn graph.

1.2 Our contributions
We present VariMerge which constructs a colored de Bruijn graph

for large datasets in a manner that allows new data to be added effi-

ciently. As suggested earlier, VariMerge builds through a process of

dividing the data into smaller sets, building the colored de Bruijn

graph in a RAM-efficient manner for each smaller set and merging

the resulting colored de Bruijn graphs. Each of the colored de Bruijn

graphs is stored using the FM-index in the same manner as Vari

(Muggli et al., 2017). Thus, the algorithmic challenge that we tackle

is merging the graphs in a manner that keeps them in their com-

pressed format throughout the merging process—rather than decom-

pressing, merging and compressing, which would be impractical

with respect to disk and memory usage.

We verify the correctness of our approach and the accompanied

bubble-calling algorithm by showing the colored de Bruijn graph

built via merging is bit-for-bit identical to standard construction,

and successfully identifies all bubbles in the merged graph. Next, we

demonstrate that VariMerge improves construction scalability over

Vari, reducing the running time by a third and the working space

three-fold by comparing the peak disk and memory required to build

the colored de Bruijn graph for 8000 Salmonella strains using Vari

and VariMerge.

Next, we use VariMerge to build a colored de Bruijn graph for

16 000 strains of Salmonella. This construction required 254 GB of

RAM, 2.34 TB of external memory, and �140 h of CPU time. To

contextualize these results, we compare the construction of

VariMerge with those of state-of-the-art methods, including Vari

(Muggli et al., 2017)/Rainbowfish (Almodaresi et al., 2017), Bloom

Filter Trie (Holley et al., 2016), Mantis (Pandey et al., 2018)/the

method of Almodaresi et al. (2019) and the method of Karasikov

et al. (2019), on datasets consisting of 4000, 8000 and 16 000

strains. Further, we demonstrate the ability of the graph to be

updated efficiently through VariMerge by showing a Salmonella

strain can be added to the graph in an order of magnitude faster

than its initial construction. These results demonstrate that

VariMerge is the only method that is capable of building the colored

de Bruijn graph for 16 000 strains in a manner where new data can

be added. Mantis was the only other method that was capable of

building the colored de Bruijn graph for 16 000 strains, yet it is un-

able to update the graph without reconstruction. Although the

authors suggest a dynamic update strategy in future work, no imple-

mentation is available. In addition, we note that VariMerge has sev-

eral practical advantages over Mantis—it has a bubble-calling

implementation which allows variants to be detected from the graph

and is capable of constructing the graph for any value of k up to 64.

All other methods were not scalable to 16 000 and thus, were unable

to complete construction in 150 h and using at most 4 TB of disk

space and 750 GB of memory.

2 Related works

2.1 Efficient de Bruijn graphs
Space-efficient representations of de Bruijn graphs have been heavily

researched in recent years. One of the first approaches was intro-

duced with the creation of the ABySS assembler, which stores the

i52 M.D.Muggli et al.

graph as a distributed hash table (Simpson et al., 2009). Conway

and Bromage (2011) reduced these space requirements by using a

sparse bit vector representation, which is due Okanohara and

Sadakane (2007), to represent the edges in the graph, and using rank

and select operations (to be described shortly) to traverse the edges.

Minia (Chikhi and Rizk, 2013) use a Bloom filter to store the edges,

which requires the graph to be traversed by generating all possible

outgoing edges at each node and testing their membership in the

Bloom filter. Bowe et al. (2012) develop a succinct data structure

based on the Burrows–Wheeler transform (BWT). This data struc-

ture is combined with ideas from IDBA-UD (Peng et al., 2012) in

order to create MEGAHIT (Li et al., 2015). Chikhi et al. (2014) de-

scribe a space-efficient data structure that combines the use of the

FM-index and minimizers.

2.2 Efficient colored de Bruijn graphs
As previously mentioned, Vari (Muggli et al., 2017) and

Rainbowfish (Almodaresi et al., 2017) are both space-efficient data

structures for storing the colored de Bruijn graph which each use the

structure of (Bowe et al., 2012). Muggli et al. (2017) build the com-

pressed color matrix by compressing each row using Elias-Fano

encoding. Rainbowfish (Almodaresi et al., 2017) takes as input the

color matrix of Vari and compress it by decomposing the matrix

into ‘color sets’ based on an equivalence relation and compresses

each color set individually. Thus, this method relies on the construc-

tion of Vari prior to building the sets of compatible colors. Holley

et al. (2016) introduced the Bloom Filter Trie, which is another suc-

cinct data structure for the colored de Bruijn graph. It encodes fre-

quently occurring sets of colors separate from the graph and stores a

reference to the set if the reference takes fewer bits than the set itself.

This data structure allows incremental updates of the underlying

graph. More recently, Mantis (Pandey et al., 2018) and its extension

(Almodaresi et al., 2019) improve upon Vari and Rainbowfish.

They build a compressed colored de Bruijn graph by building sets of

compatible colors (similar to Rainbowfish) but construct the com-

pressed graph directly rather than constructing it from Vari. Lastly,

the most recent method of Almodaresi et al. (2019) constructs the

colored de Bruijn graph using Mantis, which it further compresses

by careful reconstruction and compression of the color matrix.

Lastly, there are a couple of methods that construct the color

matrix in a manner that is both compressed and dynamic, which in-

clude the method of Mustafa et al. (2019) and Multi-BRWT

(Karasikov et al., 2019). These methods use a simple representation

of a de Bruijn graph where each edge (the k-mer) is stored in a hash

table. This graph representation allows it to be updated along with

the color matrix—thus, the main contribution is not the data struc-

ture used to store the graph but that used to store the color matrix.

2.3 Other related compressed data structures
Some related compressed data structures are SeqOthello (Yu et al.,

2018), SBT (Solomon and Kingsford, 2016), Split-SBT (Solomon

and Kingsford, 2018) and Allsome-SBT (Sun et al., 2017). These

methods index all k-mers or variants of k-mer indexes but do not

provide graph information. For this reason, they are frequently

applied to querying large collections of RNA-seq data but not gen-

ome assembly. Another indexing method is BIGSI (Bradley et al.,

2017), which provides graph features and can be viewed as a prob-

abilistic colored de Bruijn graph.

Two other approaches are worthy of note because they merge

the BWT of a set of strings. BWT-Merge (Sirén, 2016) is related to

our work since the data structure we construct and store is similar

to BWT. BWT-Merge merges two strings stored using BWT by using

a reverse trie of one BWT to generate queries that are then located

in the other BWT using FM-index backward search. The reverse trie

allows the common suffixes across multiple merge elements to share

the results of a single backward search step. Thus, BWT-Merge finds

the final rank of each full suffix completely, one suffix at a time.

Finally, MSBWT (Holt and McMillan, 2014) is a method which

merges the BWTs of multiple strings in a method similar to our own

except applied to strings instead of graphs. Lastly, Egidi et al.

(2019) recently improved upon the algorithm in this article. Their al-

gorithm has the same asymptotic cost as the method presented here

but is more space-efficient.

In Section 5, we compared the performance of VariMerge

against Vari (Muggli et al., 2017)/Rainbowfish (Almodaresi et al.,

2017), Bloom Filter Trie (Holley et al., 2016), Multi-BRWT

(Karasikov et al., 2019) and Mantis (Pandey et al., 2018)/the

method of Almodaresi et al. (2019). Among all mentioned methods

in this section, we chose these tools based on the following criteria:

the method should be both graph-based and non-probabilistic

(exact) for a fair comparison.

3 Preliminaries

As previously mentioned, Vari (Muggli et al., 2017) represents the

colored de Bruijn graph using BWT and VariMerge efficiently

merges de Bruijn graphs that are represented in this manner. Here,

we first define some basic notation and definitions concerning BWT,

then show how the colored de Bruijn graph can be stored using

BWT.

3.1 Basic definitions and terminology
Here, we begin with some basic definitions related to our represen-

tation. Throughout we consider a string X ¼ X½1::n� ¼
X½1�X½2� . . . X½n� of jXj ¼ n symbols drawn from the alphabet

½0::r� 1�. For i ¼ 1; . . . ; n we write X½i::n� to denote the suffix of X

length n� iþ 1, that is X½i::n� ¼ X½i�X½iþ 1� . . . X½n�. Similarly, we

write X½1::i� to denote the prefix of X length i. X½i::j� is the substring

X½i�X½iþ 1� . . . X½j� of X that starts at position i and ends at j.

The suffix array SAX of input text X is an array SA½1::n� of

length n that contains a permutation of the integers ½1::n�, where

X½SA½1�::n� � X½SA½2�::n� � � � � � X½SA½n�::n� and � denotes lexico-

graphic precedence. Next, for a string Y, we refer to the Y-interval

in the suffix array SAX as the interval SA½s::e� that contains all suf-

fixes having Y as a prefix. For a character c and a string Y, the com-

putation of cY-interval from Y-interval is called the left extension.

3.1.1 BWT and FM-index

For a string Y, we denote A as the list of Y’s characters sorted lex-

icographically by the suffixes starting at those characters. Further,

we denote B be the list of Y’s characters sorted lexicographically by

the suffixes starting immediately after those characters. Thus, if

Y½i� ¼ Y½j� then Y½i� and Y½j� have the same relative order in both

lists. This implies that if Y½i� is in position p in B then in A it is in

position

jfh : Y½h� � Y½i�gj þ jfh : L½h� ¼ Y½i�; h � pgj � 1 :

We note that the last character in Y always appears first in B. It

follows that we can recover Y from B, which is the principle of

BWT (Burrows and Wheeler, 1994).

Ferragina and Manzini (2005) showed BWT can be used for

indexing as follows. Here, we denote BWTðYÞ as the BWT array

Building large updatable colored de Bruijn graphs via merging i53

computed for Y. Hence, if we know the range BWTðYÞ½i::j� occu-

pied by characters immediately preceding occurrences of a pattern P

in Y, then we can compute the range BWTðYÞ½i0::j0� occupied by

characters immediately preceding occurrences of cP in Y, for any

character c, since

i0 ¼ jfh : A½h� � cgj þ jfh : B½h� ¼ c; h < igj
j0 ¼ jfh : A½h� � cgj þ jfh : B½h� ¼ c; h � jgj � 1 :

As can be seen above: j0 � i0 þ 1 is the number of occurrences of

cP. To recap, the FM-index for Y requires: (i) an array that stores

jfh : Y½h� � cgj for each character c and (ii) a (rank) data structure

for BWTðYÞ that returns how many times a given character occurs

up to a specific position. The latter data structure is used in back-

ward search in order to compute the left extension of a given string.

3.2 Storage of de Bruijn graphs using the BWT
We now give a brief explanation of the data structure behind Vari.

An example of this representation is shown in Supplementary Figure

S2 in Section 7. We refer the reader to Muggli et al. (2017) for a full

explanation.

Given a de Bruijn graph G ¼ ðV;EÞ, we assume each edge e 2 E

has a k-mer corresponding to it. We define the co-lexicographic

(colex) ordering of V as the lexicographic order of their reversed

ðk� 1Þ-mers. We let F be the edges in E in colex order by their end-

ing nodes, where ties are broken by their starting nodes, and let L be

the edges in E sorted colex by their starting nodes, with ties broken

by their ending nodes. We define labelðeÞ as a function that takes in

an edge e 2 E and returns the final symbol of the k-mer correspond-

ing to it.

If we are given two edges e and e0 that have the same label then

they have the same relative order in both F and L; otherwise, their

relative order in F is the same as their labels’ lexicographic order.

This means that if e is in position p in L, then in F it is in position

jfd : d 2 E; labelðdÞ � labelðeÞgj þ jfh : labelðL½h�Þ
¼ labelðeÞ; h � pgj � 1:

We let Edge� BWTðGÞ be the sequence of edge labels given the

ordering of the edges in L. Thus, we let labelðL½h�Þ be equal to

Edge� BWTðGÞ½h� for all h. We let BF be the bit vector with a 1

marking the position in F of the last incoming edge of each node,

and let BL be the bit vector with a 1 marking the position in L of the

last outgoing edge of each node. Therefore, given a character c and

the index of a node v (we note that there is no explicit stored set of

nodes. Hence, we refer to the “node index” as the position among

all nodes if sorted in colex order), we can use BL to find the interval

in L containing v’s outgoing edges and search in Edge� BWTðGÞ to

find the position of edge e labeled c. Similarly, we can find all in-

coming edges of a node v using their position in F and BF.

We annotate each bit of BF to the corresponding symbols in

Edge� BWTðGÞ. We let flags be a bit array of such annotation bits.

In practice, we store Edge� BWTðGÞ; BL and flags (rather than BF)

to store the de Bruijn graph but limit our discussion to the construc-

tion that uses BF for ease of explanation. We refer the reader to

Bowe et al. (2012) for a full explanation of flags.

We note that an important aspect of this succinct representation

of the graph is that the ðk� 1Þ-mers (nodes) and k-mers (edges) of

the de Bruijn graph G are not explicitly stored in the above represen-

tation—rather they than can be computed from this representation.

We can efficiently traverse the graph in a forward or reverse manner

and recover incoming and outgoing edges of a given node v.

Therefore, given a node v identified by its index, we can recover the

ðk� 1Þ-mer corresponding to v by traversing the graph in a back-

ward direction ðk� 1Þ times starting from v. See Supplementary

Section 8 for more details. This also illustrates the necessity of add-

ing extra nodes and edges to the graph, which we refer to as dummy

nodes and edges. In order to ensure there is a directed path of length

at least k� 1 to each original node, we augment the graph with add-

itional nodes (and edges) so that each new node has a ðk� 1Þ-mer

that is prefixed by one or more copies of a special symbol $ not in

the alphabet and lexicographically strictly less than all others. When

new nodes are added, we are assured that the node corresponding to

$
k�1

is always first in colex order and has no incoming edges.

Lastly, we augment the graph in a similar manner by adding extra

outgoing edges, whose k-mer ends in $, doing so for each original

node with no outgoing edge.

3.2.1 Storage of colors

Given a multiset G ¼ fG1; . . . ;Gtg of individual de Bruijn graphs,

we set G to be the union of those individual graphs and build the

previously-described representation for G. We also build and store a

2D binary array C in which C½i; j� indicates whether the ith edge in

G is present in the jth individual de Bruijn graph.

4 Methods

In this section, we begin by describing a naive merge algorithm,

which will motivate the necessity of the succinct algorithm. In the

description of both algorithms, we describe how to merge two-col-

ored de Bruijn graphs but note that it generalizes to an arbitrary

number of graphs. Hence, we assume that we have two de Bruijn

graphs G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ as input, which are stored

as Edge� BWTðG1Þ; BL1; BF1, and C1 as well as

Edge� BWTðG2Þ; BL2; BF2, and C2, respectively. And we output

the merged graph GM ¼ ðVM;EMÞ as Edge� BWTðGÞM; BLM; BFM,

and CM. An illustration of G1, G2, GM and the corresponding data

structures is given in Figure 1.

4.1 A naive merge algorithm
We recall from Section 3 that the edges (k-mers) of G1 and G2 can

be computed from the succinct representation. We denote these k-

mers for G1, G2 as L1 and L2, respectively. For example, if we want

to reconstruct the k-mer AGAGAGTTA contained in G1 which is

stored as A in Edge� BWTðG1Þ, we need to backward navigate in

G1 from the edge labeled A through k – 1 predecessor edges (T, T,

G,. . .), and concatenate the abbreviated characters encountered dur-

ing this backward navigation in reverse order. Thus, a naive merging

algorithm would reconstruct L1 and L2 then merge them, which can

be trivially given they are in sorted (colex) order. This algorithm

requires explicitly building L1; L2, and the merged list. Thus, it has

a significant memory footprint. See Supplementary Algorithm S3 in

Section 9 for the details of this naive merge algorithm.

4.2 The succinct merge algorithm
Before we give a detailed explanation of our succinct merge algo-

rithm, we consider the problem of merging two sorted lists of strings

with the constraint that we can only examine a single character

from each string at a time. We can solve this problem with a divide

and conquer approach. First, we group all the strings in each list by

their first character. This partially solves the problem, as we know

all the strings in the first group from each list must occur in the out-

put before all the strings in the second group in each list and so on.

Thus, the problem is now reduced to merging the strings in the first

i54 M.D.Muggli et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz350#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz350#supplementary-data

group, followed by merging the strings in the second group and so

on. Each of these merges can be addressed by again grouping the ele-

ments (i.e. subgroups of the initial groups) by examining the second

character of each string. We can apply this step recursively until all

characters of each string have been examined. We now draw the

reader’s attention to the fact that our succinct colored de Bruijn

graph representation is a space-efficient representation of the list of

sorted k-mers.

4.2.1 Overview of the algorithm

We now return to the problem of merging succinct colored de Bruijn

graphs. The algorithm consists of two steps: (i) a planning step

which plans the merge and (ii) an executing step which executes the

merge. Thus, the planning step outputs a merge plan, which consists

of lists of non-overlapping intervals for L1 and L2. These lists detail

how to construct the data structure for the merged graph from the

succinct data structures for G1 and G2.

We refer to Edge� BWT and C as the primary components of

the data structure and BF and BL as secondary components. We de-

scribe how to merge the primary components, and leave the details

of how to merge the secondary components to Supplementary

Section 12.

4.2.2 The planning step

Formally, we denote the merge plan as P1 ¼ f½0; p1
1�; . . . ;

½p1
i ; jL1j � 1�g, where each p1

1; . . . ; p1
i is an index in L1, and

(a) (b)

(c)

(d)

Fig. 1. (a) A colored de Bruijn graph consisting of two individual graphs, whose edges are shown in red and blue. The nodes are shown in purple because they

can occur in either graph. (b) A second colored de Bruijn graph, whose edges are green and yellow. Again, the nodes are shown in lime because they can occur

in either graph. (c) A colored de Bruijn graph merged from the two-colored de Bruijn graphs. (d) The nodes for all three graphs arranged in columns (red and

blue, merged, green and yellow). Each column is sorted into co-lexicographic order, with each node’s number of incoming edges shown on its left and the labels

of its outgoing edges shown on its right. Vertical alignment illustrates how the merged components (center) are copied from either the left, the right or both

Building large updatable colored de Bruijn graphs via merging i55

P2 ¼ f½0; p2
1�; . . . ; ½p2

i ; jL2j � 1�g, where each p2
1; . . . ;p2

i is an index in

L2. An overview of the planning step is given in Algorithm 1. We

first initialize P1 and P2 to be single intervals covering L1 and L2, re-

spectively (e.g. P1 ¼ f½0; jL1j � 1�g and P2 ¼ f½0; jL2j � 1�g). Next,

we revise P1 and P2 in an iterative manner k times (where k corre-

sponds to the k-mer value). At each iteration of the algorithm, a sin-

gle character of the strings in L1 and L2 is processed, and the merge

plan is revised. Thus, in order to fully describe the planning stage,

we define (i) how the characters of L1 and L2 are computed, and (ii)

how P1 and P2 are revised based on these characters. An illustration

of the merge plans is given in the Supplementary Figure S3 in

Section 10.

Computing the next character of L1 and L2. Let i denote the current

iteration of our revision of P1 and P2, where 1 � i < k. We compute

the next character of L1 and L2 using two temporary character vectors

Coli1 and Coli2, which are of length jL1j and jL2j, respectively. We

note that the ‘next’ character is the preceding character in the k-mer

since Edge� BWTðG1Þ and Edge� BWTðG2Þ only store the last

character of L1 and L2. Thus, we process the characters of L1 and L2

from right to left. Conceptually, we define these vectors as follows:

Coli1½j� ¼ L1½j�½k� i� if i<k and otherwise Coli1½j� ¼ L1½j�½k�, and

Coli2½j� ¼ L2½j�½k� i� if j<k; and otherwise Coli2½j� ¼ L2½j�½k�. Yet,

since we do not explicitly build or store L1 and L2, we must compute

Coli1 and Coli2.

We define the computation of Coli1 by describing the following

three cases. When 1 < i < k, we compute Coli1 by traversing G1 in

a forward direction from the first incoming edge of every node and

copying the character found at the ðqþ 1Þ-th position of that incom-

ing edge (again, stored in Coli�1
1) into q-th position of all outgoing

edges of that node. When i¼1, the ðqþ 1Þ-th position corresponds

to Edge� BWTðG1Þ, so Edge� BWTðG1Þ is used in place of Coli�1
1

but is otherwise identical to the previous case. Lastly, when i¼k, we

let Coli1 equal Edge� BWTðG1Þ. We compute Coli2 in an analogous

manner. An illustration of how to compute the next column of L1

and L2 is given in the Supplementary Section 11. Moreover, the

pseudocode for GetCol is shown in Supplementary Algorithm S11.

Revising P1 and P2. We revise P1 and P2 based on Coli1 and Coli2
at iteration i by considering each pair of intervals in P1 and P2, i.e.,

P1½n� and P2½n� for n ¼ 1; . . . ; jP1j, and partitioning each interval into

at most five sub-intervals. We store the list of sub-intervals of P1 and

P2 as SubP1 and SubP2. Intuitively, we create SubP1 in order to divide

P1½n� based on continuous ranges in Coli1 that have the same

character, e.g. each continuous range of A’s, C’s, G’s, T’s or $’s.

Similarly, SubP2 is used to divide P2½n�. We divide P1 by first comput-

ing the subvector of Coli1 that is covered by P1½n�, which we denote as

Coli1ðP1½n�Þ, and computing the subvector of Coli2 that is covered by

P2½n�, which we denote as Coli2ðP2½n�Þ. Next, given character c, we

populate SubP1½c� and SubP2½c� based on Coli1ðP1½n�Þ and Coli2ðP2½n�Þ
as follows: (i) we check whether c exists in either Coli1ðP1½n�Þ or

Coli2ðP1½n�Þ; (ii) if so, we add an interval to SubP1½c� covering the con-

tiguous range of c in Coli1ðP1½n�Þ (or add an empty interval if

Coli1ðP1½n�Þ lacks any instances of c), and add an interval to SubP2½c�
covering the contiguous range of c in Coli2ðP1½n�Þ (or, likewise, add an

empty interval if Coli2ðP1½n�Þ lacks any instances of c) (we are guaran-

teed by the definition of our data structure that any instances of c in

Coli1ðP1½n�Þ will be in a contiguous range, and likewise, any instances

of c in Coli2ðP1½n�Þ will also be in a contiguous range). Finally, we con-

catenate all the lists in SubP1 and SubP2 to form the revised plan P01
and P02. This revised plan P01 and P02 becomes the input P1 and P2 for

the next refinement step. Supplementary Figure S3 shows three-

merged plans, including two refined ones (green and blue). The

pseudocode for this step is given in Algorithm 2.

We crafted the method above to maintain the property described

in the following observation.

Observation 1 Let P1 be a (partial) merge plan, and P01 its refine-

ment by our merge algorithm, where ‘1; ::; ‘n are the elements in L1

Algorithm 1 . The planning step to merge G1 and G2.

P1 ð½1; jEBWTðGÞ1j�Þ
P2 ð½1; jEBWTðGÞ2j�Þ
Col1 ½�
Col2 ½�
% Iterate through ‘edge label matrix’ columns in sort prece-

dence order

for all i 2 f1::kg do

Col1 GetColði;Col1;G1Þ
Col2 GetColði;Col2;G2Þ
% RefinePlan is given in Algorithm 2.

ðP01;P
0

2Þ RefinePlanðP1;P2;Col1;Col2; iÞ
ðP1;P2Þ ðP

0

1;P
0

2Þ
end for

Algorithm 2. Revising P1 and P2

procedure Partition(W1, W2)

R0 AlphabetUsedðW1;W2Þ
SubP1 ðÞ
SubP2 ðÞ
for all c 2 R0 do

SubP1:AppendðIntervalOccupiedðc;W1ÞÞ
SubP2:AppendðIntervalOccupiedðc;W2ÞÞ

end for

return (SubP1, SubP2)

end procedure

procedure RefinePlan(P1, P2, Col1, Col2, i)

P
0

1 ðÞ
P
0

2 ðÞ
% For each interval in P1 (and P2)

for all j 2 f1::jP1jg do

%. . .extract a window from each column covered

by the interval. . .

W1 CoveredSymbolsðCol1;P1½j�Þ
W2 CoveredSymbolsðCol2;P2½j�Þ
%. . .and partitioning that window on its character

runs, forming sub-intervals.

ðSubP1; SubP2Þ PartitionðW1;W2Þ
P
0

1:ConcatenateðSubP1Þ
P
0

2:ConcatenateðSubP2Þ
end for

if i 2 f1;k� 1;k� 2g then

Si ðP
0

1;P
0

2Þ
end if

return ðP01;P
0

2Þ
end procedure

i56 M.D.Muggli et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz350#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz350#supplementary-data

that are covered by interval pi 2 P1 and m1; . . . ;mo are the elements

of L2 covered by interval qj 2 P2. The following conditions hold: (1)

jP1j ¼ jP2j and jP01j ¼ jP02j; (2) given any pair of elements where ‘a 2
pi; ‘b 2 pj and pi \ pj ¼ / there exists intervals p0i and p0j in P01 such

that p0i \ p0j ¼ / and ‘a 2 p0i; ‘b 2 p0j; and lastly, (3) given an interval

pi in P1 and the subsets of the alphabet used r1 2 ‘1; ::; ‘n and

r2 2 m1; . . . ;mo, then pi will be partitioned into jSubP1j ¼ jr1 [r2j
subintervals in P01.

We defined this observation for P1 but note that an analogous

observation exists for P2.

4.2.3 The execution step

We execute the merge plan by combining the elements of Edge�
BWTðG1Þ that are covered by an interval in P1 with the elements of

Edge� BWTðG2Þ that are covered by the same interval in P2 into a

single element in Edge� BWTðGMÞ. We note that when all charac-

ters of each k-mer in L1 and L2 have been computed and accounted

for, each interval in P1 (and P2) will cover either 0 or 1 element of

L1 (and L2) and the number of intervals in P1 (equivalently P2) will

be equal to jEdge� BWTðGMÞj. Thus, we consider and merge each

pair of intervals of P1 and P2 in an iterative manner. We let ðp1
i ; p

2
i Þ

as the i-th pair of intervals. We concatenate the next character of

Edge� BWTðG1Þ onto the end of Edge� BWTðGMÞ if jp1
i j ¼ 1. If

jp2
i j ¼ 1 then we dismiss the next character of Edge� BWTðG2Þ

since it corresponds to the edge that was just added. Lastly, if jp1
i j ¼

0 and jp2
i j ¼ 1, we copy the next character from Edge� BWTðG2Þ

onto the end of Edge� BWTðGMÞ.
We merge the color matrices in an identical manner by copying

elements of C1 and C2 to CM. Again, we iterate through the plan by

considering each pair of intervals. If jp1
i j ¼ 1 and jp2

i j ¼ 1 then we

concatenate the corresponding rows of C1 and C2 to form a new

row that is added to CM. If only one of p1
i or p2

i is non-zero then the

corresponding row of C1 or C2 is copied to CM with the other ele-

ments of the new row set to 0. Lastly, we note that we discussed the

planning and execution steps of merging the primary components.

As previously mentioned, details about merging the secondary com-

ponents are given in the Supplementary Section 12.

The following theorem demonstrates the efficiency of our ap-

proach. The proof of the following theorem is found in the

Supplementary Section 13.

Theorem 1. Given two colored de Bruijn graphs G1 ¼ ðV1;E1Þ
and G2 ¼ ðV2;E2Þ constructed for k, where jE1j � jE2j. It follows

that our merge algorithm constructs the merged colored de Bruijn

graph GM in OðjE1j �maxðk; tÞÞ-time, where t is the number of col-

ors in GM.

5 Results

In this section, we show the correctness of our method, the reduction

in the resources used to build a colored de Bruijn graph by merging,

and the comparison between state-of-the-art methods for building

colored de Bruijn graphs. We ran all performance experiments on a

machine with two Xeon E5-2640 v4 chips, each having 10 2.4 GHz

cores. The system contains 755 GB of RAM and two ZFS RAID

pools of nine disk each for storage. We report wall clock time and

maximum resident set size from Linux.

5.1 Validation on Escherichia coli
In order to validate the correctness of our approach, we generated

two succinct colored de Bruijn graphs with two sets of three

Escherichia coli (E.coli) incomplete assemblies each, merged them

to a single six-color graph, and verified its equivalence to a six-color

Table 1. Breakdown of the memory, disk and time usage of VariMerge to build the colored de Bruijn graph for 8000 strains

Input stats de Bruijn graph Color matrix Combined requirements

Program and

dataset

k-mers Colors RAM

(GB)

Time Size

(GB)

RAM

(GB)

Time Size

(GB)

RAM

(GB)

External

memory (TB)

Time Size

(GB)

Vari(4A) 1.1 B 4000 136 8 h 46 min 0.31 52 1 h 39 min 51.2 136 1 10 h 25 min 51

Vari(4B) 1.5 B 4000 137 10 h 40 min 0.52 54 2 h 22 min 52.5 137 1.5 13 h 2 min 53

Merge(4A, 4B) 2.4 B 8000 10 2 h 1 min 0.63 117 1 h 2 min 106 117 0 3 h 3 min 106

VariMerge 2.4 8000 137 21 h 27 min 0.63 117 5 h 3 min 117 137 1.5 26 h 30 min 106

Note: The VariMerge method consists of running Vari on subsets of the population (4A and 4B) and then merging the results with our proposed merge algo-

rithm (denoted Merge here). We list the resources used for both individual runs of Vari, the Merge required and the combined resources. The combined resources

consist of the total time and maximum space used across all three components of VariMerge used in this dataset. No external memory is needed for merging itself

so ‘0’ is in the external memory column for Merge.

Table 2. Breakdown of the peak memory, peak disk and time required by VariMerge to build the colored de Bruijn graph for 16 000 strains

of Salmonella

Input stats de Bruijn graph Color matrix Combined requirements

Program and

dataset

k-mers

(B)

Colors RAM

(GB)

Time Size

(GB)

RAM

(GB)

Time Size

(GB)

RAM

(GB)

External

memory (TB)

Time Size (GB)

Vari(4C) 1.7 B 4000 135 10 h 53 min 0.46 53 2 h 34 min 51.8 135 1.6 13 h 27 min 52

Vari(4D) 2.4 B 4000 137 14 h 35 min 0.67 59 3 h 37 min 57.9 137 2.34 18 h 12 min 59

Merge(4C, 4D) 3.8 B 8000 17 2 h 59 min 1.00 118 57 min 107 118 0 3 h 56 min 108

Merge(8AB, 8CD) 5.8 B 16 000 25 4 h 53 min 1.60 254 2 h 10 min 232 254 0 7 h 3 min 233

VariMerge 5.8 B 16 000 137 54 h 47 min 1.60 254 14 h 21 min 232 254 2.34 69 h 8 min 233

Note: We note VariMerge includes the resources required of the two 4000 runs of Vari (i.e. Vari(4A) and Vari(4B)) and the merge run (i.e. Merge(4A, 4B))

from Table 1. No extra external memory is needed for merging so ‘0’ is in the external memory column for Merge.

Building large updatable colored de Bruijn graphs via merging i57

graph built from scratch using Vari. We obtained the six sub-strains

of E.coli K-12 from NCBI. Each of the genomes contained approxi-

mately 4.6 million base pairs and had a median GC content of

49.9%. This experiment tests that the merged colored de Bruijn

graph built by VariMerge is equivalent to that produced by building

the graph without merging (i.e. with Vari alone) even in the presence

of any redundant dummy edges. We tested equivalence by running a

bubble-calling algorithm on both six-color graphs and found the

identical set of bubbles between them. Further, we found VariMerge

produced files on disk that were bit-for-bit identical to those gener-

ated by Vari when consuming complete assemblies, demonstrating

the merge algorithm perfectly merges the succinct source graphs. We

leave additional details of this validation to the Supplementary (see

Supplementary Table S4).

5.2 Demonstration of large-scale construction and

incremental updates
We downloaded the sequence data from for 16 000 Salmonella strains

(NCBI BioProject PRJNA18384), assembled them individually with

IDBA, then divided them into four sets of 4000 strains, which we label

4A, 4B, 4C and 4D. From these datasets we construct a colored de

Bruijn graph for 8000 strains, to demonstrate the efficiency of the

merge process, and 16 000 strains, to demonstrate scalability. The

exact accessions for each dataset are available in our repository.

In order to measure the effectiveness of VariMerge for the pro-

posed divide-and-conquer method of building large graphs, we con-

structed the colored de Bruijn graph using Vari for a set of 4000

salmonella assemblies (4A). This took 8 h 46 min, 1 TB of external

memory and 136 GB of RAM to build the graph for 4000 strains.

We then built a graph for a second set of 4000 assemblies (4B) using

10 h 40 min, 1.5 TB of external memory and 137 GB of RAM. We

merged these two 4000 sample graphs (i.e. 8AB) using our proposed

algorithm in 2 h 1 min, no external memory and 10 GB of RAM. ‘0’

is shown in the external memory column of Table 1 for merge since

no external memory is ever used for merging. Thus the VariMerge

method required a combined 137 GB of RAM, 26 h 30 min of run-

time to produce the graph for 8000 strains. We denote this graph

with 8000 strains as 8AB. In contrast, running Vari on the same

8000 strains required 37 h 27 min, 4.6 TB of external memory and

271 GB of RAM. Thus VariMerge reduced runtime by 11 h, reduc-

ing RAM requirements to 134 GB and reducing external memory

requirements by 3.1 TB.

We further used this facility to merge two more 4000 color

graphs (i.e. 4Cþ4D) (Table 2). We denote the resulting graph as

8CD. We then merged this 8000 sample graph with the aforemen-

tioned 8000 color graph to produce a succinct colored de Bruijn

graph of 16 000 samples (i.e. 8AB þ 8CD).

In order to measure the effectiveness of VariMerge for incremen-

tal additions to a graph that holds a growing population of genomes,

we started with the colored de Bruijn graph of 16 000 salmonella

assemblies. We then constructed a second graph for a singleton set

of just one additional assembly. Next, we ran our proposed merge

algorithm on these two graphs. VariMerge took 69 h 8 min, 2.34 TB

of external memory and 254 GB of RAM to build the graph for

16 000 strains. To build a single colored de Bruijn graph for an add-

itional strain, Vari took 7 s, 460 MB of external memory and 2.3

GB of RAM. Our proposed merge algorithm took 7 h 9 min, no ex-

ternal memory and 254 GB of RAM to merge the 16 000 color

graph with the one color graph. This is an order of magnitude faster

than the almost 70 h it would take to build the same 16 001 color

graph from scratch.

This experiment also reveals that increasing the number of divi-

sions (below a reasonable threshold) will lower the time, memory

and external memory—with the tradeoff being the practical chal-

lenge of dividing and merging the data. Nonetheless, this is one of

the benefits of VariMerge, as smaller and smaller memory and exter-

nal memory could be used by making further divisions of the data.

5.3 Comparison to existing methods
We compare our method to the existing space- and memory-efficient

colored de Bruijn graphs. To accomplish this, we ran Bloom Filter

Trie (Holley et al., 2016), Vari (Muggli et al., 2017)/Rainbowfish

(Almodaresi et al., 2017), Mantis (Pandey et al., 2018)/the method

of Almodaresi et al. (2019) and Multi-BRWT (Karasikov et al.,

2019). The peak RAM use and running time required by the meth-

ods to construct a colored de Bruijn graph for 4000, 8000 and

Table 3. Comparison between space-efficient colored de Bruijn graph construction methods for 4000, 8000 and 16 000 Salmonella strains

using VariMerge versus competing methods

Dataset No. of k-mers (Billion) Program Output size (GB) Time RAM (GB)

4000 1.1 Vari/Rainbowfish 51 10 h 25 min 136

Bloom Filter Trie 99 51 h 42 min 120

Multi-BRWT 1.3 TB 42 h 23 min 156

Mantis/Method of Almodaresi et al. 36 5 h 58 min 313

VariMerge 51 10 h 25 min 136

8000 2.4 Vari/Rainbowfish 114 37 h 27 min 271

Bloom Filter Trie N/A N/A N/A

Multi-BRWT N/A N/A N/A

Mantis/Method of Almodaresi et al. 38 13 h 37 min 370

VariMerge 106 26 h 30 min 137

16 000 5.8 Vari/Rainbowfish N/A N/A N/A

Bloom Filter Trie N/A N/A N/A

Multi-BRWT N/A N/A N/A

Mantis/method of Almodaresi et al. 256 36 h 12 min 316

VariMerge 233 69 h 8 min 254

Note: We report N/A for any method that exceeded 140 CPU hours, 4 TB of disk space and 750 GB of memory. We anticipate add-on methods to compress better

but will still consume the resources shown for their base method because they reuse base the method’s output. We measured RAM as max resident set size. Mantis

authors noted their use of memory mapped I/O means this reveals opportunistic consumption and not necessarily requirement for their program. To the best of our

knowledge, no extra external memory is needed for Bloom Filter Trie, Multi-BRWT, Mantis and the method of Almodaresi et al., so it is omitted from the table.

i58 M.D.Muggli et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz350#supplementary-data

16 000 strains is shown in Table 3. In addition, Table 3 illustrates

the output size of all the methods. We note that all methods were

run with default parameters and k¼32, except from Bloom Filter

Trie which can only work with k values which are multiples of 9,

hence we ran it with k¼27. We ran Mantis with their ‘log-slot’ par-

ameter set to 33 and 36 for the experiments using 4000 and 8000

strains, and 16 000 strains, respectively. All methods are exact, col-

ored de Bruijn graph construction methods. Since Rainbowfish first

runs Vari and then compresses, the peak RAM, peak disk usage, and

time will be at least that of Vari for construction; this is why they

are shown together in Table 3. Similarly, we report peak RAM,

peak disk usage and time of Mantis together with that of the method

of Almodaresi et al. (2019) because the latter method first runs

Mantis and then compresses the output of Mantis. These points are

also discussed in the related work. Again, because we are interested

in construction (not exclusively compression) we are interested in

peak RAM and external memory usage.

We report N/A in Table 3 for any method that exceeded 140 h,

and/or our RAM and external memory quota. We had 4 TB of

disk space for each method (20 TB in total) and 750 GB of RAM.

All methods performed reasonably well on 4000 strains. Bloom

Filter Trie required the most time, and Multi-BRWT required the

most space. This was unsurprising as Multi-BRWT focuses on

compression of the color matrix and not the graph (see Related

Work). Mantis (and its successor (Almodaresi et al., 2019))

required the largest peak memory (313 GB). With 8000 strains

Bloom Filter Trie and Multi-BRWT required more than 140 h,

Vari and Rainbowfish were able to run within the given con-

straints but had the longest running time (over 37 h). Mantis was

more efficient with respect to final output (38 GB versus 106 GB)

and VariMerge was more efficient with respect to RAM consumed

(137 GB versus 370 GB). Lastly, only Mantis and VariMerge were

capable of building the colored de Bruijn graph with 16 000

strains. For 16 000 strains our method had improved output size

and RAM usage and Mantis had improved running time. Yet, as

shown in the previous section, VariMerge allows the graph to be

updated with new data via merging. Mantis (as well as Vari and

Rainbowfish) provide no option to update the graph without

reconstruction.

Lastly, VariMerge has several practical advantages over compet-

ing methods. It allows large values of k, i.e. k � 64, and allows for

efficient queries of the form: given a color c, return all k-mers that

have that color. Competing methods cannot perform such queries

without the input files or cannot scale to large datasets. We discuss

this more in the conclusions.

6 Conclusion

In this article, we develop a method to build the colored de Bruijn

graph by merging smaller graphs in a resource-efficient manner.

This allows the colored de Bruijn graph to be constructed for large

datasets and provides an efficient means to update it. As previously

mentioned, resource use can be optimized by partitioning the data

into smaller, carefully selected datasets. We leave how to optimize

the construction via data partitioning size as future work.

Lastly, we mention that the underlying graph data structure of

VariMerge has some advantages over competing methods. First,

VariMerge allows arbitrary k up to 64 while other tools are more

restricted; BFT requires k to be multiples of 9 and Mantis only sup-

ports values of k up to 32. Second, the node labels can be recovered

from the index alone, allowing the following queries to be

performed: given a particular color c, what k-mers have color c.

These queries can be accomplished by VariMerge scanning a par-

ticular column of the color matrix and can be used for comparing

samples, i.e. which k-mers are shared and which differ between sam-

ple x and sample y. While the Mantis authors have suggested an ap-

proach to supporting this query, it is unimplemented and requires

the input files, increasing the size of the data structure.

Funding

This work was supported by the National Science Foundation (NSF) IIS

[Grant No. 1618814 to C.B.] and National Institute of Allergy and Infectious

Diseases Institute of the National Institutes of Health [Grant No.

R01AI141810-01 to C.B.].

Conflict of Interest: none declared.

References

Almodaresi,F. et al. (2017) Rainbowfish: a succinct colored de Bruijn graph

representation. In: 17th International Workshop on Algorithms in

Bioinformatics (WABI 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, pp. 251–265.

Almodaresi,F. et al. (2019) An efficient, scalable and exact representation of

high-dimensional color information enabled via de Bruijn graph search.

BioRxiv, doi: 10.1101/464222.

Bowe,A. et al. (2012) Succinct de Bruijn graphs. In: International Workshop

on Algorithms in Bioinformatics. Springer, pp. 225–235.

Bradley,P. et al. (2017) Real-time search of all bacterial and viral genomic

data. BioRxiv. doi: 10.1101/234955.

Burrows,M., and Wheeler,D. (1994) A block sorting lossless data compression

algorithm. Technical Report 124. Digital Equipment Corporation, Palo

Alto, CA.

Chikhi,R., and Rizk,G. (2013) Space-efficient and exact de

Bruijn graph representation based on a Bloom filter. Algorithms Mol. Biol.,

8, 22.

Chikhi,R. et al. (2014) On the representation of de Bruijn graphs. In:

International Conference on Research in Computational Molecular

Biology. Springer, pp. 35–55.

Conway,T., and Bromage,A. (2011) Succinct data structures for assembling

large genomes. Bioinformatics, 27, 479–486.

Crawford,V. et al. (2018) Practical dynamic de Bruijn graphs. Bioinformatics,

34, 4189–4195.

Egidi,L. et al. (2019) Space-efficient merging of succinct de bruijn graphs.

arXiv: 1902.02889.

Ferragina,P., and Manzini,G. (2005) Indexing compressed text. JACM, 52,

552–581.

Holley,G. et al. (2016) Bloom filter trie–a data structure for pan-genome stor-

age. Algorithm Mol. Biol., 11, 217–230.

Holt,J., and McMillan,L. (2014) Merging of multi-string BWTs with applica-

tions. Bioinformatics, 30, 3524–3531.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de Bruijn graphs. Nat. Genet., 44, 226–232.

Karasikov,M. et al. (2019) Sparse binary relation representations for genome

graph annotation. BioRxiv, doi: 10.1101/468512.

Li,D. et al. (2015) MEGAHIT: an ultra-fast single-node solution for large and

complex metagenomics assembly via succinct de Bruijn graph.

Bioinformatics, 31, 1674–1676.

Muggli,M. et al. (2017) Succinct colored de Bruijn graphs. Bioinformatics, 33,

3181–3187.

Mustafa,H. et al. (2019) Dynamic compression schemes for graph coloring.

Bioinformatics, 35, 407–414.

Okanohara,D., and Sadakane,K. (2007) Practical entropy-compressed rank/

select dictionary. In: Proceedings of the Meeting on Algorithm Engineering

& Expermiments. Society for Industrial and Applied Mathematics, pp.

60–70.

Pandey,P. et al. (2018) Mantis: a fast, small, and exact large-scale sequence--

search index. Cell, 7, 201–207.

Building large updatable colored de Bruijn graphs via merging i59

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and meta-

genomic sequencing data with highly uneven depth. Bioinformatics, 28,

1420–1428.

Simpson,J. et al. (2009) ABySS: a parallel assembler for short read sequence

data. Genome Res., 19, 1117–1123.

Sirén,J. (2016) Burrows-Wheeler transform for terabases. In: 2016 Data

Compression Conference (DCC). IEEE, pp. 211–220.

Solomon,B., and Kingsford,C. (2016) Fast search of thousands of short-read

sequencing experiments. Nat. Biotechnol., 34, 300–302.

Solomon,B., and Kingsford,C. (2018) Improved search of large transcriptomic

sequencing databases using split sequence bloom trees. J. Comput. Biol., 25,

755–765.

Stevens,E. et al. (2017) The public health impact of a publically available, en-

vironmental database of microbial genomes. Front. Microbiol., 8, 808.

Sun,C. et al. (2017) AllSome sequence bloom trees. In: 21st Annual

International Conference on Research in Computational Molecular

Biology, Vol. 10229. Springer-Verlag, , pp. 272–286.

The 1000 Genomes Project Consortium. (2015) A global reference for human

genetic variation. Nature, 526, 68–74.

Turnbull,C. et al. (2018) The 100,000 genomes project: bringing whole gen-

ome sequencing to the NHS. BMJ, 361, k1687.

Yu,Y. et al. (2018) SeqOthello: querying RNA-seq experiments at scale.

Genome Biol., 19, 167.

i60 M.D.Muggli et al.

	btz350-TF1
	btz350-TF2
	btz350-TF3

