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Abstract

Motivation: Since 2017, an increasing amount of attention has been paid to the supervised deep

learning-based macromolecule in situ structural classification (i.e. subtomogram classification) in

cellular electron cryo-tomography (CECT) due to the substantially higher scalability of deep learn-

ing. However, the success of such supervised approach relies heavily on the availability of large

amounts of labeled training data. For CECT, creating valid training data from the same data source

as prediction data is usually laborious and computationally intensive. It would be beneficial to have

training data from a separate data source where the annotation is readily available or can be per-

formed in a high-throughput fashion. However, the cross data source prediction is often biased

due to the different image intensity distributions (a.k.a. domain shift).

Results: We adapt a deep learning-based adversarial domain adaptation (3D-ADA) method to time-

ly address the domain shift problem in CECT data analysis. 3D-ADA first uses a source domain fea-

ture extractor to extract discriminative features from the training data as the input to a classifier.

Then it adversarially trains a target domain feature extractor to reduce the distribution differences

of the extracted features between training and prediction data. As a result, the same classifier can

be directly applied to the prediction data. We tested 3D-ADA on both experimental and realistically

simulated subtomogram datasets under different imaging conditions. 3D-ADA stably improved the

cross data source prediction, as well as outperformed two popular domain adaptation methods.

Furthermore, we demonstrate that 3D-ADA can improve cross data source recovery of novel

macromolecular structures.

Availability and implementation: https://github.com/xulabs/projects

Contact: mxu1@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nearly every major process in a cell is orchestrated by the interplay

of macromolecules, which often coordinate their actions as func-

tional modules in biochemical pathways. Capturing the information

on the native macromolecular structures and spatial organizations

within single cells is necessary for the accurate interpretation of cel-

lular processes. However, such information has been extremely diffi-

cult to acquire due to the lack of suitable techniques. Only recently,

the advancement of the cellular electron cryo-tomography (CECT)

3D imaging technique has enabled the visualization of the sub-

cellular structural organization in near-native state at sub-molecular

resolution (Lu�ci�c et al., 2013). The advance of automatic image ac-

quisition has made it possible for an electron microscope to capture

hundreds of tomograms within several days, containing millions of

structurally highly heterogeneous macromolecules (Oikonomou and

Jensen, 2017). Each macromolecule is represented as a subtomo-

gram, which is a cubic sub-volume enclosing the macromolecule

extracted from a tomogram.
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Due to the structural complexity of macromolecules and imaging

limitations (missing wedge effects) in CECT data, the systematic

macromolecule structural recovery is very challenging. Efficient and

accurate structural classification of at least millions of highly hetero-

geneous macromolecules is a key step for such structural recovery.

Since 2017, a number of convolutional neural networks (CNN)-

based supervised subtomogram classification methods have been

proposed (Che et al., 2018; Guo et al., 2018a; Xu et al., 2017).

CNN has also been applied to other tomogram analysis tasks such

as structural segmentation (Chen et al., 2017; Liu et al., 2018a, b),

pattern mining (Zeng et al., 2018) and organelle detection (Li et al.,

2019). Although deep learning-based subtomogram classification

significantly outperformed existing high-throughput coarse classifi-

cation methods in terms of speed and accuracy, they rely heavily on

large amounts of properly labeled subtomograms.

In principle, it is feasible to label the training data through tech-

niques such as template search (Beck et al., 2009; Kunz et al., 2015),

unsupervised reference-free subtomogram classification (Bartesaghi

et al., 2008; Chen et al., 2014; Xu et al., 2012), correlated super-

resolution imaging (Chang et al., 2014; Johnson et al., 2015) or

structural pattern mining (Xu et al., 2019). However, there are three

main bottlenecks in the labeling process: (i) the aforementioned

techniques are often computationally intensive, which may take

weeks to complete, (ii) a substantial amount of manual quality con-

trol, including visual inspection and selection, is needed and (iii)

most importantly, for each prediction dataset, a classification model

needs to be trained using a valid training dataset from the same data

source as the prediction dataset. Instead of preparing training data

from the same data source, it would be beneficial to obtain training

data from an independent data source preferably with labels readily

available or can be prepared in an automatic and high-throughput

fashion. Several independent data sources exist: (i) the electron cryo-

tomograms of purified macromolecular complexes in which popula-

tions of macromolecules are already classified through biochemical

means, (ii) simulated datasets, which provide an unlimited amount

of data with fully automatic labeling and (iii) previously manually

annotated datasets.

The main issue of using training data from an independent source

is that it leads to a distribution difference between training data and

prediction data. In other words, subtomograms containing the same

structure but captured from separate data sources often have different

image intensity distributions, which depends spatially on the relative

3D location on the macromolecular structure. For example, as in

Figure 3, the same GroEL or CPSase under different imaging condi-

tions appear differently. A classification model generally assumes the

data distribution of training and prediction data to be identical

(Tommasi et al., 2016). The differences between training and predic-

tion data distributions can severely bias the model prediction. This

phenomenon is termed domain shift, and is defined to be differences

between training and prediction data in the joint distribution of input

and output variables (Quionero-Candela et al., 2009).

Formally, a domain D consists of two components, data (a data-

set of subtomograms in our case) and a marginal probability distri-

bution that the data follows, denoted as PðxÞ. We refer to the

dataset which labeled data are abundant as the source domain Ds,

and the dataset which labeled data are not available or very little as

the target domain Dt. For our CECT structural classification, the

training subtomograms are sampled from the source domain and the

prediction subtomograms are sampled from the target domain.

In this paper, we focus on a typical case of domain shift called

covariate shift (Patel et al., 2015). Let x denote a subtomogram and

y denote the class label of x. Covariate shift occurs in prediction

problems when Px�Ds
ðyjxÞ ¼ Px�Dt

ðyjxÞ but Px�Ds
ðxÞ 6¼ Px�Dt

ðxÞ.
In other words, the conditional distribution of class labels y given

subtomograms x is the same between source and target data, but the

image intensity distributions between training and prediction subto-

mograms differ. This difference is primarily caused by different ex-

perimental conditions, such as resolution, defocus, spherical

aberration and signal-to-noise ratio (SNR) (Fig. 3). Covariate shift

has to be taken into account for cross data source classification.

We adapt an adversarial learning approach for domain adaptation

(from Ganin et al., 2016; Tzeng et al., 2017). The method is named

adversarial domain adaptation (3D-ADA) and is shown in Figure 1.

First, we train the combination of a source feature extractor Fs and a

subtomogram classifier C using labeled subtomograms from the

source domain Ds. Next, we train a target feature extractor Ft and

map the target domain features into a latent space with the similar

distribution as the source domain features, using both labeled subto-

mograms sampled from the source domain Ds and unlabeled subto-

mograms sampled from the target domain Dt. The mapping Ft is

learned using a domain discriminator D with an adversarial loss

[Equations (1) and (2)], which minimizes the domain discrepancy.

The training is conducted in an adversarial fashion: (i) the training of

Ft aims to fool D so that D cannot discriminate features produced by

Ft from features produced by Fs (Equation (1)), (ii) the training of D

aims to maximally discriminate features produced by Ft from features

produced by Fs (Equation (2)). This learning approach is inspired by

the Generative Adversarial Network (GAN) (Goodfellow et al.,

2014), which aims to confuse the discriminator D by generating

images indistinguishable from the real ones. Different from GAN,

3D-ADA consists of feature extractors Fs and Ft, which are CNNs

that map the input subtomograms into a low-dimensional feature

space that are discriminative to the structural classes of the subtomo-

grams. During the final classification, the trained target feature ex-

tractor Ft is used to extract features from subtomograms in the target

domain Dt, and input the discriminative features into the macromol-

ecule structural classifier C to perform prediction.

We tested 3D-ADA on 10 realistically simulated subtomogram

datasets and three experimental datasets under different imaging

conditions. 3D-ADA stably improved the cross-domain prediction,

as well as outperformed two popular domain adaptation methods,

Direct Importance Estimation (IE) (Sugiyama et al., 2008) and

Structural Correspondence Learning (SC) (Blitzer et al., 2006).

Furthermore, we demonstrate that 3D-ADA can also improve the

cross data source structural recovery of novel macromolecules un-

seen in the training data.

2 Materials and methods

We have source domain subtomograms Xs (i.e. 3D gray scale images

of size n� n� n), represented as 3D arrays of R
n�n�n. The source

domain labels Ys are each represented as a binary array f0; 1gl,

where l is the number of macromolecular structure classes in the

source domain. We also have target domain subtomograms Xt and

their labels Yt, in the same form as the source domain ones, respect-

ively. Yt is unknown and to be predicted after the domain

adaptation.

Source feature extractor Fs and classifier C are first trained using

back-propagation on Xs and Ys and using the standard cross-

entropy as loss function. Next, we perform domain adaptation

through adversarial training. Figure 1 shows our whole ADA

method. The neural network models of Fs, Ft, C, D are illustrated in

Figure 2. Specifically, we use the domain discriminator D, to classify
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the domain of the input data based on the extracted features. For D,

the source domain label is set as 0 and target domain label is set as

1. Ft is initialized as a copy of the trained Fs. We then fix Fs and it-

eratively update Ft and D alternatively according to:

minFt
LFðD;Xs;XtÞ ¼ �Ex�Xt

�
log
�

1�D
�

FtðxÞ
���

(1)

minD LDðFs; Ft;Xs;XtÞ

¼ �Ex�Xt

�
log D

�
FtðxÞ

��
� Ex�Xs

�
log
�

1�D
�

FsðxÞ
��� (2)

D and Ft are trained in an adversarial fashion. Specifically,

Equation (1) aims at training Ft to trick the discriminator D.

Clearly, LF will decrease when more target domain features are

labeled close to 0 by D, so that it makes target domain features

extracted by Ft more possible to be regarded as source domain fea-

tures by D. By contrast, Equation (2) aims at training a discrimina-

tive D to separate from target domain features from source domain

features. LD will decrease when more source domain features are

labeled close to 0 and more target domain features are labeled close

to 1 by D. The ultimate goal of the adversarial training is to extract

features invariant to domain change by the target feature extractor

Ft. Ideally, in the ADA stage, the target feature extractor Ft should

be trained to have the domain discriminator D has accuracy close to

0.5, meaning D is completely fooled by the domain invariant fea-

tures extracted by Ft. 3D-ADA does not directly apply a min–max

game in optimization as performed in the standard GANs

(Goodfellow et al., 2014). The model is optimized by splitting a

min–max loss into two independent losses, one for the Ft and one

for D. The 3D-ADA method is shown in Algorithm 1.

After the ADA using Algorithm 1, the trained Ft is used to calcu-

late ~Y t ¼ CðFtðXtÞÞ for estimating Yt, where ~Y t is predicted

structure class labels Yt of Xt. Because after domain adaptation, the

distribution difference between FsðXsÞ and FtðXtÞ is reduced, C can

Fig. 1. An overview of the 3D-ADA framework. Those numbers in small white boxes are labels, including source subtomogram labels Ys, target subtomogram

labels Yt and domain labels. Solid line arrays are inputs or outputs according to their directions. Dotted line arrays denote the training process here using the

back-propagation algorithm

Algorithm 1 Adversarial domain adaptation training

Input:

Set of subtomograms from source domain: Xs

Set of subtomograms from target domain: Xt

Domain labels: Ls ¼ 0 and Lt ¼ 1

Trained source feature extractor: Fs

Output:

Trained domain discriminator: D

Trained target feature extractor: Ft

1: for n training iterations do

2: for k steps do

3: Sample minibatch of m samples fx1
s ; . . . ; xm

s g from Xs.

4: Sample minibatch of m samples fx1
t ; . . . ; xm

t g from Xt.

5: Update D by ascending stochastic gradient of LD,

with Ft fixed:

�hD

1

m

Xm
i¼1

�log
�

D
�

Ftðxi
tÞ
�
� Ls

�
� log

�
Lt �D

�
Fsðxi

sÞ
��� �

6: Sample minibatch of m target samples fx1
t ; . . . ;xm

t g
from Xt.

7: Update Ft by descending stochastic gradient of LF

with the D fixed:

�hFt

1

m

Xm
i¼1

�log
�

Lt �D
�

Ftðxi
tÞ
��� �

8: return D, Ft
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be directly applied to FtðXtÞ to calculate ~Y t, with reduced biases

from domain shift.

The rationale behind using two training stages, one for extract-

ing source features and the other for extracting target features in-

variant to domain change, is that we use the first stage to guarantee

that features informative for classification is extracted. Intuitively,

for subtomogram classification, if the two stages are trained simul-

taneously, the model could stuck in the local optimum that identical

non-informative features are extracted to make the discriminator D

completely fooled. However, such identical but non-informative fea-

tures are useless for the classification in the target domain.

Compared to the original ADA method (Ganin et al., 2016), we

have several modifications:

• We extended the 2D CNNs to 3D, and designed new 3D net-

work architectures for CECT data.
• We use two feature extractors Fs and Ft to extract features from

Xs and Xt separately [similar to Tzeng et al. (2017)] instead of a

single one for both Xs and Xt. The independent Ft for target data

enables the target domain feature to be more flexible and robust.
• The adversarial loss function [Equations (1) and (2)] is gradient

forwarded. The adversarial loss uses the proper domain supervi-

sion information for both D and Ft training that avoids gradient

vanish in back-propagation, thus the model is less likely to stuck

in local minimum.

The details of the two baseline methods, Direct IE (Sugiyama

et al., 2008) and SC (Blitzer et al., 2006), can be found in

Supplementary Data.

3 Results

3.1 Simulated datasets
We generated two simulated dataset batches, denoted as dataset

batch A and B (SA and SB). The two dataset batches differ in imaging

parameters. Each batch contains five datasets of different SNR lev-

els. Within each dataset, we simulated 23 000 subtomograms con-

taining 23 structural classes.

The subtomogram datasets are realistically simulated by approx-

imating the true CECT image reconstruction process similar to

Fig. 2. Architectures of neural networks used in 3D-ADA. The networks include multiple layers which are represented by boxes in this figure and all of them are

trainable. The type of layer and its critical parameters are shown in boxes. For example, ‘8�5�5�5�1 Conv’ denotes a 3D convolutional layer with eight 5�5�5

filters and stride of 1. It should be noted that ‘FC-L’ denotes a fully connected layer with L units, where L is the number of classes in datasets. These layers are

defined similar to Zeng et al. (2018). Input and output of each module: for examples: input of Fs and Ft as subtomogram, input to C as features and output of C as

structural classes, input to D as features, output of D as domains

Fig. 3. Left: Isosurfaces of GroEL (PDB ID: 1KP8) and carbamoyl phosphate

synthetase (PDB ID: 1BXR). Right: Center slices (x–z plane) of subtomograms

from dataset batches A and B with different SNR levels
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many previous works (Förster et al., 2008; Xu et al., 2012).

Tomographic noise, missing wedges and electron optical factors,

including the Contrast Transfer Function (CTF) and Modulation

Transfer Function (MTF), were properly included, based on the as-

sumption that macromolecular complexes have an electron optical

density in proportion to the electrostatic potential. The PDB2VOL

program from the Situs (Wriggers et al., 1999) package was used to

generate subtomograms of 403 voxels. The voxel spacing was

defined to be 0.92 nm, the same as in experimental dataset Se1 in

Section 3.2 and the resolution was also defined at 0.92 nm. Electron

micrographic images were simulated based on the density maps

adopted from Protein Data Bank (PBD), through a tilt angle of

660
�
. Noise was added to electron micrograph images (Förster

et al., 2008) corresponding to different SNR levels, including the

estimated SNRs from experimental data (Section 3.2). Optical

effects were simulated by convolving the electron micrograph

images the CTF and MTF (Frank, 2006; Nickell et al., 2005), with

acquisition parameters similar to typical experimental tomograms

(dataset Se1 in Section 3.2).

Twenty-two representative macromolecular complexes (details

in Supplementary Data) are collected from the PDB (Berman et al.,

2000). Inside each dataset, for each complex, we generated 1000

simulated subtomograms, each containing a randomly rotated and

translated macromolecule. Furthermore, we also simulated 1000

subtomograms that contain no macromolecule. As a result, one

dataset contains 23 000 simulated subtomograms of 23 structural

classes including the NULL class.

The two dataset batches each containing multiple datasets of dif-

ferent SNR levels (1000, 0.5, 0.1, 0.05, 0.03). The SNR of experi-

mental datasets in Section 3.2 ranged from 0.01 to 0.5. Since we

simulated 23 000 subtomograms within each SNR batch, in total

there are 115 000 subtomograms in each batch. For SA, we use the

spherical aberration of 2 mm, defocus of �5 lm and voltage of

300 kV. For SB, we use the spherical aberration of 2.2 mm, defocus

of �10 lm and voltage of 300 kV. These parameters are assigned

with typical values used in real CECT imaging (Xu et al., 2019;

Zeev-Ben-Mordehai et al., 2016; Zeng et al., 2018). Dataset batch B

has a higher contrast than dataset batch A because of its significantly

higher defocus in magnitude. The MTF in our simulation is defined

as sincðpx=2Þ where x is the fraction of the Nyquist frequency, a

realistic detector (McMullan et al., 2009). To construct the final

subtomogram, a direct Fourier inversion reconstruction algorithm

[implemented in the EMAN2 library (Galaz-Montoya et al., 2015)]

is used to produce the simulated subtomogram from the tilt series

660
�
. Figure 3 shows examples of simulated subtomograms of two

datasets batched with different SNRs.

3.1.1 Results on simulated data

We compared the macromolecule structural classification perform-

ance using dataset batch B (SB) as training data and dataset batch A

(SA) as prediction data. Without domain adaptation, the prediction

is calculated by CðFsðXtÞÞ. With domain adaptation, the prediction

is calculated by CðFtðXtÞÞ using Ft optimized using Algorithm 1.

The macromolecule structural classification accuracy is shown in

Table 1. The accuracy is defined as the ratio of numbers of correctly

classified samples to numbers of all samples. We also show the result

of baseline methods IE and SC (details in Supplementary Data) per-

forming the same tasks. In each cell, from top to bottom, the results

displayed are accuracy without domain adaptation, IE accuracy, SC

accuracy and 3D-ADA accuracy. The highest one is highlighted. The

3D-ADA framework achieved the highest accuracy in 24 of the 25

experiments. In addition, we discussed the impact of data augmenta-

tion on the prediction accuracy in Supplementary Data.

3.1.2 Result visualization

We visualize some of the results. Using subtomograms at SNR 0.1 in

SB as source and subtomograms at SNR 0.05 in SA as the target, we

randomly picked 100 samples in each target domain data class

(2300 picked in total) to avoid crowdedness in the visualization. In

Figure 4, we use T-SNE (Maaten and Hinton, 2008) to visualize

their distribution before and after 3D-ADA. Figure 4 shows that,

after 3D-ADA, structural classes become significantly more

separable.

The confusion matrices of the macromolecule structural classifi-

cation results before and after 3D-ADA are shown in Figure 5.

Clearly, after 3D-ADA, the misclassification rate is significantly

reduced as the confusion matrix diagonal becomes darker after do-

main adaptation.

Table 1. Accuracy on simulated datasets

Accuracy SNR of target domain (SA)

1000 0.5 0.1 0.05 0.03

SNR of source

domain (SB)

1000 0.855 0.687 0.385 0.235 0.157

0.739 0.620 0.287 0.159 0.111

0.760 0.638 0.289 0.162 0.114

0.991 0.923 0.737 0.499 0.326

0.5 0.779 0.757 0.547 0.366 0.258

0.806 0.710 0.479 0.372 0.291

0.819 0.723 0.486 0.373 0.291

0.978 0.970 0.835 0.628 0.464

0.1 0.902 0.922 0.894 0.726 0.503

0.864 0.881 0.776 0.637 0.475

0.905 0.920 0.826 0.650 0.479

0.894 0.932 0.901 0.760 0.626

0.05 0.946 0.950 0.911 0.766 0.563

0.937 0.929 0.897 0.758 0.575

0.948 0.951 0.907 0.774 0.583

0.967 0.971 0.928 0.825 0.628

0.03 0.938 0.924 0.903 0.844 0.704

0.903 0.891 0.864 0.775 0.609

0.907 0.893 0.865 0.778 0.613

0.976 0.972 0.952 0.891 0.773

Note: In each cell, from top to bottom, the results displayed are accuracy

without domain adaptation, IE accuracy, SC accuracy and 3D-ADA accuracy.

The highest one is highlighted in bold.

Fig. 4. T-SNE embedding: target domain class prediction. Each dot represents

a sample and its color represents its true class: (a) before 3D-ADA and (b)

after 3D-ADA
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3.2 Experimental datasets
We further tested the 3D-ADA on three experimental datasets

Se1; Se2; Se3.

For Se1, the experimental tomograms contain purified human

20S proteasome and Escherichia coli ribosome obtained through

similar data generation procedure as in Zeev-Ben-Mordehai et al.

(2016). To separate structures of trimeric conformations in native

membrane-anchored full-length herpes simplex virus 1 glycoprotein

B, imaging parameters have been successfully optimized and applied

(Zeev-Ben-Mordehai et al., 2016). Specifically, Cryo-Electron

Microscopy was performed at 300 keV using a TF30 ‘Polara’ elec-

tron microscope (FEI). The microscope was operated in zero-loss

imaging mode with a 20-eV energy-selecting slit, using a Quantum

postcolumn energy filter (Gatan). Images were recorded using a

post-filter �4000�4000 K2-summit direct electron detector

(Gatan). The detector was operated in counting mode with dose

fractionation. A calibrated pixel size of 0.23 nm was adopted at the

specimen level. Tilt series data were collected using SerialEM

(Mastronarde, 2005) at defocus ranges of �6 to �5 lm. To have

stable defocus during data collection, the auto-focusing routine was

iterated through the tilt series with 100 nm accuracy. Finally, tomo-

grams were reconstructed by the weighted back-projection in IMOD

program (Sandberg et al., 2003). Then, the reconstructed tomo-

grams were four times binned to result in a voxel spacing of

0.92 nm.

From three tomograms, we extracted a total of 4019 subtomo-

grams of 363 voxels. For each tomogram, we extracted subtomo-

grams by performing template-free particle picking in a similar way

to Pei et al. (2016). To extract the subtomograms, the tomograms

were convolved with the 3D difference of a Gaussian, with scaling

factor r ¼5 nm and scaling factor ratio K¼1.1. The extracted sub-

tomograms were smoothed by convolving with a Gaussian kernel of

r¼2 nm. We manually selected 100 ribosome subtomograms and

100 proteasomes, both with high confidence of their structure iden-

tity. In addition, we selected 100 subtomograms of NULL classes by

randomly sampling the non-structural area of experimental tomo-

grams. As shown in Figure 6, the experimental subtomograms has

very low SNR (0.01) and thus highly challenging to classify. The

templates were obtained from generating 4 nm resolution density

maps from the PDB structures using the PDB2VOL program

(Wriggers et al., 1999). Then, they were properly convolved with

the CTF according to the imaging parameters. The templates are

used to construct simulation datasets with labels as training datasets

(source domain Ds).

Similarly, Se2 contains 240 subtomograms, consisting of 80 ribo-

some subtomograms, 80 TRiC subtomograms and 80 proteasome

subtomograms of size 403 voxels with voxel spacing 1.368 nm. The

subtomograms are manually extracted from a rat neuron tomogram

(Guo et al., 2018b). The tilt angle range was �50
�

to þ70
�
. The

structural templates were obtained using PDB structures 4GU0

(human 80s ribosome), 4V94 (eukaryotic chaperonin TRiC) and

6EPF (26S proteasome). The templates are used to construct simula-

tion datasets with labels as training datasets (source domain Ds).

Se3 contains 400 hemagglutinin subtomograms, 400 apoferritin

subtomograms and 400 insulin receptor subtomograms of size 283

voxels with voxel spacing 0.94 nm from a single particle dataset

(Noble et al., 2018). The tilt angle range was �60
�

to þ60
�
. The

subtomograms are extracted using the difference of Gaussian

particle-picking algorithm and manually annotated. The structural

templates were obtained using PDB structures 3LZG (virus hem-

agglutinin), 4V1W (horse spleen apoferritin) and 4ZXB (human in-

sulin receptor). The templates are used to construct simulation

datasets with labels as training datasets (source domain Ds).

3.3 3D-ADA classifications on experimental data
Based on different classes of macromolecules in different experimen-

tal dataset, we follow the simulation process mentioned in Section

3.2 to make their own source dataset.

Fig. 5. Confusion matrices of target domain class predictions: (a) before 3D-

ADA and (b) after 3D-ADA. Each row represents the predicted class of an in-

stance while each column represents the true class. The darker the cells are,

the larger proportion of samples are predicted to be the specific class. A per-

fect classification will show a black diagonal with all cells on it having a value

of 1.0

Fig. 6. The 2D slices of example subtomogram in each class in dataset Se1

Adversarial domain adaptation for macromolecule in situ classification i265



For each training dataset, we simulated 3000 subtomograms for

the source domain. The classification result is shown in Table 2.

Since the classification of experimental subtomograms is very hard

due to the high noise level and structural complexity, the classifica-

tion accuracy before domain adaptation is virtually close to random

guess (0.33). In all the experiments, 3D-ADA substantially increased

the classification accuracy. How to choose the optimal simulation

parameters to construct source dataset, especially structural tem-

plates and SNR, is still an open problem. Since when classifying an

experimental subtomogram dataset, the data acquisition experimen-

tal conditions such as spherical aberration and defocus are known,

we recommend the users to simulate training dataset with the same

experimental condition parameters to reduce the domain shift be-

tween simulated source dataset and experimental target dataset. In

terms of SNR, the simulated training dataset should have similar or

slightly lower SNR as compared to the experimental dataset to be

classified. However, the users should be aware that when the SNR

of the training dataset is too low such as 0.001, the source dataset

classifier training may not converge due to the strong influence of

noise.

We note here that in simulated dataset SA and SB, the number of

subtomograms in the source domain and target domain is the same,

23 000. However, in practice, the number of subtomograms in the

experimental datasets may be smaller. In our experiments on experi-

mental data, there are 3000 subtomograms in the simulated source

domain whereas the number of subtomograms in the experimental

datasets varies from 240 to 300 to 1200. Although the number of

subtomograms in the experimental target domain is significantly

decreased, our 3D-ADA is still effective as shown in Table 2.

We applied a weighted subtomogram averaging algorithm (Xu

et al., 2012) to recover the structure in Se3 based on the classification

label before and after domain adaptation (Fig. 7). The ground truth

is obtained based on the true subtomogram labels. Although the

apoferritin structure is successfully recovered even before using do-

main adaptation probably due to its strong signal and rotational

symmetry, the hemagglutinin structure and the insulin receptor

structure do not recover well using the classification label before the

domain adaptation. By contrast, after 3D-ADA, we are able better

recover the hemagglutinin structure and the insulin receptor struc-

ture. We note that the subtomogram number in Se1 and Se2 is too

low to recover the structure.

3.4 Improvement of novel structure detection and

recovery
Since the majority of macromolecular structures are still unknown,

detecting novel structures in CECT is a key step to advance our in

situ structural biology knowledge. Previously, we have demon-

strated that even if prediction subtomograms contain unseen struc-

tural classes that do not exist in the training data, the unseen classes

still tend to form clusters after being projected into the latent feature

space using the trained feature extractor (Xu et al., 2017). Since the

detection of novel structures depends on the extraction of important

discriminative structural features, we investigate the novel structure

detection when there is a covariate shift between source and target

domains. We use subtomograms simulated at SNR 1000 in dataset

batch B as Xs and subtomograms simulated at SNR 0.5 in dataset

batch A as Xt. We removed all subtomograms of a particular struc-

tural class (RNA polymerase, PDB ID: 2GHO) from the training

data. Denote the set of RNA polymerase subtomograms and their

corresponding class labels in source and target domains as

XRP
s ; YRP

s ; XRP
t and YRP

t , respectively. We train Fs and C using Xs n
XRP

s and Ys n YRP
s , then obtain optimized Ft by applying the domain

Fig. 7. Recovered structures in Se3 based on the classification label. Three

structures: (a) Hemagglutinin, (b) Apoferritin, (c) Insulin receptor

Fig. 8. Subtomograms in the target domain projected to the structural feature

space. The RNA polymerase (PDB ID: 2GHO) subtomograms which are

removed from training process were highlighted in red: (a) before 3D-ADA

and (b) after 3D-ADA

Table 2. Accuracy of experimental subtomograms classification

Accuracy SNR of source domain

Dataset 1000 0.5 0.1 0.05 0.03

Se1 0.375 0.313 0.465 0.331 0.566

0.578 0.641 0.563 0.584 0.606

Se2 0.400 0.370 0.311 0.308 0.336

0.495 0.469 0.471 0.450 0.377

Se3 0.313 0.376 0.375 0.372 0.375

0.688 0.656 0.625 0.621 0.624

Note: In each cell, the upper and lower numbers denote classification be-

fore and after 3D-ADA, respectively. The highest one is highlighted in bold.
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adaptation Algorithm 1 to Xs nXRP
s ; Ys n YRP

s and Xt nXRP
t . Then

we used T-SNE to further embed FsðXtÞ and FtðXtÞ into R
2 to visu-

alize the projected prediction samples before and after domain adap-

tation. Denote FT�SNE as the T-SNE embedding. It can be seen from

Figure 8 that the after domain adaption case, FT�SNEðFtðXRP
t ÞÞ, is

significantly better clustered than the before domain adaptation

case, FT�SNEðFsðXRP
t ÞÞ.

Moreover, we demonstrate for the cross-domain recovery of

novel structures unseen in the training data. The extracted features

are clustered into 100 clusters using k-means clustering. Then we

applied a weighted subtomogram averaging algorithm (Xu et al.,

2012) to recover the structure in each cluster. The recovered struc-

tures were manually matched to the 22 classes (including the novel

one). To measure the structural discrepancy, we use the Fourier

Shell Correlation (resolution) with 0.5 cutoff to show the maximal

structural factors that are discrepant between the true structure and

the recovered structure (Liao and Frank, 2010). Figure 9 shows

examples of recovered structures and the novel structure RNA poly-

merase (2GHO) is successfully recovered with structural discrepancy

4.19 nm. To compare, the recovery of RNA polymerase before do-

main adaptation is 4.84 nm. Overall, the structural discrepancy of

recovered structures before domain adaptation has mean value of

5.42 nm with a standard deviation of 1.28 nm. By contrast, the

structural discrepancy after 3D-ADA has mean value improved to

5.17 nm with a standard deviation of 1.27 nm.

4 Conclusion

Macromolecules are nano-machines that arguably govern cellular

processes. In recent years, CECT has emerged as the most promising

technique for the systematic and in situ detection of the native struc-

ture and spatial organization of macromolecules inside single cells.

However, CECT analysis is very difficult due to the large data

quantity, high level of structural complexity and imaging limitations

in CECT data. High-throughput subtomogram classification is a key

step in reducing structural complexity. Nevertheless, existing un-

supervised subtomogram classification approaches either have lim-

ited accuracy or speed to process millions of structurally highly

heterogeneous macromolecules available in a CECT dataset. Deep

learning-based supervised subtomogram classification (e.g. Xu

et al., 2017) potentially makes a powerful technique for the large-

scale subtomogram classification with significantly improved speed

and accuracy. But the successful training of such methods often re-

quire a large amount of structurally annotated subtomograms,

which is generally laborious and computationally expensive to ob-

tain from the same tomogram dataset. Therefore, it would be very

beneficial to conduct the training using training data collected from

a separate data source and annotated in a high-throughput fashion.

In order to do so, the domain shift problem must be overcome as it

is likely to significantly bias the results in the cross data source pre-

diction setting.

We adapt an ADA framework for structural classification of

macromolecules captured by CECT. Combining 3D CNNs and ad-

versarial learning, 3D-ADA maps subtomograms into a latent space

shareable between separate domains to obtain a robust model for

cross data source macromolecular structural classification.

Moreover, 3D-ADA can be easily extended to utilize multiple CECT

training data sources by training multiple source domain feature

extractors.

Most traditional domain adaptation methods aim to minimize

some metric of domain shift such as maximum mean discrepancy or

correlation distances. Other methods try to reconstruct the target do-

main from the source representation. Compared with those tradition-

al methods, the ADA has the following advantages for CECT data:

• Using deep learning techniques, 3D-ADA allows large-scale

training with large amounts of prediction data.
• Instead of using fixed features, the feature extractor is trainable

and the domain adaptation is incorporated into the training pro-

cess. The final classification is performed on adapted features

that tend to be discriminative with respect to structural classes

and invariant with respect to domains.
• Using the back-propagation algorithm, 3D-ADA is constructed

as end-to-end feed-forward networks, improving over the iso-

lated domain adaptation steps.

Our tests showed that our 3D-ADA significantly improved cross

data source subtomogram classification, and it outperformed two

classical domain adaptation methods. 3D-ADA can also potentially

be useful for cross data source detection novel macromolecular

structures.

This work represents an important step towards fully utilizing

the power of deep learning for large-scale subtomogram classifica-

tion. The optimal CNN models and training strategies for more ac-

curate domain adaptation remain to be explored.
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