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ABSTRACT  High vascularization and locally secreted factors make the 
bone marrow (BM) microenvironment particularly hospitable for 
tumor cells and bones to a preferred metastatic site for disseminated 
cancer cells of different origins. Cancer cell homing and proliferation 
in the BM are amongst other regulated by complex interactions with 
BM niche cells (e.g. osteoblasts, endothelial cells and mesenchymal 
stromal cells (MSCs)), resident hematopoietic stem and progenitor 
cells (HSPCs) and pro-angiogenic cytokines leading to enhanced BM 
microvessel densities during malignant progression. Stress and cate-
cholamine neurotransmitters released in response to activation of 
the sympathetic nervous system (SNS) reportedly modulate various 
BM cells and may thereby influence cancer progression. Here we 
review the role of catecholamines during tumorigenesis with particu-
lar focus on pro-tumorigenic effects mediated by the BM niche. 
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STRESS AND CATECHOLAMINE SIGNALING 
Stress is defined as the relationship between a person and 
her/his environment when latter is perceived as endanger-
ing to her/his well-being. While the stimulus-based defini-
tion understands stress as the sum of effects that emerge 
after exerting acute or a chronic external discomfort on a 
subject, the response-based definition proposes stress as 
part of the physiological alert reaction activated by the 

body to better master a dangerous situation [1]. On the 
physiological and biochemical levels, stress involves the 
sympathetic nervous system (SNS) and the release of cate-
cholamine neurotransmitters (epinephrine (EPI), norepi-
nephrine (NOR), dopamine (DA)) from SNS fibers. Cate-
cholamine release may differ in acute compared to chronic 
stress: whereas acute and chronic stress both induce EPI as 
well as NOR [2-5], brain concentrations of DA were instead 
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Abbreviatons: 
ALL – acute lymphoblastic leukemia, AML – 
acute myeloid leukemia, AR – adrenergic 
receptor, BCL-2 – B-cell lymphoma 2, bFGF – 
basic fibroblast growth factor, BM – bone 
marrow, cAMP – cyclic adenosine 
monophosphate, COX2 – cyclooxygenase 2, DA – 
dopamine, DTC – disseminated tumor cells, EPI – 
epinephrine, FAK – focal adhesion kinase, GM-
CSF – granulocyte-macrophage colony-
stimulating factor, HSC – hematopoietic stem 
cell, HSPC – hematopoietic stem and progenitor 
cell, IL-6 – interleukin 6, LSC – leukemic stem 
cell, MDS – myelodysplastic syndrome, MSC – 
mesenchymal stromal cell, NK – natural killer, 
NOR – norepinephrine, PGE2 – prostaglandin E2, 
PKA – protein kinase A, RANK – receptor 
activator of NF-κB, RANKL – RANK ligand, SNS – 
sympathetic nervous system, TAM – tumor 
associated macrophage, TNF  – tumor necrosis 
factor, VCAM-1 – vascular cell adhesion 
molecule 1, VEGF – vascular endothelial growth 
factor, VEGF-R – VEGF receptor. 
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found elevated in acute but however reduced in chronic 
stress [2, 6, 7]. The downstream adrenergic signaling re-
sponses activated by stress are furthermore dependent on 
the expression of specific adrenergic receptors (ARs) on 
various organs and tissues participating in the alert reac-
tion [8, 9]. ARs belong to the class of G protein-coupled 
receptors and are subdivided into α- and β-ARs. Activation 
of α1-ARs (comprising α1a, α1b, α1d-ARs) increases intra-
cellular calcium levels and induces vasoconstriction, while 
α2-AR (comprising α2a, α2b, α2c-ARs) activation inhibits 
intracellular cyclic adenosine monophosphate (cAMP), 
insulin, acetylcholine and NOR release [10]. Stimulation of 
β-ARs (comprising β1, β2, β3-ARs) elevates cytosolic cAMP 
levels and activates protein kinase A (PKA) leading to 
smooth muscle relaxation and lipolysis [11-13]. While β3-
ARs bind EPI and NOR with the same affinity, α2 and β2-
ARs are more potently stimulated by EPI and α1 and β1-
ARs by NOR [14-16]. ARs can be pharmacologically modu-
lated by drugs with selectivity for certain receptors, e.g. 
“selective” blockers targeting α1-ARs (e.g. prazosin), α2-
ARs, (e.g. yohimbine), β1-ARs (e.g. acebutolol) or by so-
called “unselective” blockers targeting for example all 
types of α-ARs (e.g. phenoxybenzamine), or all types of β-
ARs (e.g. propranolol). AR-blockers are in routine clinical 
use especially for the treatment of patients with hyperten-
sion and cardiovascular disorders.  

Interestingly, cancer cells may also express ARs, and 
enhanced levels of EPI and NOR were detected in fluids 
and tissues of patients with cancer [17-21], suggesting that 
catecholamines and adrenergic signaling are involved in 
cancer pathogenesis. 

 

EPIDEMIOLOGIC STUDIES  
The relationships between stress, catecholamine levels, 
AR-blocker use and cancer incidence or outcome were 
investigated by several epidemiological studies with in part 
controversial results. Enhanced perceived stress (measured 
by self-assessment via a questionnaire) was identified as a 
risk factor for rectal cancer in a prospective study involving 
61,563 Japanese men and women followed-up for 21 years 
[22]. Furthermore, elevated intra-tumor NOR levels deter-
mined by high performance liquid chromatography were 
associated with advanced stage and high-grade histology in 
ovarian carcinoma [23]. Consistently, retrospective studies 
indicated treatment with β-blocker to associate with in-
creased overall and progression-free survival in patients 
with prostate [24, 25], breast [26-31], ovarian cancer [32] 
or melanoma [33, 34], and treatment with propranolol to 
reduce the incidence of head and neck, esophagus, stom-
ach, colon, and prostate carcinoma in an analysis of 24,000 
people followed-up for twelve years [35]. Finally, a meta-
analysis of 20,898 patients with cancer (including patients 
from twelve studies published between 1993 and 2013, 
among which the studies mentioned above) indicated that 
β-blocker usage may associate with prolonged survival in 
early stage cancer patients undergoing surgical resection 
[36].  

In contrast, other reports – also involving patients with 
a variety of different tumors (e.g. breast cancer [37], renal 
carcinoma [38], acute myeloid leukemia (AML) [39], mela-
noma [40-41] as well as a retrospective meta-analysis with 
more than 88,000 cancer patients from approximately thir-
ty studies failed to reproduce these associations [42]. We 
hypothesize that these controversial results may derive 
from the heterogeneity among the analyzed patient groups 
and tumor types, stages and therapies, as well as the dif-
ferences in employed β-blockers. Different types of stress 
may induce different catecholamine compositions (e.g. 
acute or chronic stress, versus exercise-induced, see also 
below) that influence results. Selected tumor subtypes or 
phases during tumorigenesis might be more or less respon-
sive to pro-tumorigenic effects mediated by catechola-
mines and large meta-analyses may not sufficiently capture 
such effects. Prospective randomized trials focusing on 
defined patient subgroups, disease stages and medications 
are required to obtain conclusive results. Epidemiologic 
studies investigating β-blocker treatments in patients with 
cancer were recently comprehensively reviewed by Yap et 
al. [43]. 

 

STRESS AND CATECHOLAMINES PROMOTE 
TUMORIGENESIS VIA CELL AUTONOMOUS AND NON-
AUTONOMOUS MECHANISMS 
Experimental data indicate that stress and catecholamines 
promote tumor growth and metastasis via both cell auton-
omous and non-autonomous mechanisms [17, 44-56] (see 
also the recent review by Qiao et al. [57]). In an ovarian 
cancer animal model, restraint stress enhanced NOR and 
EPI levels and thereby promoted malignant cell growth by 
suppressing anoikis and enhancing phosphorylation of fo-
cal adhesion kinases (FAK) [58]. Elevated housing 
temperature enhanced NOR levels in an orthotopic 
pancreatic carcinoma model thereby up-regulating the 
expression of anti-apoptotic B-cell lymphoma 2 (BCL-2), B-
cell lymphoma-extra large (BCL-xL) and induced myeloid 
leukemia cell differentiation (MCL) proteins, suppressing 
the pro-apoptotic Bcl-2-associated death promoter (BAD) 
protein and inducing apoptosis resistance [59]. Similarly, in 
a prostate cancer xenograft model, behavioral stress 
increased EPI levels, induced β2-AR signaling activation and 
accelerated tumor progression by enhancing anti-apoptotic 
responses in tumor cells [60]. Finally, recent work has 
pointed out that catecholamines induce cytoskeleton 
alterations and expression of genes mediating invasive 
properties thereby enhancing the aggressiveness of tumor 
cells [45]. Molecularly, β-AR activation by catecholamines 
activated cAMP and downstream PKA signaling, resulting in 
higher Ca2+ efflux from the endoplasmic reticulum and fi-
nally modulation of cadherins and actin [45].  

Consistent with these data, expression of different ARs 
has been documented on different cancer cell types and 
linked to cancer progression (β1: [61, 62], β2 : [17, 61, 62], 
β3 : [61, 63-66], and targeting of catecholamine signaling 
by treatment with specific β-AR inhibitors has been pro-
posed as a potential therapeutic approach for cancer [61, 
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67]. In fact, treatment with specific β3-AR antagonists was 
shown to reduce proliferation and activate cell death in 
tumor cells thereby inhibiting melanoma progression in a 
mouse model [65].  

Non-cell autonomous catecholamine-mediated pro-
tumorigenic mechanisms include effects on blood and 
lymphatic vessels, fibroblasts, immune cells as well as 
different subtypes of bone marrow (BM) cells and are thus 
even more complex. For example, daily restraint stress was 
shown to activate cancer-associated fibroblasts to produce 
extracellular matrix components favoring ovarian cancer 
growth [68]. Chronic psychological stress (induced by 
different types of stressors) furthermore facilitated breast 
cancer cell metastasis to the lungs by modulating 
macrophage responses and the pre-metastatic niche [56]. 
Additionally, chronic restraint stress promoted angio- and 
lymphangiogenesis [49, 69] and the reorganisation of 
lymphatic networks within and around the primary tumor 
via induction of tumor-derived vascular endothelial growth 
factor C (VEGF-C), which in turn was found to depend on 
cyclooxygenase-2 (COX-2) mediated inflammatory signaling 
from macrophages [69]. Furthermore, in a prostate cancer 
mouse model NOR release in the stroma was shown to 
activate an angiogenic switch fueling tumor growth via the 
endothelial β-AR signaling pathway [70]. Consistently, β-
adrenergic-mediated chronic restraint stress also enhanced 
leukemic burden in an acute lymphoblastic leukemia (ALL) 
mouse xenograft model. Interestingly, the pro-
leukemogenic effect of catecholamines in this setting was 
not mediated by adrenergic signaling in leukemic cells 
themselves but rather by pro-leukemogenic modulation of 
host cells that interact with human ALL cells. The effects 
could potentially be mediated by SNS regulation of anti-
tumor immune response (e.g. involving natural killer (NK) 
cell-mediated killing of leukemia cells) and of BM stromal 
cells, including osteoblasts that play a key role in the 
maintenance of healthy hematopoietic cells [71]. In 
response to stress, tumor cells furthermore showed 
increased release of pro-inflammatory prostaglandin E2 
(PGE2) [72]. Further studies demonstrated that NOR 
induced activation of β3-ARs in both melanoma cells and 
cells of the tumor microenvironment enhanced the 
response of stromal macrophages and fibroblasts by 
inducing pro-inflammatory cytokine secretion and de novo 
angiogenesis in the tumor, thus sustaining tumor growth 
and aggressiveness [64]. Interestingly, pharmaceutical 
blockade of β3-AR could significantly decrease the tumor 
vasculature by activating apoptosis signaling pathways of 
endothelial cells in tumor blood vessels, thus reducing 
melanoma malignancy [65]. 

The pro-tumorigenic effects of stress summarized 
above were obtained in models studying the effects of 
catecholamine release associated with physical or 
psychological stress, or a combination of both. 
Interestingly, different results were observed when 
catecholamines released upon exercise were analyzed. 
Mice given the voluntary opportunity to run in an 
environmentally enriched cage also showed enhanced 
catecholamine levels, but these did not promote tumor 

growth [73]. Interestingly, suppressive effects on tumor 
growth were instead observed upon such exercise in 
different murine cancer models (e.g. of breast [74], 
pancreas [75], lung and melanoma [76]). There is no 
definitive molecular explanation for the different impact of 
stress- versus exercise-induced catecholamine increase on 
tumorgenesis. Possible explanations include (a) that 
different types of catecholamine are released in exercise 
compared to stress (e.g. higher induction of NOR and DA in 
exercise [77] and of EPI in stress conditions, perhaps due to 
the fact that exercise preferentially induces a response of 
the SNS, while stress primarily triggers an adrenal response 
[78]), (b) different catecholamine dynamics (intensive 
peaks upon exercise versus more constant enrichment 
under “chronic” stress with latter perhaps being only 
permissive for modeling of a pro-tumorgenic environment 
[79] and (c) confounding non-catecholamine related 
physiological and biochemical processes associated with 
exercise versus stress. Exercise-induced cancer protection 
could also be linked to the activation of the immune 
system. For example, high EPI levels induced by voluntary 
wheel running mobilized NK cells to the tumor site thereby 
reducing incidence and growth of melanoma, liver and lung 
tumors [76]. Catecholamine effects on the immune system 
are reviewed in detail elsewhere [57, 80-82]. 

 

CANCER AND THE BM MICROENVIRONMENT 
Bones and the BM are also preferred metastatic sites for 
different solid tumors. According to Suva et al., the post 
mortem incidence of BM metastases is highest in patients 
with breast carcinoma (73%), followed by prostate (68%), 
thyroid (42%), lung and renal carcinoma and melanoma [83, 
84]. Detectable bone metastases are a strong predictor of 
poor outcome and associate with 5-year survival rates of 
only 10% in patients with breast carcinoma [84]. In order 
to seed the BM, cancer cells first have to leave the primary 
tumor by extravasation into the circulation as disseminated 
tumor cells (DTCs). Next, they have to survive in the circu-
lation until they reach their final destination, probably via a 
process similar to the well-described “homing” of healthy 
hematopoietic stem and progenitor cells (HSPCs). Upon 
arrival in the BM, DTCs adhere to components of this new 
microenvironment, which is considered a “fertile soil” for 
tumor cells because of its high vascularization and en-
hanced concentrations of pro-tumorigenic growth factors, 
cytokines and chemokines [85, 86]. Importantly, the BM 
microenvironment may facilitate tumor cell dormancy and 
confer chemotherapy resistance to tumor cells, thus ena-
bling their long-term persistence despite treatments, and 
facilitating subsequent relapses and progression. As for 
example shown by Carlson et al. for breast carcinoma cells, 
DTCs occupy perivascular niches through integrin-mediated 
interactions driven by endothelial-derived von Willebrand 
factor and vascular cell adhesion molecule 1 (VCAM-1) and 
thereby receive selective protection against chemothera-
pies [87]. Interestingly, as shown for hematologic neoplasia, 
solid tumor cells also appear to actively modulate the BM 
microenvironment to facilitate its colonization. For exam-
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ple, high levels of soluble intercellular adhesion molecule 1 
(ICAM-1), VCAM-1 and platelet-derived growth factor 
(PDGF) detectable in the BM plasma of untreated ad-
vanced breast cancer patients possibly contribute to DTCs 
escape out of the blood vessels into the BM [88]. When 
entering the bone to cause osteolytic or osteoblastic le-
sions, cancer cells initiate a cellular crosstalk that further 
supports tumor growth and invasion [89], often triggering 
a destructive auto-regulatory feedback loop promoting 
tumor growth. Taken together, these data indicate that 
cancer cells actively modulate the BM niche to facilitate its 
occupation. Whether vice versa a perturbed niche by itself 
can trigger malignancy is currently under heavy debate [89]. 

 

THE BM NICHE IN HEMATOLOGIC MALIGNANCIES 
Next to the healthy situation, the BM niche is best studied 
in hematologic malignancies involving malignant cells re-
siding at this site. BM microenvironment changes are 
commonly observed in patients with hematologic diseases, 
and experimental models demonstrate an intensive cross-
talk between malignant and healthy cells, suggesting that 
the BM niche plays important pathophysiological roles 
(reviewed in more detail in [90-93]). When compared to 
healthy controls, patients suffering from myelodysplastic 
syndromes (MDS) show higher CXCL12 (also named stro-
mal cell-derived factor 1, SDF-1) levels and enhanced tu-
mor necrosis factor α (TNFα), interleukin 6 (IL-6) and tumor 
necrosis factor β (TNF-β) expression in fibroblasts and mac-
rophages, which likely contribute to disease pathogenesis 
[94]. However, it often remains unclear whether the ob-
served microenvironment changes are cause or conse-
quence of the disturbed hematopoiesis.  

Leukemic cells are hypothesized to actively modulate 
the BM microenvironment to allow specific subpopulations 
of leukemia-initiating cells (so-called leukemic stem cells, 
LSCs) to colonize BM niches granting their long-term sur-
vival and perhaps protection against anti-neoplastic thera-
pies (reviewed in more details in [95-98]). For example, in 
murine models of myeloproliferative neoplasia, malignant 
cells were shown to stimulate mesenchymal stromal cell 
(MSCs) to produce higher numbers of functionally altered 
osteoblasts, which then accumulate as inflammatory 
myelofibrotic cells to induce fibrosis and ultimately pro-
mote LSC persistence [99].  

 

BM ANGIOGENESIS 
Many studies have suggested a role for angiogenesis not 
only in the pathogenesis of solid tumors but also in hema-
tological malignancies [100-106]. The first link between 
leukemia progression and increased BM vascularization 
[107] was provided 1997, when an increased blood vessel 
content was demonstrated in the BM of ALL patients com-
pared to healthy controls. A detailed analysis of BM sec-
tions from ALL patients showed irregular, albeit abundant, 
BM vasculature. Moreover, urine and peripheral blood 
samples from ALL patients exhibited elevated levels of pro-
angiogenic basic fibroblast growth factor (bFGF) and vascu-
lar endothelial growth factor (VEGF), which correlated with 

the increase in BM angiogenesis [108]. In AML, increased 
levels of plasma VEGF were associated with worse out-
come [109] and higher numbers of circulating blasts [110]. 
In patients with MDS, enhanced BM VEGF expression was 
detected in high compared to low risk patients and showed 
to predict evolution to transfusion dependence [111]. In-
creased BM microvessel density and VEGF expression were 
furthermore observed in patients with myeloproliferative 
neoplasms or lymphoma [102, 112], where enhanced BM 
angiogenic activity also associated with disease aggressive-
ness and worse outcome [113, 114].  

Cells, cytokines and growth factors that maintain phys-
iological angiogenesis are unbalanced in the neoplastic BM. 
Tumor cells themselves secrete cytokines (e.g. IL-6, granu-
locyte-macrophage colony-stimulating factor (GM-CSF), 
VEGF, bFGF) [115-117] to stimulate angiogenesis and pro-
mote tumor growth and dissemination [100]. In fact, the 
VEGF gene was first cloned from an AML cell line (HL-60) 
[118]. Malignant cells themselves furthermore may express 
cytokine receptors (e.g. VEGF receptors (VEGF-R)) [119, 
120], through which they stimulate their own survival, pro-
liferation and migration in an autocrine manner [115, 121]. 
 

BM REGULATION BY CATECHOLAMINES 
The BM naturally harbors hematopoietic stem cells (HSCs) 
responsible for sustaining the blood production. In order to 
fulfill this function over the whole life-span of an organism, 
HSCs balance dormancy and self-renewal activity with ba-
sal or demand-oriented proliferation and differentiation. 
HSCs reside in so-called BM niches, which are embedded in 
complex cellular networks that intensively communicate 
via molecular, biophysical (e.g. oxygen levels, blood pres-
sure) and structural (e.g. extracellular matrix) signals [122-
124]. Different BM niches have been described and report-
ed to support the unique requirements of HSCs (as elegant-
ly reviewed in [125, 126]). Osteoblasts producing among 
others osteopontin [127, 128] were initially considered 
major regulators of HSCs shown to reside in proximity of 
the endosteum [129-132]. More recent studies have ques-
tioned the importance of molecular signals deriving from 
osteoblasts for the regulation of HSC quiescence and ra-
ther pointed out roles of osteoblasts in the maintenance of 
more committed hematopoietic progenitors, and particu-
larly in B-cell lymphopoiesis [95, 133-140]. More recently 
there is instead increasing evidence for the so-called vascu-
lar HSC niche. HSCs were shown to localize in proximity of 
sinusoids enriched for MSC activity [140, 141] and endo-
thelial cells lining the BM vasculature and MSCs to secrete 
factors sustaining the maintenance and activation of HSCs 
and derived progenitors [133, 143-145]. The influence of 
the vascular niche on HSCs fate is nicely summarized in 
[126, 146].  

Sympathetic nerve fibers are a further critical compo-
nent of the BM niche. Already back in 1925 they were de-
scribed by De Castro to enter the bone with blood vessels 
and branch to form rings around osteoblasts and osteo-
cytes, as described in [147]. Next to a baseline routine se-
cretion, these fibers release catecholamines to the BM 
space [148] in response to circadian rhythm oscillations 
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with especially NOR levels peaking during night and EPI 
release instead less dependent on circadian oscillations 
[149]. As shown by Heidt et al., chronic stress applied to 
mouse models induces a surplus release of NOR, which 
then reduces CXCL12 levels in the BM through activation of 
β3-ARs. Chronic stress as a consequence activates HSCs 
and increased their proliferation and differentiation, 
thereby causing increased output of inflammatory cells and 
inducing functional decline of HSCs [150]. Neural regula-
tion of the BM as well as the interplay of the nerve system 
with the bone, BM and immunity has been recently re-
viewed in [151]. Several other cell types residing in the BM 
(e.g. immune cells [152], mast cells [153], HSPCs [154]) 
were also shown to produce catecholamines, which adds 
another layer of complexity to the regulation of adrenergic 
signaling in the BM.  

Various cell types in the BM – among which niche cells 
as well as HSPCs themselves – are known to express ARs 
and respond to catecholamines as part of their baseline 
regulatory program or of demand reactions (Table 1) [155-
158]. The circadian rhythm influences the release of HSPCs 
from the BM into circulation (with a maximum of mobilized 
HSPCs at five hours after light onset and another five hours 
after the onset of darkness), in part via catecholamine se-
cretion. This cyclic release of HSPCs is in antiphase with the 
expression of the chemokine CXCL12 responsive for HSPCs 
homing and retention to the BM [156]. Interestingly, latter 
are regulated by core genes of the molecular clock through 
circadian NOR secretion by the SNS. Nerve fibers locally 
deliver these adrenergic signals to the BM where β3-ARs 
expressing stromal cells respond with CXCL12 downregula-
tion [156]. Furthermore, granulocyte colony-stimulating 
factor (G-CSF) produced in response to systemic bacterial 
infections, mobilizes HSPCs by suppressing CXCL12 secre-
tion from osteoblasts via NOR/EPI release [95, 156, 158, 
159]. NOR release also reinforces the egress of HSPCs from 
the BM by acting on CAR (CXCL12 abundant reticular) cells 

expressing β3-ARs, in which exposure to NOR leads to deg-
radation of specificity protein 1 (Sp1), a protein required 
for CXCL12 expression [156, 160, 161]. Consistently, low 
catecholamine levels associate with enhanced CXCL12 lev-
els and enhanced homing and retention of CXCR4 express-
ing HSPCs in BM niches [161]. Thus, one major role of cate-
cholamines in the BM is to regulate the HSPC pool via con-
trolling their egress [161] (reviewed in more detail in 
[144,162-167]). Furthermore, adrenergic signals were as-
sociated with circadian leukocyte recruitment to the BM. 
Perivascular SNS fibers acting on β-ARs that are expressed 
on non-hematopoietic cells lead to differential circadian 
oscillations in the expression of adhesion cell molecules 
and chemokines, thus governing CXCR4-independent leu-
kocyte recruitment to the BM [168]. The influence of cate-
cholamines on cancer cells and the roles of such processes 
on the BM colonization by cancer cells are still understud-
ied. 

 
HOW DO STRESS AND CATECHOLAMINES FACILITATE 
BM METASTASIS? 
HSPC BM homing and retention is regulated by the 
CXCL12/CXCR4 molecular axis [169, 170]. As discussed 
above, this pathway is regulated by adrenergic signals, 
which in part are released under the influence of circadian 
rhythms [95, 156, 158]. While these molecular cues are 
best characterized for healthy HSPCs, some data suggest 
that they are co-used by cancer cells. As such, cancer cells 
may also express the CXCR4 receptor and migrate towards 
BM osteoblasts releasing CXCL12 (Figure 1) [171]. Consist-
ently, BM areas showing metastasis also display enhanced 
CXCL12 expression [172]. In experimental mouse models, 
inhibition of CXCL12 was furthermore shown to reduce BM 
homing of injected multiple myeloma cells and thereby to 
impair disease progression [171, 172]. Another molecular 
axis promoting the colonization of bones by cancer cells is 
the receptor activator of NF-κB (RANK)/ receptor activator 

TABLE 1: Expression of ARs on the surface of different BM cell type in rodents. 
 

BM cell type 
Type of adrenergic receptors expressed 

Reference 

α1a-AR α1b-AR α1d-AR α2a-AR α2b-AR α2c-AR β1-AR β2-AR β3-AR 

Adipocytes       + + + [201] 

Fibroblast like 
cells 

 +  +    + + [156] 

HSPCs + + + + + +  +  [202] 

Macrophages    + + + + +  [203] 

MSCs + +  +  + + + + [156] 

Osteoblasts +         [156] 

Osteoclasts  + +     +  [156] 

T lymphocytes + +  + + +  +  [85] 
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of NF-κB ligand (RANKL) pathway [171, 173]. RANKL re-
leased by osteoblasts was shown to promote BM coloniza-
tion and retention of metastatic cancer cells expressing the 
RANK receptor. RANK expression on tumor cells further-
more promotes their migration to the bones, while inhibi-
tion of RANKL/RANK signaling resulted in reduced bone 
metastasis in an experimental breast cancer model (Figure 
1) [171, 173]. Notably, RANKL producing osteoblasts are 
the main source responsive to sympathetic nerves in bones 
because of their very high expression of β2-AR. The stimu-
lation of these receptors by NOR was indeed shown to 

induce RANKL synthesis [174] and thereby promoting BM 
metastasis [170]. Another less prominently studied path-
way is the CXCR6/CXCL16 molecular axis recently involved 
in homing of prostate cancer cells to the bones. While 
mainly expressed by antigen-presenting cells, CXCL16 is 
also produced by bone tissues including osteocytes and 
was shown to be involved in migration of CXCR6 expressing 
prostate cancer cells to this site (Figure 1) [85, 171, 175]. 

Cancer cells may also reach the BM without specific 
cues, as DTCs that are part of the circulating blood flow. 
Enhanced sympathetic activity in the bone microenviron-

FIGURE 1. EPI and NOR (E/N, blue square) are released in the BM microenvironment from SNS fibers entering the bone with blood vessels. 

EPI and NOR influence interaction of tumor cells with -ARs -expressing BM niche cells, e.g. CXCL12 abundant reticular (CAR) cells, osteo-
blasts and osteoclasts through different axis. In response to adrenergic signaling niche cells release (1) CXCL16 chemokine (red) that inter-
acts with CXCR6 expressed on the surface of several tumor cells types, (2) CXCL12 (orange) that chemoattracts CXCR4 expressing cancer 
cells and (3) RANKL (green) protein that binds RANK-expressing malignant cells. In addition, adrenergic signaling in osteoblasts and also 
directly in tumor cells themselves can promote release of angiogenic factors thus promoting BM colonization by tumor cells through in-
creased blood vessel density. 
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ment increases the density of blood vessels, which may 
contribute to BM colonization in patients with circulating 
DTCs [176]. In line, EPI and NOR were shown to increase 
the synthesis of pro-angiogenic factors (e.g. VEGF) thereby 
stimulating angiogenesis and the formation of abnormal 
vessels with higher permeability (Figure 1) (as reviewed by 
Chakroborty et al. [10]). Mulcrone et al. for example re-
cently also showed that stimulation of β2-AR-expressing 
osteoblasts using the non-selective β-adrenergic agonist 
isoproterenol effectively induced VEGF-a expression there-
by increasing the vascular density in the mouse BM and 
promoting BM metastasis (Figure 1) [176]. Importantly, 
specific blockade of the VEGF-a/VEGF-R axis abrogated the 
stimulatory effect of isoproterenol on tumor seeding in 
bones [176], suggesting direct involvement of this molecu-
lar axis in the pro-metastatic effect of catecholamines at 
this site. 

Beyond the mechanisms discussed above, cancer cell 
retention in BM niche structures may be promoted by the 
expression of specific adhesion molecules such as cadher-
ins, integrins or annexins that promote tumor cell binding 
to BM stromal cells and the bone matrix [86]. For example, 
osteoblasts and endothelial cells were shown to produce 
annexin II for which the receptor is widely expressed in 
cancer cells [169, 177]. Adhesion can also be mediated by 
E-cadherin, which was found to be expressed by cancer 
cells and to form adherent junctions with N-cadherin from 
osteogenic cells. Furthermore, αVβ3 and αVβ5 integrins 
expressed by tumor cells mediate binding to bone extracel-
lular matrix proteins such as fibronectin, vitronectin or 
osteopontin as nicely reviewed in [171]. Interestingly, 
stress behavior and associated increased levels of cate-
cholamines have been described to regulate the expression 
of adhesion molecules in cancer cells. For example, high 
levels of NOR induced a β1-integrin-mediated increase of 
the adhesion of human breast carcinoma cells with the 
vascular endothelium in an in vitro model of human breast 
cancer. Importantly, this effect was mediated by β-ARs and 
could be abrogated by β-blockers [178]. Furthermore, re-
straint stress and the associated increases in catechola-
mines induced increased levels of FAK in an orthotopic 
mouse model of human ovarian cancer, thereby affecting 
adhesion of tumor cells to the extracellular matrix, which 
contributed to cancer progression [58]. Very recently, Ob-
radovic et al. showed that increase in stress hormones 
levels during breast cancer progression mediated activa-
tion of glucocorticoid receptors in tumor cells promoted 
breast cancer metastasis through induction of signaling 
networks and protein kinases known to facilitate breast 
cancer progression [179]. Whether catecholamines regu-
late adhesion of DTCs to the BM matrix is still under-
investigated. 
 

COMPETITION OF NEOPLASTIC STEM CELLS WITH 
HEALTHY BM HSCs 
As discussed above, healthy HSCs reside in specific BM 
niches, which however neoplastic cells modify to better 
serve their own requirements. As shown by imaging exper-

iments, leukemic cells specifically engraft in microvascular 
BM domains showing high E-selectin and CXCL12 expres-
sion levels, where HSCs are also known to localize, indicat-
ing a possible competition between malignant and healthy 
cells [180]. Furthermore, transplantation of MLL-AF9 AML 
cells in immunodeficient mice transformed the HSC niche 
by reducing the density of the SNS nerve network and re-
modeled the BM microenvironment by depleting niche 
cells required for the maintenance of healthy HSCs (e.g. 
arteriole associated stromal cells) and expanding leukemia-
supportive cells (e.g. more differentiated mesenchymal 
progenitors). Thus, manipulation of the adrenergic system 
could provide a strategy to re-install conditions favoring 
healthy HSCs over LSCs [181]. This notion is further sup-
ported by the work from Arranz et al. who showed a dis-
turbed niche consisting in reduced numbers of sympathetic 
nerve fibers, supporting nestin+ MSCs and Schwann cells in 
the BM of myeloproliferative neoplasia patients as well as 
in mouse models. Sympathetic regulation of nestin+ MSCs 
was restored by pharmacological treatment with a β3-
adrenergic agonist leading to improvement in BM fibrosis 
and restoration of healthy over malignant hematopoiesis 
[182]. 

Neoplastic cells from solid tumors may also outcom-
pete healthy HSPCs from niches via selected molecular 
cues. Both the endosteal zone and the perivascular niche, 
known to harbor healthy HSPCs, are also colonization sites 
for tumor cells [89, 177]. This is perhaps due to the fact 
that neoplastic cells co-use molecular signals regulating 
healthy HSPCs BM homing and retention, as mentioned 
above. Metastatic prostate cancer cells for example were 
shown to use CXCR4/CXL12 [183, 184], Annexin II/Annexin 
II receptor [185] as well as CXCR7 [186] pathways to estab-
lish themselves in the bone [187–189]. As an example, 
prostate cancer cells were shown to co-localize with HSCs 
in the BM niche, both with a preferred binding to annexin-
2 expressing osteoblasts [190]. However, prostate cancer 
cells showed superior ability to bind to common receptors 
providing them with an advantage over HSCs [191]. Inter-
estingly, there is no direct link between the size of the pri-
mary tumor and the prevalence of DTCs in the BM of can-
cer patients. A limited number of available niche sites in 
the BM was discussed as possible cause for this phenome-
non [192]. Of note, HSCs derived from animals with dis-
seminated prostate carcinoma were found to express low-
er levels of niche adhesion molecules and receptors (e.g. 
NOTCH, angiopoietin-1 receptor (TIE2)) and transcription 
factors regulating HSC self-renewal and proliferation (B-cell 
specific Moloney murine virus integration site 1 (BMI1) and 
inhibitors of CDK4 A (INK4A)) [190], suggesting that these 
aggressive prostate carcinoma cells actively alter HSCs to 
vacate the niche. On the other side, as described above, 
DTCs take advantage of the RANKL/RANK signaling path-
way induced by sympathetic activation to migrate to the 
BM and liberation of a few niche spaces by mechanisms 
described above would further give the cancer cells an 
advantage to settle in their new microenvironment. 
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INFLUENCE ON TUMOR ASSOCIATED MACROPHAGES 
(TAMs) AND ANTI-TUMOR IMMUNITY 
The immune system is a major player during tumor devel-
opment and progression. Catecholamines, which are 
known to profoundly impact immune cells, may thus also 
exert pro-tumorigenic effects via immune modulation. For 
example, TAMs, which have been linked to cancer 
progression, metastasis and resistance to therapy [193], 
were shown to express ARs and respond to NOR by 
secretion of proangiogenic factors and matrix 
metalloproteinases (MMPs) promoting tumor-angiogenesis 
[194, 195]. Adrenergic stimulation furthermore increases 
cAMP and PGE2 levels within the tumor, which further 
mediates immune-suppressing effects [196]. More recently, 
EPI was shown to cooperate with inflammatory cytokines 
(e.g. TNFα) in the regulation of several immunosuppressive 
factors in both cancer cells and macrophages via COX2 
activity. Consistently, EPI-dependent immune suppression 
was reversed by treatment with the COX2-inhibitor 
celecoxib [197]. Moreover, in a rat model of highly malig-
nant syngeneic CRNK-16 induced leukemia, psychological 
stress or injection of stress hormones accelerated leuke-
mia-induced death. Treatment with the β-AR blocker 
nadolol reversed this pro-leukemogenic effect and in-
creased baseline survival rates. Since reduced NK cell activ-
ity was observed in animals exposed to stress hormones, 
impaired anti-tumor immunity was interpreted to cause 
the accelerated leukemia progression [198]. The influences 
of catecholamines on the immune system and possible 
links to anti-tumor immunity are elegantly reviewed 
elsewhere [8, 199, 200]. 

 

CONCLUSION 
Different types of stress and catecholamine release influ-
ence cancer pathogenesis [2] via regulation of the BM envi-
ronment. Cancer cells of hematopoietic as well as solid 

tumor origin use BM niches as “safe harbor” promoting 
their growth and therapy resistance. They modulate the 
BM niche by secretion of proteins and cytokines and dis-
rupt normal hematopoiesis by altering its adrenergic inner-
vation. Catecholamines regulate the BM at multiple levels 
and further exert pro-tumorigenic effects by directly acting 
on AR-expressing tumor cells. Treatment with beta-
blockers might be beneficial for the disease evolution in 
cancer patients, but the benefit is probably limited to cer-
tain tumor subtypes and stages. A better understanding of 
the precise molecular cues and cellular mechanisms under-
lying pro-tumorigenic effects of catecholamines requires 
further investigation but could eventually provide a ra-
tionale for more selected pharmacological intervention 
studies that may benefit patients with cancer. 
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