
Tensor network factorizations: Relationships between brain 
structural connectomes and traits

Zhengwu Zhanga,*, Genevera I. Allenb,c, Hongtu Zhud, and David Dunsone

aDepartment of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 
USA

bDepartments of Statistics, Computer Science, Electrical and Computer Engineering, Rice 
University, Houston, TX, USA

cNeurological Research Institute, Baylor College of Medicine, Houston, TX, USA

dDepartment of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 
USA

eDepartment of Statistical Science, Duke University, Durham, NC, USA

Abstract

Advanced brain imaging techniques make it possible to measure individuals’ structural 

connectomes in large cohort studies non-invasively. Given the availability of large scale data sets, 

it is extremely interesting and important to build a set of advanced tools for structural connectome 

extraction and statistical analysis that emphasize both interpretability and predictive power. In this 

paper, we developed and integrated a set of toolboxes, including an advanced structural 

connectome extraction pipeline and a novel tensor network principal components analysis (TN-

PCA) method, to study relationships between structural connectomes and various human traits 

such as alcohol and drug use, cognition and motion abilities. The structural connectome extraction 

pipeline produces a set of connectome features for each subject that can be organized as a tensor 

network, and TN-PCA maps the high-dimensional tensor network data to a lower-dimensional 

Euclidean space. Combined with classical hypothesis testing, canonical correlation analysis and 

linear discriminant analysis techniques, we analyzed over 1100 scans of 1076 subjects from the 

Human Connectome Project (HCP) and the Sherbrooke test-retest data set, as well as 175 human 

traits measuring different domains including cognition, substance use, motor, sensory and 

emotion. The test-retest data validated the developed algorithms. With the HCP data, we found 

that structural connectomes are associated with a wide range of traits, e.g., fluid intelligence, 

language comprehension, and motor skills are associated with increased cortical-cortical brain 

structural connectivity, while the use of alcohol, tobacco, and marijuana are associated with 

decreased cortical-cortical connectivity. We also demonstrated that our extracted structural 

connectomes and analysis method can give superior prediction accuracies compared with 

alternative connectome constructions and other tensor and network regression methods.
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1. Introduction

The human brain structural connectome, defined here as the collection of white matter fiber 

tracts connecting different regions of the brain [Parkand Friston, 2013; Fornito et al., 2013; 

Craddock etal., 2013; Jones et al., 2013], plays a crucial role in how the brain responds to 

everyday tasks and life’s challenges. There has been a huge interest in studying connectomes 

and understanding how they vary for individuals in different groups according to traits and 

substance exposures. The majority of such studies have focused on functional connectomes 

[Park and Friston, 2013; Finn et al., 2015; Bjork and Gilman, 2014; Smith et al., 2015; Price, 

2012; Toschi et al., 2018] due to the difficulties of recovering reliable structural 

connectomes [Maier-Hein et al., 2017; Reveley et al., 2015]. Recent advances in noninvasive 

brain imaging and preprocessing have produced huge brain imaging datasets (e.g., the 

Human Connectome Project [Van Essen et al., 2013] and the UK Biobank [Miller et al., 

2016]) along with sophisticated tools to routinely extract brain structural connectomes for 

different individuals. Relying on high quality imaging data and many different traits for a 

large number of study participants obtained in the Human Connectome Project (HCP) 

[Glasser et al., 2013; 2016b], this article focuses on analyzing relationships between brain 

structural connectomes and different traits using novel data science tools applied to the HCP 

data.

Estimation of the structural connectome often relies on a combination of diffusion magnetic 

resonance imaging (dMRI) and structural MRI (sMRI). dMRI collects information on the 

diffusion of water molecules in the brain [Behrens et al., 2003; Parker et al., 2003; Jbabdi et 

al., 2015]. As water diffusion tends to occur along fiber tracts in white matter, dMRI 

provides information on the locations and directions of the tracts. Tractography [Basser et 

al., 2000; Descoteaux et al., 2009; Girard et al., 2014] constructs tracts from dMRI data, 

yielding a very large number of 3D curves connecting different brain regions. These data are 

enormous and complex, and statistical analysis of them is not straight forward. Challenges 

comes from several aspects. First, the dimensionality of each subject’s data (p) is extremely 

large (each subject usually contains >1 million 3D curves), but the sample size (n) is 

relatively small. This problem is referred to the large p small n problem in statistics 

[Dunson, 2018]. Second, the data are geometrically structured and it is unclear how to 

efficiently summarize the geometric information and link this information to traits and 

phenotypes. Last but not least, alignment and building correspondence between tracts across 

subjects are very hard. For these reasons, it is typical to parcellate the brain into anatomical 

regions of interest (ROIs) using sMRI [Desikan et al., 2006; Destrieux et al., 2010] 

according to pre-defined templates [Desikan et al., 2006; Destrieux et al., 2010; Glasser et 

al., 2016a]. This allows coarse alignment of different individuals (by mapping the template 

to individual space), and connectome data reduction into a connectivity matrix.
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Although reconstruction errors inevitably occur [Maier-Hein et al., 2017; Reveley et al., 

2015; Thomas et al., 2014], advances in imaging techniques [Setsompop et al., 2012] and 

preprocessing pipelines [Girard et al., 2014; Smith et al., 2012; Zhang et al., 2018; Donahue 

et al., 2016] have improved the reconstruction of structural connectomes [Donahue et al., 

2016]. In this paper, we will explore whether existing structural connectome reconstruction 

together with proposed novel analysis methods are sufficient to detect (potentially subtle) 

associations between connectomes and various human traits [Ingalhalikar et al., 2014; Shah 

et al., 2017; Lim and Kang, 2015]. We will also compare the structural connectomes with 

other type of connectomes, eg., local structural connectomes [Powell et al., 2018; Yeh et al., 

2016], in predicting traits. This comprehensive connectome-trait analysis will give us a 

systematic understanding of which and how human traits are related to the structural 

connectome.

In our analysis framework, we rely on a new structural connectome processing pipeline, and 

improved methods for representing brain connectomes [Zhang et al., 2018]. Previous 

statistical approaches focus primarily on reducing the connectome to a binary adjacency 

matrix containing 0–1 indicators of any fiber connections between ROIs. The adjacency 

matrix is then further reduced to topological summary statistics of the brain graph, providing 

low-dimensional numerical summaries to be used in statistical analyses [Watts and Strogatz, 

1998; Durante et al., 2017; Sporns and Zwi, 2004]. Such connectome simplification is 

appealing due to its interpretability, but leads to an enormous loss of information. Instead, 

we use a tensor network representation that incorporates multiple features measuring the 

strength and nature of white matter tracts between each pair of brain ROIs. This 

representation better preserves information in the tractography data, and allows flexibility in 

examining associations with traits. We extend principal components analysis (PCA) to 

tensor network data via a semi-symmetric tensor decomposition method, which produces 

brain connectome PC scores for each subject. These scores can be used for visualization and 

efficient inference on relationships between connectomes and human traits. The main 

contributions of this paper can be summarized as follows:

1. In conjunction with a recent dMRI preprocessing pipeline PSC (Population-

based Structural Connectome [Zhang et al., 2018] analysis pipeline, available at 

https://github.com/zhengwu/PSC_Pipeline), this paper provides additional 

flexible statistical toolboxes to the neuroscience community for statistically 

analyzing structural connectomes in large cohort studies. The toolboxes are 

publicly available along with the PSC GitHub repository, providing functions of 

1) mapping high-dimensional connectomes to low-dimensional space for 

visualization; 2) hypothesis testing of connectome distribution difference; and 3) 

relating brain connectomes with human traits. The code and test data can be 

downloaded from https://github.com/zhengwu/Tensor.

2. We develop a novel tensor network PCA (TN-PCA) method to map high-

dimensional tensor network data to low-dimensional vectors for network-trait 

visualization and subsequent statistical analyses. Different from previous 

multiplex network analysis methods which extract topological features such as 

motifs and community structures [Bentley et al., 2016; Bassett et al., 2011; 
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Battiston et al., 2017; De Domenico et al., 2016], TN-PCA deals with the “raw” 

network data - symmetric matrices - and represents them with basis networks and 

coefficients. The objective function in our method is to minimize some 

discrepancy between recovered networks and original networks. Topological 

features can simplify statistical analyses and reduce dimensionalities of the data, 

while maintaining interpretability. However, our methods are more data adaptive 

and do not restrict consideration to a pre-defined set of features, which may lead 

to a loss of information about aspects of brain structure that relate to traits. By 

comparing with state of the art tensor and network regression methods, we 

demonstrate good predictive power of TN-PCA and its ability in explaining more 

detailed relationship between connectomes and traits.

3. Based on our analysis of data from 1076 individuals and 175 traits, we find 

strong relationships between structural cortical-cortical connectomes and 

multiple traits, particularly those related to cognition and substance use. Our 

systematical analyses show that traits related to positive lifestyles, such as good 

reading ability, high fluid intelligence, and good motor skills, tend to have 

positive correlations on cortical-cortical brain connections. On the other hand, 

substance use, including binge drinking, tobacco, and marijuana use, can reduce 

cortical-cortical connections. Among all traits, the substance use, especially high 

alcohol use, degenerates structural connectomes. The proposed method achieves 

about 81% classification accuracy when classifying binge drinkers from the ones 

with no or little alcohol.

2. Methods

2.1. Data sets

We focus on three data sets in this paper, which contain about 1221 dMRI scans form 1067 

subjects.

Human Connectome Project (HCP) data set: The HCP aims to characterize human brain 

connectivity in about 1200 healthy adults and to enable detailed comparisons between brain 

circuits, behavior and genetics at the level of individual subjects [Van Essen et al., 2012]. 

Customized scanners were used to produce high-quality and consistent data to measure brain 

connectivity. The release in 2017, containing various traits, structural MRI (sMRI) and 

diffusion MRI (dMRI) data for 1065 healthy adults, can be easily accessed through 

ConnectomeDB. The rich trait data, high-resolution dMRI and sMRI make it an ideal data 

set for studying relationships between connectomes and human traits.

A full dMRI session in HCP includes 6 runs (each approximately 10min), representing 3 

different gradient tables, with each table acquired once with right-to-left and left-to-right 

phase encoding polarities, respectively. Each gradient table includes approximately 90 

diffusion weighting directions plus 6 b0 acquisitions interspersed throughout each run. 

Within each run, there are three shells of b = 1000, 2000, and 3000 s/mm2 interspersed with 

an approximately equal number of acquisitions on each shell. The directions were optimized 

so that every subset of the first N directions is also isotropic. The scans were done by using 
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the Spin-echo EPI sequence on a 3 T customized Connectome Scanner. See Van Essen et al., 

[2012] and Glasser et al., [2013] for more details about the data acquisition and 

preprocessing of the HCP. Such settings give the final acquired image with isotropic voxel 

size of 1.25 mm, and 270 diffusion weighted scans distributed equally over 3 shells.

HCP test-retest data set: A subset of HCP participants were recruited to undergo the full 3T 

HCP imaging and behavioral protocol for a second time. We identified and successfully 

processed structural connectome data from 44 subjects (88 scans).

Sherbrooke test-retest data set: Different from the high-resolution HCP data set, this data set 

[Cousineau et al., 2016; Zhang et al., 2016; Chamberland et al., 2017] represents a clinical-

like acquisition using a 1.5 T SIEMENS Magnetom. There are 11 subjects with 3 

acquisitions for each subject. A total of 33 acquisitions, from 11 healthy participants, were 

included. The diffusion space (q-space) was acquired along 64 uniformly distributed 

directions, using a b-value of b = 1000 s/mm2 and a single b0 (=0 s/mm2) image. The dMRI 

has a 2 mm isotropic resolution. An anatomical T1-weighted 1 × 1 × 1 mm3 MPRAGE 

(TR/TE 6.57/2.52 ms) image was also acquired.

2.2. Brain connectome extraction

From the raw diffusion MRI (dMRI) and structural MRI (sMRI) data, we want to reliably 

extract the brain structural connectome data. Fig. 1 illustrates our data processing pipeline.

HARDI tractography construction: A reproducible probabilistic tractography algorithm 

[Girard et al., 2014; Maier-Hein et al., 2017] is used to generate the whole-brain 

tractography data set of each subject for all data sets. The method borrows anatomical 

information from high-resolution T1-weighted imaging to reduce bias in reconstruction of 

tractography. Also the parameters were selected based on evaluation of various global 

connectivity metrics (e.g., valid connections, invalid connections, and average bundle 

coverage) in [Girard et al., 2014]. In the generated tractography data, each streamline has a 

step size of 0.2 mm. On average, 105 voxels were identified as the seeding region (white 

matter and gray matter interface region) for each individual in the HCP data set (with 

isotropic voxel size of 1.25 mm). For each seeding voxel, we initialized 16 streamlines to 

generate about 106 streamlines for each subject. For the Sherbrooke test-retest data set, we 

also generated about 106 streamlines for each subject. Diffusion MRI data in the Sherbrooke 

test-retest were resampled to have isotropic voxel size of 1.0 mm and we initialized 10 

streamlines in each seeding voxel.

Network node definition: We use the popular Desikan-Killiany atlas [Desikan et al., 2006] to 

define brain regions of interest (ROIs) corresponding to the nodes in the structural 

connectivity network. The Desikan-Killiany parcellation has 68 cortical surface regions with 

34 nodes in each hemisphere. Freesurfer software [Dale et al., 1999; Fischl et al., 2004] is 

used to perform brain registration and parcellation. Fig. 1 column (a) illustrates the Desikan-

Killiany parcellation and reconstructed tractography data after subsampling.

Connectome tensor extraction: With the parcellation of an individual brain, we extract a set 

of weighted matrices to represent the brain’s structural connectome. To achieve this goal, for 
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any two ROIs, one needs to first extract the streamlines connecting them. Alignment of the 

parcellation (on T1 image) and tractography data (dMRI image) is done using Advanced 

Normalization Tools (ANTs) [Avants et al., 2011]. To extract streamlines connecting ROI 

pairs, several procedures are used to increase the reproducibility: (1) each gray matter ROI is 

dilated to include a small portion of white matter region, (2) streamlines connecting multiple 

ROIs are cut into pieces so that we can extract the correct and complete pathway and (3) 

apparent outlier streamlines are removed. Extensive experiments have illustrated that these 

procedures can significantly improve the reproducibility of the extracted weighted networks, 

and readers can refer to Zhang et al., [2018] for more details.

To analyze the brain as a network, a scalar number is usually extracted to summarize each 

connection. For example, in the current literature [Fornito et al., 2013; Smith et al., 2013; 

Jones et al., 2013], fiber count is considered as a measure of the coupling strength between 

ROI pairs. However, fiber count can be unreliable due to tractrography algorithms and noise 

in the dMRI data [Maier-Hein et al., 2017; Fornito et al., 2013]. Instead of only using the 

count as the “connection strength”, we include multiple features of a connection to generate 

a tensor network for each brain. The tensor network has a dimension of P × P × M, where M 
represents the number of features and P represents the number of ROIs. Each of the M 
matrices is a weighted network and describes one aspect of the connection. As illustrated in 

the third column of Fig. 1, the following features are extracted.

1. Endpoint-related features: We consider the features generated from the end 

points of streamlines for each ROI pair. The first feature we extract is the number 

of endpoints, which is the same as the count of streamlines. Another feature we 

extracted is connected surface area (CSA), which is proposed in Zhang et al., 

[2018]. To extract CSA, at each intersection between an ROI and a streamline, a 

small circle is drawn, and the total area covered by these circles is the CSA. A 

weighted version of CSA is calculated by dividing the total surface area of the 

two ROIs.

2. Diffusion-related features: Diffusion metrics, such as FA, characterize the water 

diffusivity at a particular location or voxel. We extract these diffusion metrics 

along white matter streamlines for each ROI pair.

3. Geometry-related features: Geometric features such as the average length and 

cluster configuration [Zhang et al., 2018] that can characterize the geometry of 

extracted streamlines are extracted. The average fiber length is easy to get. To get 

the cluster number in each connection, we use the Quickbundle method 

[Garyfallidis et al., 2012] with a fixed threshold. The cluster number reflects the 

geometry of the bundle and is robust to some confounding effects in the 

tractography reconstruction, such as the seeding strategy.

Applying the pipeline in Fig. 1, we processed the Sherbrooke test-retest data set with 11 

subjects and 3 repeated scans per subject (for our reproducibility study), and the HCP data 

set with 1065 subjects (from the release of HCP data set in 2017) [Van Essen et al., 2013]. 

For each subject, 12 weighted networks were extracted: three endpoint-related features 

(count of streamlines, connected surface area (CSA) and weighted CSA), four diffusion-

related features (mean and max values of fractional anisotropy (FA) and mean diffusivity 

Zhang et al. Page 6

Neuroimage. Author manuscript; available in PMC 2019 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(MD)), and five geometry-related features (cluster number, average length and mean 

deviations from a template streamline).

2.3. Traits identification

HCP uses a reliable and well-validated battery of measures that assess a wide range of 

human functions, which are called traits in this paper. The core of this battery is comprised 

of the tools and methods developed by the NIH Toolbox for Assessment of Neurological and 

Behavioral function [Gershon et al., 2013]. The Toolbox includes measures of cognitive, 

emotional, motor and sensory processes in healthy individuals. These measures were 

selected using a consensus building process, and were developed and validated using state-

of-the-art assessment methodologies, including item response theory and computer adaptive 

testing. Moreover, five important areas not fully covered by the Toolbox were also included 

by the HCP - additional measures of visual processing; personality and adaptive function; 

delay discounting (as a measure of self-regulation and neuroeconomic decision making); 

fluid intelligence (as a measure of higher order relational reasoning); and behavioral 

measures of emotion processing. Specific trait scores for each subject can be easily accessed 

from the HCP data sharing website (ConnectomeDB: http://www.humanconnectome.org/).

In our analysis, we identified 175 trait measures for each subject in the HCP data set. The 

175 trait measures are from eight categories describing a human’s status and behavior: 

cognition, motor, substance use, psychiatric and life function, sense, emotion, personality, 

and health. Each of these trait measures is classified as a binary, an ordinal or a continuous 

variable (by manual inspection of the trait definition). Fig. 2 shows a plot of the proportion 

of non-NAs for each trait and the trait type. A detailed description of these traits is included 

in the Excel spreadsheet of Supplementary Material II. In total, we will analyze relationships 

between 13,176 (1098 scans and 12 weighted networks per scan) weighted networks and 

186,375 (1065 subjects in the HCP and 175 traits per subject) trait measures.

2.4. Tensor-network principal components analysis

Our focus is on inferring relationships between brain structural connectomes and human 

traits. To address this goal using the extracted connectome representation, it is necessary to 

develop a statistical approach to assess associations between tensor network representations 

of the brain connectome and traits. A key problem in this respect is how to estimate low-

dimensional features summarizing the brain tensor network without losing valuable 

information. If the connectome data for each individual could be reorganized into a vector, 

Principal Components Analysis (PCA) could be used to extract brain connectome PC scores 

for each individual. However, vectorizing the network would discard valuable information 

about the network structure. Instead, we propose to use a semi-symmetric tensor 

generalization of PCA, named tensor-network PCA (TN-PCA), to perform the 

dimensionality reduction.

To begin, we need some notation which is largely adapted from Kolda and Bader [2009b]. 

Let 𝒳 ∈ ℝ
I1 × I2 × … × IN be an N-mode tensor, and we denote matrices as X, vectors as x 

and scalars as x. The outer product is denoted by ∘ :x ∘ y = xyT . The scalar product of two 
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tensors 𝒜, ℬ ∈ ℝ
I1 × I2 × … × IN is defined as 𝒜, ℬ = ∑i1

∑i2
…∑iN

ai1i2…iN
bi1i2…iN

. The 

Frobenius norm of a tensor 𝒳 is 𝒳 F = 𝒳, 𝒳 . The n-mode multiplication of tensor 

𝒳 ∈ ℝ
I1 × I2 × … × IN with a matrix A ∈ ℝ

Jn × In, denoted by 𝒳 × nA, gives a tensor in 

ℝ
I1 × …In − 1 × Jn × In + 1… × IN, where each element is the product of mode-n fiber of 𝒳

multiplied by A. When A degenerates to a vector a, i.e. a ∈ ℝ
In, we have 

𝒳 ×n a ∈ ℝ
I1 × …In − 1 × In + 1… × IN, which is an N − 1-mode tensor.

For simplicity, we will only consider three-mode tensors here, but all of the methods can be 

easily extended to higher-order tensors. We will work with a tensor network, 𝒳 ∈ ℝP × P × N,
which is a concatenation of network adjacency matrices Ai ∈ ℝP × P for i = 1, …, N, where P 

represents the number of nodes and N represents the number of subjects. For example, if we 

only use the count feature, by concatenating all subjects’ count adjacency matrices in the 

HCP data, we get a tensor of 68 × 68 × 1065 (if all features are included, we will have a 

tensor of 68 × 68 × 12 × 1065). We say that our tensor network is semi-symmetric as every 

frontal slice, 𝒳:,:,n, is a symmetric matrix: 𝒳i, j, n = 𝒳 j, i, n∀ i, j, n .

Given the special structure of our semi-symmetric tensor network, existing tensor 

decompositions are not ideal for conducting TN-PCA. Consider an extension of the popular 

Tucker model [Tucker, 1966] which forces the first two Tucker factors to be equal to account 

for the semi-symmetric structure:

𝒳 ≈ 𝒟 × 1V × 2V × 3U, (1)

where VP × KV
and UN × KU

 are orthogonal matrices that form the Tucker factors and 

𝒟KV × KV × KU
 is the Tucker core; under certain restrictions on the Tucker core, this model 

will result in a semi-symmetric tensor. Interestingly, when standard algorithms for 

estimating Tucker models (e.g. Higher-Order SVD and Higher-Order Orthogonal Iteration, 

HOSVD and HOOI, respectively [Tucker, 1966; De Lathauwer et al., 2000a; Kolda and 

Bader, 2009a]) are applied to semi-symmetric tensors, they result in tensor factorizations 

that follow model (1); this fact can be easily verified and is also discussed in De Lathauwer 

et al., [2000a]. Despite the ease of implementation of Tucker models for semi-symmetric 

tensors, these approaches are not ideal for studying and embedding brain networks. The 

semi-symmetric Tucker core makes it difficult to directly interpret the effects and prevalence 

of tensor network components (eigenvectors associated with V) across the population. 

Further, the assumption that the population factors, U, are orthogonal is likely overly 

restrictive and limits the Tucker model’s ability to fit brain connectome data well.

Because of this, we consider another popular tensor decomposition model: the CP 

decomposition, which models a tensor as a sum of rank one tensors: 𝒳 ≈ ∑k = 1
K dkvk ∘ vk ∘ uk
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[Carroll and Chang, 1970; Harshman, 1970]. As with the Tucker model, it is clear that the 

first two factors must be equivalent to yield a CP model appropriate for semi-symmetric 

tensors:

𝒳 ≈ ∑
k = 1

K
dkvk ∘ vk ∘ uk . (2)

Here, vk and uk are P and N vectors, respectively, that form the kth CP factor and dk is the 

kth positive CP scaling parameter. It is clear that (2) needs no further restrictions to yield a 

semi-symmetric tensor. Yet, this model may not be ideally suited to modeling our population 

of brain connectomes. If there are no restrictions on the CP factors V as is typical in CP 

models, then the columns of V could be highly correlated and fail to span the eigen-space of 

the series of brain networks. Hence, we propose to add an additional orthogonality constraint 

on the CP factors V, but leave U unconstrained. Note that this form of orthogonality in one 

factor but not the other is distinct from the various forms of orthogonal tensor 

decompositions proposed in the literature [Kolda, 2001].

We estimate our CP model for semi-symmetric tensors by solving the following least 

squares problem:

minimize
dk, vk, uk

𝒳 − ∑
k = 1

K
dkvk ∘ vk ∘ uk

2

2

subject to uk
Tuk = 1, vk

Tvk = 1, vk
Tv j = 0 ∀ j < k .

(3)

As with the typical CP problem, this is non-convex but is instead biconvex in v and u. The 

most common optimization strategy employed is block coordinate descent which alternates 

solving a least squares problem for all the K factors, for V with U fixed and for U with V 
fixed [Kolda and Bader, 2009a]. For our problem with the additional orthogonality 

constraints, this approach is computationally prohibitive. Instead, we propose to use a 

greedy one-at-a-time strategy that sequentially solves a rank-one problem, a strategy 

sometimes called the tensor power method [De Lathauwer et al., 2000b; Allen, 2012]. The 

single-factor CP method can be formulated as

maximize
uk, vk

𝒳 × 1 Pk − 1vk × 2 Pk − 1vk × 3uk

subject to uk
Tuk = 1, vk

Tvk = 1,

(4)

where Pk − 1 = I − Vk − 1Vk − 1
T  is the projection matrix with Vk − 1 = v1, …vk − 1  denoting 

the previously estimated factors. (4) Uses a Gram-Schmidt scheme to impose orthogonality 
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on vk via the projection matrix Pk−1; it is easy to verify that (4) is equivalent to (3) [Allen, 

2012].

To solve (4), we employ a block coordinate descent scheme by iteratively optimizing with 

respect to u and then v; each coordinate-wise update has an analytical solution:

uk =
𝒳 × 1vk × 2vk
𝒳 × 1vk × 2vk 2

, (5)

vk = Emax Pk − 1 𝒳 × 3uk Pk − 1 . (6)

Here, Emax(A) refers to the eigenvector corresponding to the maximum eigenvalue of matrix 

A. We can show that this scheme converges to a local optimum of (4). More properties about 

this greedy decomposition method, such as uniqueness, convergence and some statistical 

characteristics can be found in recent papers [Li and Huang, 2018; Sun et al., 2017] in more 

general scenarios.

Putting together these pieces, we present our tensor power algorithm for solving (3) in 

Algorithm 1. After we greedily estimate a rank-one factor, we use subtraction deflation. 

Overall, this algorithm scales well computationally compared to the Tucker model which 

requires computing multiple SVDs of potentially large matricized tensors.

Algorithm 1 Tensor power method for semi-symmetric CP decomposition (TN-PCA 

Algorithm) Let χ be a three-way tensor concatenating M brain networks. The tensor power 

method for semi-symmetric CP decomposition of χ is given as:

Let 𝒳 = 𝒳
For k = 1, …, K, do

(a) Find the semi-symmetric single-factor CP decomposition for 𝒳 . Initialize vk, uk,

and iteratively update vk, uk until convergence:

i . uk =
𝒳 × 1vk × 2vk
𝒳 × 1vk × 2vk

.

ii . vk = Emax 𝒳 × 3uk .

(b) CP Scaling: dk = 𝒳 × 1vk × 2vk × 3uk × 4wk .

(c) Projection: Pk = I − VkVk
T .

(d) Deflation: 𝒳 = 𝒳 − dkvk ∘ vk ∘ uk
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When applied to tensor brain networks, our new semi-symmetric tensor decomposition 

results in a method for TN-PCA. Specifically, each uk denotes the subject mode and each 

vkvk
T denotes the rank-one network mode. The subject-modes give the low-dimensional 

vector embeddings of the brain network for each subject; we use these to associate structural 

connectomes with traits. Each of these brain components acts similarly to the principal 

components in the regular PCA analysis. From k = 1 to K, the brain components 

v1 ∘ v1, …, vk ∘ vk  explain more and more variation of the data across subjects. The subject 

mode score uk(i) indicates the expression weight of vk ∘ vk in the subject i. We call the 

weighted sum of network modes, ∑k = 1
K dkvkvk

T, the principal brain network, which gives a 

one network summary that captures the most variation in the structural connectomes across 

all subjects. We do not enforce vk to be sparse, and therefore each network mode and the 

principal brain network are densely connected. To obtain more meaningful sparse 

connectivity, we employ a threshold-based method in our experiments.

Note that K here refers to the number of components for estimating the original tensor 𝒳. 

There are a few possible ways of selecting K for different purposes. If we want to better 

represent the original data using low-dimensional vectors, we can select K based on the 

cumulative proportion of variation explained (CPVE) by the K components. We define the 

CPVE as follows: Let Vk = v1, …, vk and Pk
V = Vk Vk

TVk
−1Vk

T; define Uk and Pk
U

analogously. The cumulative proportion of variation explained by the first k high-order 

components is 𝒳 × 1Pk
V × 2Pk

V × 3Pk
U 2/ 𝒳

2
 [Allen, 2012]. In another scenario, if our goal 

is to use Uk (the low-dimensional representation of weighted networks) for predicting traits, 

K here can be a tuning parameter of the predictive model, and we select K based on the 

prediction accuracy.

2.5. Relating connectomes to traits

To relate the networks to various traits, we rely on the low-dimensional representations UK. 

There are many advantages of using the vector UK(i) to represent the ith subject’s brain 

connectivity, e.g., (i) we recover the network from Uk(i) through ∑k = 1
K dk * Uk(i, k) * vk ∘ vk;

(ii) the low-dimensional vector representations bring us flexibility to utilize various existing 

statistical tools to study the relationship between the brain networks and human traits; and 

(iii) TN-PCA is flexible and easily deal with high-order tensors, e.g. a four-mode tensor, by 

simply include another vector in the outer product.

Hypothesis testing of distribution difference: For each trait, we sort the 1065 HCP subjects 

according to their scores, and extract two groups of subjects: 100 subjects with the highest 

trait scores and 100 subjects with the lowest scores. For discrete traits, it is sometimes not 

possible to identify exactly 100 subjects; in such cases, we randomly select subjects on the 

boundary as needed. We compare the embedded vectors of networks (rows of UK) from the 

two groups and test the null hypothesis that the two samples are from the same distribution 

against the alternative that they are from different distributions. We use the Maximum Mean 
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Discrepancy (MMD) [Gretton et al., 2012] to perform hypothesis tests. False discovery rate 

(FDR) is controlled using Benjamini and Hochberg [1995].

Relating brain connectomes with traits: We are interested in studying relationships between 

traits and brain connectomes for all HCP subjects. In particular, we are interested in two 

types of results. First, we want to see if brain structural connectomes can be used to predict 

various traits. Second, for those traits that can be predicted by brain connectomes, we would 

like to identify how the connectome changes with trait values by flagging the subset of 

connections with the largest differences.

Let Y = y1, …, yN
T be a N × 1 vector, which contains one type of trait score for each of the 

N subjects, and let Uk be an N × K matrix containing the embedded networks in ℝK for N 
subjects. Our first analysis focuses on predicting yi using brain PC scores and demographic 

covariates such as age and gender. Subjects in the HCP are randomly allocated into a 

training data set (66% of the subjects), a validation data set (17% of the subjects) and a test 

data set (17% of the subjects). We then train various machine learning methods (e.g., simple 

linear/logistic regression, random forests, support vector machines and XGboost) to predict 

the trait scores. The prediction accuracy is evaluated using the root- mean-square error 

(RMSE) for both continuous and ordinal traits and the classification accuracy for binary 

traits. To evaluate whether brain connectomes are important in predicting traits, we compare 

with a reduced model, where only demographic covariates are used as predictors. The model 

containing brain connectomes is referred to as the full model, and the model without brain 

connectomes is referred to as the baseline model.

For each trait, we define a measure ρ to evaluate the importance of brain connectomes. For 

trait p, let ψ p
f  denote the RMSE or (1-classification accuracy) of the full model, and ψ p

b for 

the baseline model. The measure ρ for trait p is calculated as ψ p
b − ψ p

f /ψ p
b . The best model 

(including the tuning parameters in each machine learning method) is selected based on the 

validation data set, and then is applied to the test data set for performance evaluation. We 

then evaluate ρ for different combinations of networks and traits.

The next question that we are interested in is, for each trait, how the connectome varies 

across levels of the trait? Depending on a trait’s type, we apply different methods to identify 

the subset of networks or edges. For continuous traits we use canonical correlation analysis 

(CCA) [Hotelling, 1936] and for categorical traits we use linear discriminant analysis (LDA) 

[Fisher, 1936]. For a continuous trait, the problem of finding a subset of edges that are 

highly correlated with the trait using CCA is equivalent to finding a direction w in ℝK (in the 

network embedding space) such that the correlation between the trait scores yi  and the 

projection scores upro j(i) = UK(i), w  are maximized, i.e.,

argmax
w ∈ ℝKCOV y, upro j = argmax

w ∈ ℝK
1
N wTUK

T Y s.t. wT * w = 1. (7)
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If we assume that both Y and rows of UK are centered, the unit vector w obtained in (7) 

describes changes of networks in the embedding space with increases of the trait score. To 

map this direction w back on to the brain network for interpretability, we let 

Δnet = s∑k = 1
K dkw(k)vk ∘ vk, where dk and vk come from the TN-PCA analysis, and s is a 

scaling parameter (which will be explained in the next paragraph). Confounding influence of 

age and gender can be regressed out from y before fitting the model in (7). For a categorical 

trait, e.g., yi ∈ 0, 1 , we use LDA to identify edge changes from low to high scores. The idea 

is to find a w in ℝK that best separates the two classes of networks. Let μ0 and μ1 be the 

means, and Σ0 and Σ1 be the covariances of the embedded networks. The separation of the 

two groups is defined in the embedding space in the following way:

S =
σbetween

2

σwithin
2 =

wTμ0 − wTμ1
2

wT Σ0 + Σ1 w
. (8)

It is clear that S achieves the maximum when w ∝ Σ0 + Σ1
−1 μ1 − μ0 .

In both CCA and LDA methods, we only identify a unit vector w, reflecting the global trend 

in network changes with increasing traits, and there is no scale information included in w. 

This makes the comparison of network changes across different traits challenging. Hence, 

we want to define a proper scale s for each trait such that Δnet reflects the magnitude of 

network changes with increases in that particular trait. Since in this paper the w’s are always 

inferred from two groups of subjects (with high and low trait scores even for continuous 

traits), we dichotomize the subjects and use their mean differences in the network 

embedding space to define s. To be more specific, for a selected trait, letting u0, u1 ∈ ℝK be 

the mean embedding vectors for subjects with low and high trait scores respectively, we 

define s = u0 − u1 .

3. Results

3.1. Comparative studies of TN-PCA model

In this section, we compare the proposed TN-PCA via CP decomposition with other tensor 

decompositions, namely the Higher-Order SVD (HOSVD) and Higher-Order Orthogonal 

Iteration (HOOI) [Tucker, 1966; De Lathauwer et al., 2000a; Kolda and Bader, 2009a].

First, we study how well the HOOI, HOSVD and our new CP algorithm for semi-symmetric 

tensor decompositions perform in simulations. We simulate data from the following semi-

symmetric tensor model: 𝒳 = 𝒟 × 1V × 2V × 3U + E, where 𝒳 is a P × P × N semi-symmetric 

tensor and E . , . , l
iid∼  Wishart(I, P) to ensure the noise follows a semi-symmetric structure. 

Also, we take D to be a diagonal tensor to most fairly compare the CP and Tucker models, 

letting 𝒟k, k, k = (2 − 0.1k) * PM . For the tensor factors, V is randomly sampled from the 
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Stiefel manifold; U is either generated from the Stiefel manifold or generated as non-

orthogonal iid norm-one Gaussian vectors to evaluate both the orthogonal and non-

orthogonal U cases. Each of our scenarios is studied for a set of tensors with size P = 100, M 
= 500 for various ranks K, and under various signal-to-noise (SNR) levels, where the SNR is 

defined as 𝒟 × 1V × 2V × 3U 2/ E
2

. We evaluate each tensor decomposition algorithm 

according to two metrics: the relative difference between the true 𝒟 and estimated 

𝒟, 𝒟 − 𝒟 2/ 𝒟 2, and the cumulative proportion of variation explained by the first K 

components. All simulations were repeated ten times with the average results reported (see 

Fig. 3).

The results presented in Fig. 1 show that our new CP model for semi- symmetric tensors 

compares favorably to the algorithms based on the Tucker model, the HOSVD and HOOI. 

This is especially true in terms of structural recovery (left columns), where our model is able 

to recover the structure at lower SNRs and when the U factors are not orthogonal. In terms 

of variance explained (right columns), our CP model shows marginal improvements over the 

Tucker model; the added flexibility of the non-diagonal Tucker core may help explain more 

variance in the data even if the lower-dimensional structural recovery is poor. In a real data 

analysis presented in Supplement I, we also demonstrate the flexibility of the proposed TN-

PCA. HOOI requires carefully tuning of K to avoid lack-of-model fit issues, but our new 

semi-symmetric CP model does not suffer from this problem (we can simply choose K that 

explains most of the variance in the data without worrying about model mis-specification).

3.2. Exploratory analysis: connectome visualization and classification

The TN-PCA approach approximates the brain tensor network using K components, with the 

components ordered to have decreasing impact. Individuals are assigned a brain connectome 

PC score for each of the K components, measuring the extent to which their brain tensor 

network expresses that particular tensor network component. In this section, we demonstrate 

how to use these PC scores for visualization of brain connectomes in large cohort studies 

and statistical analysis of connectomes, such as classification.

In the following study, we use the CSA network as an example. Fig. 4 (a) and (b) show brain 

PC scores for each of CSA networks in the Sherbrooke and HCP test-retest data sets using K 
= 3. Each marker represents multiple scans from the same subject (3 scans per subject in 

Sherbrooke and 2 scans per subject in HCP). Even using only K = 3 components (for data 

visualization), the CSA brain networks display a clear clustering pattern, suggesting that not 

only are the extracted connectomes from the repeated scans reproducible but also that we 

can distinguish between different subjects based on only three components. To formally 

assess this, we applied nearest neighbor clustering to the PC scores for different types of 

weighted networks separately (3-way tensor decomposition) and jointly (4-way tensor 

decomposition) under different K. Fig. 5 shows the results (some non-discriminative features 

are excluded based on the results in Supplementary Fig. 1).

We have the following interesting observations. First, with a moderate K, e.g, K = 10, we 

can almost perfectly cluster the repeated scans of all subjects based on endpoint features 

such as the count, CSA, and cluster number. Zhang et al., [2018] also showed that some of 
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the endpoint features have better reproducibilities. One possible explanation is that the 

pattern of fiber curves connecting gray matter (GM) carries more discriminative information. 

WM fiber tracts usually group tightly in deep WM regions and start fanning when reaching 

the interface of WM and GM regions. Studies have shown that these fanning regions will be 

affected in earlier stage of brain diseases [Granberg et al., 2017], indicating the importance 

of the ending-point connection patterns. The fanning pattern can be partially captured by the 

endpoint features. Second, we can obtain very good classification rates by jointly using all 

features. Third, although the HCP data have better resolution, it seems that the classification 

results of HCP are not better than for Sherbrooke. There are several reasons. There are more 

subjects (44 vs. 11) and fewer scans (2 vs. 3) per subject in the HCP than Sherbrooke. More 

subjects with fewer scans per subject increase the variation in the data, and thus require 

more PC coefficients to represent each network and it also makes the classification difficult. 

Also, scan intervals in the HCP (about 60% of them are > 5 months) are much larger than 

Sherbrooke (1–2 weeks). Differences between scans of a subject in the HCP test-retest is 

naturally larger than Sherbrooke.

TN-PCA allows one to visualize relationships between structural connectomes and various 

traits in the HCP data. Based on CSA networks, Fig. 4 (c) displays the first three brain PC 

scores along with three selected traits (two cognition, one substance use). For the two 

cognition traits (oral reading test score and fluid intelligence), we selected 100 subjects with 

low trait scores and 100 subjects with high scores and plotted their brain PC scores. For the 

substance use trait (max drinks in a single day), we plot subjects with low (<3 alcohol 

drinks) and high values (>21 alcohol drinks). We can clearly observe a separation between 

different groups of subjects in these plots, indicating that brain connection patterns are 

different for these two groups (measured by the CSA feature; we have similar findings on 

some other features, e.g. the fiber count).

Principal brain networks can also be obtained as a byproduct of TN-PCA. We define the 

rank K principal brain network to be the network given by the sum of the first K rank-one 

tensor network components from TN-PCA. Similar to examining patterns amongst features 

by exploring the PC loadings, the principal brain network exhibits major patterns of 

structural connectivity that explain most of the variation across the population. Fig. 4 (d) 

displays the thresholded principal brain network derived from the CSA networks of 1065 

subjects from the HCP data set; here, we take K = 30 and threshold the edges so that the 200 

most connected pairs of brain regions are displayed. The principal brain network gives a 

visual summary of all the structural connectomes in the HCP population. Compared to the 

mean network for the HCP population (shown in Supplementary Fig. 2), our principal brain 

network yields additional insights into which structural connections tend to have major 

differences across subjects. Specifically, we see that there is large variation in the strength of 

connections within hemispheres as well as a few strong inter-hemispheric connections that 

vary across subjects. As we will investigate in the next sections, these variations in brain 

connections across subjects may be related to differences in traits.
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3.3. Statistical inference: relating connectome to traits

In this section, we study distribution differences of brain connectomes across different 

groups, evaluate the prediction power of brain connectomes and infer how the connectome 

varies across levels of traits.

Hypothesis testing of connectome distribution difference: We first assess whether 

there are significant differences in distribution of brain PC scores among subjects having low 

versus high values for each trait. Out of the 1065 HCP subjects, we identified groups of 100 

subjects having the highest and lowest traits. We used the Maximum Mean Discrepancy 

(MMD) test [Gretton et al., 2012] to obtain p values for differences in the brain connectomes 

across the two groups for each trait. Results are shown in Fig. 6. Fig. 6 (a) shows p values 

for the CSA weighted networks. Different thresholds for significance based on false 

discovery rate (FDR) control using Benjamini and Hochberg [1995] are marked with 

different colored lines. Corresponding results for 7 types of weighted networks are shown in 

Fig. 6 (b).

Based on these results, many traits are significantly related to brain structural connectomes. 

Traits in the same domain are placed next to each other in Fig. 6 (b). The block patterns of 

significance add evidence that brain structural connectomes relate more broadly to these trait 

domains. In the cognitive domain, structural connectomes are related to fluid intelligence, 

language decoding and comprehension, working memory, and some executive functions. In 

the motor domain, connectomes are related to endurance and strength. In the substance use 

domain, connectomes are related to alcohol consumption, tobacco, illicit drug and marijuana 

use. In the sensory domain, connectomes are related to hearing and taste. In the emotion 

domain, connectomes are related to negative emotions, such as anger and anxiety. In the 

health domain, connectomes are related to height, weight and BMI. Again, we see that 

endpoint-related features are more discriminative according to the hypothesis testing results; 

more traits are significant adjusting for false discoveries using features such as count, CSA 

and weighted CSA than when using diffusion-related features.

Prediction of traits using connectomes: We are interested in comparing our global 

structural connectome with other types of connectomes, such as local structural 

connectomes [Powell et al., 2018; Yeh et al., 2016] and functional connectomes, in teams of 

predicting human traits. To directly compare with the local structural connectome, we utilize 

a subset of traits that have been used in Powell et al., [2018] in a similar setting: a linear 

regression model is applied within a cross-validation paradigm (5-fold cross-validation) with 

K = 60. For functional connectomes, we utilize the Desikan-Killiany atlas and the resting 

state fMRI data to calculate a 68 × 68 correlation matrix for each subject and then the same 

procedures (TN-PCA and linear regression) are applied to evaluate the prediction power. 

The results are shown in Table 1, where column 4 shows the correlation between the 

predicted and the observed traits and column 5 shows the p-value of the correlation being 

zero for the count structural connectome. We can see that our structural connectome has 

better prediction ability than the local structural connectome. When compared with the 

functional connectome, structural connectomes are better for most traits, but a few traits can 

be predicted better with functional connectomes.
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Correlations in the first column are copied from Powell et al., [2018], whose experiment 

setting is similar to us but with fewer subjects. In the last column, * indicates significance 

based on α = 0.05 and ** indicates significance after FDR based on α = 0.05.

To better study the relationship between connectomes and traits and to account for some 

potential confounding effects, we consider a more comprehensive strategy: a baseline model 

that only uses demographic variables of age and gender as predictors is compared with a full 

model that also includes brain connectome PC scores. In this scenario, the 1065 subjects in 

the HCP data set are randomly divided into three groups: a training group containing 66% of 

the subjects, a validation group containing 17%, and a test group containing 17%. We 

trained various machine learning algorithms for prediction using the training data set, with 

the number of components K treated as a tuning parameter. The prediction improvement of 

the full model over the baseline model is measured using the relative ratio ρ. For each trait, 

the best model (with the highest ρ) is selected based on the validation data set. Panel (a) of 

Supplementary Fig. 3 presents the results for the validation and test data sets based on an 

average of 50 runs. According to the values of ρ with the test data set, we selected the 10 

traits yielding the largest predictive improvements based on connectomes. The ρ’s for these 

10 traits are displayed in Fig. 6 panel (c). The 10 traits come from two domains: substance 

use (5 traits) and cognition (5 traits).

Among the five traits of substance use, three of them are related to alcohol use, one to 

cigarette use and the last one to marijuana use. A close inspection of the two alcohol use 

traits was performed and the results are presented in the Supplementary Fig. 3 panels (c) and 

(d). Consider the trait that measures lifetime max drinks in a single day as one example; it is 

an ordinal variable ranging from 1 to 7, with 1 corresponding to less than 3 drinks and 7 to 

more than 21 drinks. For subjects with reported values from 1 to 7, our model with the brain 

connectome PC scores predicted mean values for each group as 

1.97,1.83,2.67,2.91,3.13,4.04, respectively, showing a clear increasing pattern. In another 

example presented in Fig. 4, we extracted subjects with value 1 (light drinkers, totaling 191) 

and 7 (binge drinkers, totalling 93) and used LDA to perform binary classification. Based on 

the brain connectome PC scores alone, we obtain a classification accuracy of 80.99%. These 

results suggest that using only the brain connectomes, we can distinguish with surprising 

accuracy between individuals with low and binge alcohol consumption.

Of the five leading cognitive traits, three are related to language and vocabulary decoding 

ability, one to fluid intelligence, and the other to household income (we loosely classify the 

household income into the cognition category). A close inspection of the language decoding 

trait is presented in the Supplementary Fig. 3 panel (b). The language decoding trait score 

(after age adjustment) can be predicted ~4% better (p < 0.0002) under a random forest 

model with the additional CSA PC scores (the model is selected based on validation data). 

On the test data set, the correlation between the predicted trait and the subject self-reported 

trait is r = 0.27 (based on an average of ten runs). If we restrict the analysis to the 200 

subjects with the highest and lowest traits (plotted in the first column of panel (c) in Fig. 4), 

the correlation increases to r = 0.45. Similar results are observed for the traits of fluid 

intelligence and vocabulary decoding. Given that these trait scores are only a rough measure 
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of a person’s cognitive function, the results are very promising, indicating that brain 

structural connectomes can partially account differences in cognitive abilities.

Effects of parcellation and inclusion of subcortical brain regions: Parcellation is very 

important for connectome analysis [Glasser et al., 2016a, a; Desikan et al., 2006; Destrieux 

et al., 2010]. Different parcel-lation schemes will affect the representation of the brain 

connectome and its power in predicting traits [Zalesky et al., 2010]. Here we evaluated how 

a different parcellation will affect our analysis and whether inclusion of subcortical brain 

regions can be helpful. The result is presented in the Supplementary Fig. 6. We found that 

including subcortical regions is helpful in predicting most of the traits, but simply increasing 

the par- cellation resolution does not always help. This finding is consistent with the result in 

Zhang et al., [2018] - the reproducibility of networks obtained by the Destrieux parcellation 

is lower than that by the Desikan parcellation. One possible reason is the misalignment 

between subjects. A coarse parcellation is often more robust to misalignment. Another 

reason is statistical due to the increasing dimension of the data.

Effects of motion: A recent study has shown that motion can systematically affect the 

structural connectivity derived from dMRI data [Baum et al., 2018] even after complicated 

preprocessing steps, e.g., motion and eddy correction. Although HCP has spent a lot of 

effort in minimizing head motion during MR scans [Marcus et al., 2013], we still want to 

investigate whether motion affects our analysis. To analyze motion in dMRI, we extracted all 

b0 images (they are sampled evenly across the whole dMRI scan in HCP) for each subject, 

and aligned the first b0 image to subsequent b0 images using FSL FLIRT [Jenkinson and 

Smith, 2001], restricting to only six degrees of freedom. We quantified motion through 

analyzing head translation and rotation, separately. The translation displacement was 

measured using the L2 norm. Fig. 7 (a) (with a unit of mm) shows the histogram of 

translation displacements. To measure rotation size, we mapped each rotation matrix to the 

tangent space at identity using the log map defined in Zhang et al., [2019], and measured the 

length of the tangent vector using Frobenius norm. Fig. 7 (b) shows the histogram of rotation 

displacements. We can observe that both displacements follow approximately a normal 

distribution but with a heavy tail, indicating that there are some subjects having big motions. 

Using the two quantities, we defined a subject as big movement outlier if he/she has either a 

translation or a rotation greater than the 99 percentile. In total, 95 subjects were identified to 

have big movements. We selected four traits from Table 1 and conducted the same analysis 

as the one producing Table 1 but excluded the 95 subjects. Fig. 7 (c) shows the percentage of 

mean squared error (MSE) decrease after removing the subjects with big motions. We see 

that these outlying individuals with large head motion are negatively impacting performance, 

suggesting that we can future improve our results by properly correcting motion or removing 

subjects with big motion.

Empirical comparison of prediction models: TN-PCA reduces dimensionalities of tensor 

network data, providing a convenient way of linking structural connectomes with traits. 

Here, we are interested in comparing trait prediction accuracies of different methods. There 

are a few new methods available for predicting traits using network data. For simplification, 

we used the count matrix as the predictor and chose four traits that can be accurately 

predicted from Table 1 as the responses. For TN-PCA, a regular linear regression model was 
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used to predict traits from coefficients (this model is denoted as LR-TNPCA). We compared 

it with a few other models. The first one is the CP tensor regression model (CPR) proposed 

in Zhou et al., [2013], where we let the coefficient matrix be rank one (higher ranks gave 

worse results in this application). This tensor regression model is a popular way of 

predicting scalars from tensor data. A few recent variants using Bayesian principles can be 

found in Guha-niyogi et al., [2017] and Guha and Rodriguez [2018]. Another method to 

compare is the supervised bi-linear regression (BLR) [Wang et al., 2019] model, which 

emphasizes signal sub-network selection. In our implementation of BLR, we set the number 

of components as 10 and selected the L1 penalty parameter based on cross-validation. In 

addition, we compared with simple PCA with linear regression (LR-PCA), where the simple 

PCA is done by vectorizing the network and performing regular PCA. The mean square 

error (MSE) from five-fold cross-validation was used to measure the goodness of fit. Table 2 

shows the result.

In each cell, we show the mean squared error between predicted value and real value.

From the result, we can see that a simpler model in general favors predictive accuracy. This 

discovery is also confirmed by Wang et al. (2019), where only a few brain connections are 

selected to predict traits. In terms of the prediction power, TN-PCA is better than the simple 

PCA and much better than the CP tensor regression. BLR has better results in some cases, 

since it is a supervised method, trying to identify sparse connections that can best predict 

traits. However, BLR needs a careful parameter tuning to select model parameters. The 

simplicity of TN-PCA, its predictive power and its interpretability make it a good choice for 

analyzing the structural tensor networks.

Interpreting relationships between traits and connectomes: Having established that a 

particular trait is significantly associated and can be predicted with the brain connectome, it 

is important to infer how the connectome varies across levels of the trait. For example, is the 

association specific to certain sub-networks and in what direction is the association? We start 

by studying how brain connectome PC scores vary with the trait, and then map these 

changes back to network using the method presented in the Methods section. The following 

analyses are based on K = 30 (results are robust for K~20–60). We selected three 

representative traits: language reading age-adjusted score, lifetime max drinks consumed in 

a single day and the use of marijuana. The language reading score is a continuous variable, 

and the other two are categorical. We study how the CSA network changes with increases in 

these traits.

For the language reading trait, the plot of the top 3 PC scores for the 100 subjects with the 

highest scores and 100 with the lowest scores is shown in panel (c) of Fig. 4. Panel (a) in 

Fig. 8 shows the network change (Δnet) with the trait; we show only the 50 edges that change 

most. There are four major white matter connections that increase significantly with reading 

ability. They connect the left and right frontal lobes (FL) and parietal lobes (PL): (rFL, lFL), 

(rFL, rPL), (lFL, lPL), (rPL, lPL). On closer inspection, the strongest connections are among 

left and right brain nodes of 27-superior frontal, 26-middle frontal (BA 46), 28-superior 

parietal and 24-precuneus (Supplement III has detailed information on each ROI). These 

regions have shown strong associations with language ability in previous studies of Positron 
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Emission Tomography (PET), functional MRI [Edwards et al., 2010; Price, 2012] and 

cortical thickness [Porter et al., 2011]. There were no edges that decreased significantly with 

increasing reading ability. This result is robust to adjustment for age and gender.

Lifetime max drinks is an ordinal variable ranging from 1 to 7, with 1 corresponding to less 

than 3 drinks and 7 more than 21 drinks. The third column in Fig. 4 (c) shows the top 3 brain 

PC scores for individuals with a max drink score of 1 (191 light drinkers) and 7 (93 binge 

drinkers). The separation between light and binge drinkers suggests structural con- nectome 

differences between the two groups. Panel (b) in Fig. 8 shows the result of using LDA to 

identify brain network changes between light and binge drinkers (Δnet). As max drinks 

increases, inter-hemisphere connections (especially the connections between rFL, lFL, rPL, 

and lPL) decrease. Different from the language reading trait, we observe that Δnet for alcohol 

drinking are mostly associated with the frontal lobes. Previous studies (e.g., [Moselhy et al., 

2001]) have provided evidence of relationships between alcoholism and dysfunction and 

deficits in the frontal lobe. This analysis shows evidence that binge drinking might cause 

severe damage to structural connectivity. We repeated this analysis for marijuana use (583 

used and 481 did not), and show the result in panel (c) of Fig. 8. Similarly to alcohol, 

marijuana use is also associated with decreases in inter-hemisphere connections.

To assess how well subjects with different trait scores can be distinguished based on their 

brain connectomes, we calculated the correlation between traits and their predictive values 

for continuous traits and the classification rate for categorical traits, based on w, UK(i, : ) .

The results are presented in Fig. 8. The correlation between the projected UK(i,:) and the 

language reading score is 0.45 for the 200 subjects, indicating a strong relationship between 

reading abilities and the subjects’ brain networks. The classification rate is 80.99% for binge 

versus light drinking. More specifically, the sensitivity (a binge drinker is identified as a 

binge drinker) is 59.1% and the specificity (a light drinker is identified as a light drinker) is 

91.6%. The classification rate for marijuana use or not is 59.68% (sensitivity: 26.8%, 

specificity: 86.8%). This rate is surprisingly high for alcohol, indicating sizable differences 

in these subjects’ brain structural connectomes, while the rate for marijuana is only slightly 

better than chance.

From the networks presented in Fig. 8, we extract their corresponding white matter tracts 

and display them in Fig. 9. These white matter tracts are from two selected subjects with 

high and low trait scores. Among the connections shown in Fig. 8, cross-hemisphere 

connections are particularly interesting. These connections are roughly classified into two 

types: (lFL, rFL) and (lPL, rPL). The first row of panel (a) in Fig. 9 plots differences in these 

two types of connections between subjects with high (125.2) and low (67.27) reading scores. 

The streamlines corresponding to these connections are shown in the second row. The 

subject with a high reading score has richer and thicker structural connections in both (lFL, 

rFL) and (lPL, rPL); this pattern is common for subjects with similarly high reading scores. 

Fig. 9 panel (b) shows similar results for selected light and binge drinkers; in this case 

differences between the subjects are detectable but subtle. More detailed results for the two 

pairs of subjects are displayed in the Supplementary Figs. 4 and 5.
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4. Discussion

Using state-of-the-art data science tools applied to data from the Human Connectome 

Project, we find that many different human traits are significantly associated with the brain 

structural connectome. Over-all, and consistent with results in previous studies of functional 

connectomes [Smith et al., 2015; Finn et al., 2015], positive attributes tend to have positive 

association with structural connectomes, while negative attributes have a negative 

relationship. Examples of positive traits include high language learning ability, fluid 

intelligence and motion ability; high levels of such variables tend to be indicative of stronger 

interconnections in the brain. Examples of negative traits include a high level of alcohol 

intake and the use of marijuana; such variables tend to be indicative of weaker 

interconnections.

Given inevitable errors in connectome reconstruction and in measuring human traits, such as 

alcohol intake, it is surprising how strong the statistical relationships are. For example, we 

chose to highlight results for reading scores and alcohol intake as being particularly 

interesting. Using our data science methods, the correlation between the measured reading 

score and our predicted value based on an individual’s brain connectome was 0.45 (focusing 

on subjects with particularly low or high scores). In addition, and even more remarkably, the 

classification accuracy in attempting to distinguish between a light drinker and an individual 

with a history of binge drinking based only on their brain connectome was surprisingly high. 

(See Supplementary Fig. 5 for more results on alcohol).

Implementations of the data processing pipeline, TN-PCA method, and the corresponding 

statistical methods for prediction and interpretation are all freely available in GitHub. They 

provide an end-to-end solution: from the “raw” imaging data to the analyses of relationships 

between brain connectomes and individual traits. These methods should be highly useful in 

the neuroscience community. We note that our results show interesting associations, and it is 

important to design follow up studies to establish causality. For example, do individuals with 

less connected brains have more of a tendency for substance abuse or does substance abuse 

cause a decrease in connectivity? The direction of this relationship has a fundamental impact 

on the clinical and public health implications of our results. Also of critical importance is the 

plasticity of the connectome; for example, if a binge drinker modifies their drinking 

behavior does the brain gradually return to a normal connectivity pattern over time? If an 

individual having a low reading score works hard to improve their score through 

coursework, tutoring and exercises, then does the brain connectivity also improve? Does this 

intervention have a direct causal effect on the connectome?

Given the increasing quality of data on structural connectomes, and in particular the sizable 

improvements in robustness and reproducibility, we are now at the point in which large, 

prospective studies can be conducted to answer some of the above important questions. The 

tools developed and used in this article should be helpful in analyzing data from such 

studies. On the method side, it is important moving forward to continue to develop more 

informative and reproducible measures of connectivity between pairs of brain regions, and 

also to reduce sensitivity to the somewhat arbitrary number and choice of regions of interest. 

An additional important direction is linking structural and functional connectivity together in 
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one analysis, which can potentially be accomplished via a minor modification of the 

proposed TN-PCA approach. In addition, a more interpretable TN-PCA that allows sparsity 

is an appealing future direction.

In a recent paper, Baum et al., [2018] discussed the effect of head motion on the structural 

connectivity derived from dMRI data. They show that even after complicated preprocessing 

steps, e.g., motion and eddy correction, head motion can still impact the reconstructed 

structural connectivity in a consistent and length-dependent manner. HCP spent a lot of 

effort in minimizing head motion during MR scans [Marcus et al., 2013]. Subjects are 

trained to keep their heads still in a mock scanner prior to the initial acquisition. During the 

actual scan, the head is stabilized using cushions on the sides and top of the head. During 

structural and diffusion sessions, participants watch a movie. The movie pauses for 5s when 

head motion exceeds a specified threshold, providing immediate feedback to participants 

that they have moved too much. Images will be reacquired after visual inspection by a 

trained technologist. But we know that head motion is a concern for MRI and universally 

exists [Power et al., 2012; Satterthwaite et al., 2013]. Following the suggestion from an 

anonymous reviewer, we conducted a smaller scale analysis by removing subjects with big 

motions. The finding suggests that we can improve our analysis by correcting head motion 

or simply removing subjects with a big motion from the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Pipeline of the preprocessing steps to extract weighted networks from the dMRI and sMRI 

image data. (a) Desikan-Killiany parcellation and the tractography data for an individual’s 

brain; (b) extraction of streamlines between two ROIs; (c) feature extraction from each 

connection and (d) extracted weighted networks.
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Fig. 2. 
Plot of 175 selected trait measures. The y-axis indicates the proportion of non-NA values for 

each trait and the y-axis shows the types of traits.
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Fig. 3. 
Simulation results in terms of structural recovery (left columns) and variance explained 

(right columns) for the proposed TN-PCA via a new semi-symmetric CP model compared to 

the existing HOSVD and HOOI methods.
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Fig. 4. 
Illustration of connectome visualization using TN-PCA. In (a) and (b), we display brain PC 

scores for CSA networks from the HCP and Sherbrooke test-retest data sets. Each unique 

marker represents multiple scans from the same subject (3 scans per subject in Sherbrooke 

and 2 scans per subject in HCP). In (c), we show PC scores with traits. For each cognition 

trait, we selected 100 subjects with low trait scores and 100 subjects with high scores. For 

the substance use trait (alcohol use), we selected subjects with <3 drinks and subjects with > 

21 drinks. In (d), we display the principal CSA brain network calculated using all 1065 

subjects from the HCP data set. For display purposes, we thresholded the dense principal 

brain network to keep only the 200 most connected edges.
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Fig. 5. 
Classification results on the Sherbrooke and HCP test-retest data sets. The results are based 

on nearest neighbor classification. “K” here indicates the number of component in TN-PCA.
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Fig. 6. 
Relation between structural brain connectomes and various traits. Panels (a) and (b) show 

hypothesis testing results for 175 traits and 7 different weighted networks. In (a), we show p-

values (−log10 scale) of the CSA weighted networks with different traits. Two different FDR 

thresholds are used (different colored dash lines). In (b), we present hypothesis testing 

results for different combinations of traits and networks. Each row shows a type of weighted 

network and each column shows a particular trait. The significance is displayed based on 

different FDR values. Panel (c) shows the top 10 traits in terms of their predictability based 

on brain connectomes adjusting for age and gender as covariates. The prediction 

improvement ratio ρp for the pth trait is shown.
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Fig. 7. 
Motion analysis of HCP dataset. (a) histogram of head translation displacements; (b) the 

histogram of rotation displacements; and (c) percentage of MSE decrease after removing 

subjects with big translations and rotations.
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Fig. 8. 
Top 50 pairs of brain regions in terms of their changes in CSA connectivity with increasing 

traits. (a) Results for increasing language reading score; (b) Results for max drinks; (c) 

Results for marijuana use. We also display the correlation and binary classification rates 

obtained from CCA and LDA, providing measures of differences in brain connectivity 

networks between subjects with different trait scores.
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Fig. 9. 
Network difference (based on CSA network) and the corresponding streamlines for selected 

subjects in the HCP data set. Among the 50 pairs of brain regions identified in Fig. 8, we 

focus on cross-hemisphere connections. Such connections are either between (lFL, rFL) or 

(lPL, rPL). In (a) we show the differences between subjects with high (125.2) and low 

(67.27) reading scores. The streamlines corresponding to these connections are shown in the 

second row. Similar results are plotted in (b) for two selected subjects with light and binge 

drinking.
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