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Summary

The literature on causal effect estimation tends to focus on the population mean estimand, which is 

less informative as medical treatments are becoming more personalized and there is increasing 

awareness that subpopulations of individuals may experience a group-specific effect that differs 

from the population average. In fact, it is possible that there is underlying systematic effect 

heterogeneity that is obscured by focus on the population mean estimand. In this context, 

understanding which covariates contribute to this treatment effect heterogeneity (TEH) and how 

these covariates determine the differential treatment effect is an important consideration. Towards 

such an understanding, this paper briefly reviews three approaches used in making causal 

inferences and conducts a simulation study to compare these approaches according to their 

performance in an exploratory evaluation of TEH when the heterogeneous subgroups are not 

known a priori. Performance metrics include the detection of any heterogeneity, the identification 

and characterization of heterogenerous sub-groups, and unconfounded estimation of the treatment 

effect within subgroups. The methods are then deployed in a comparative effectiveness evaluation 

of drug-eluting versus bare-metal stents among 54 099 Medicare beneficiaries in the continental 

United States admitted to a hospital with acute myocardial infarction in 2008.
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1 | INTRODUCTION

Literature on estimation of the causal effect of a treatment on an outcome tends to focus on 

the population mean estimand, which is appropriate for many research questions. However, 

technological advances and subsequent increases in the quantity and quality of biomedical 

data has led to an interest in personalized medicine, the mining of large observational data 

sources to construct treatments tailored to the covariate distribution of a population.1 The 

resulting research question then involves determination of treatment effect heterogeneity 
(TEH), the existence of an underlying partition of the population into subgroups across 

which the treatment effect varies systematically. Although the causal effect research question 

has evolved from one of a population-level average effect to one of subgroup-specific 

effects, methods for population-level average effect estimates still dominate the literature on 

causal effect estimation. The goal of this discussion is to evaluate the extent to which several 

common methods for causal effect estimation simultaneously adjust for confounding and 

allow for an exploratory investigation of subgroup-specific treatment effects, in potentially 

high-dimensional settings without any prior knowledge of the number or specific 

characteristics of these subgroups.

Subgroup analysis methods originated in the clinical trial setting,2,3 and have been 

generalized for use in observational studies4 with limitations.2,3,5,6,7 Many methods for 

subgroup detection in observational studies have grown out of the genetics and 

bioinformatics literature, but are not designed for comparative evaluation or causal 

inference.8,9,10,11,12,13,14,15 In light of these issues there have been a number of proposed 

applications of modern machine-learning methods such as regression trees16,17 to TEH, 

including the development of non-parametric causal forests comprised of “honest” trees,
18,19,20 the use of trees to identify members of a subgroup with an “enhanced” treatment 

effect,21 and a weighted ensemble of estimators.22

This paper contributes the ongoing discussion by considering exploratory subgroup 

detection and TEH estimation in high-dimensional settings when manual evaluation of effect 

modifiers is not feasible, accomplished in conjunction with confounding adjustment. 

Achievement of these goals is defined as correct estimation of the number of underlying 

subgroups, interpretable characterization of the subgroups by observed covariates, and 

unconfounded estimation of the treatment effect within each subgroup. The discussion 

continues in §1.1 with a brief overview of causal inference and treatment effect estimation. 

In §1.2 we more formally define TEH and distinguish it from other but related causal 

concepts, and in §2 we introduce regression trees as a modeling procedure well-suited for 

our treatment of TEH identification as a classification problem.

We then discuss three general classes of modeling approach that have been used for causal 

effect estimation: 1) modeling the outcome conditional on covariates and treatment (e.g., 

linear regression), 2) modeling the treatment conditional on covariates (e.g., propensity score 

estimation), and 3) modeling the outcome and treatment jointly conditional on covariates. 

Evaluation of the ability of each approach to identify TEH is done by describing, 

implementing, and comparing representative modern methods from each model class: 

Bayesian Additive Regression Trees (BART)23, propensity scores estimated with 
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Generalized Boosted Models (GBM)24, and the Facilitating Score (FS)25, respectively. Note 

that these specific methods are not investigated based on any judgment of optimality or 

superiority over other methods, and such judgment is not the focus of this paper. Rather, 

evaluation of each of these representative methods is meant to assess the relative strengths 

and weaknesses of its respective class of modeling approach for the purposes of identifying 

and estimating TEH. BART and propensity scores with GBM were chosen as modern 

methods that have recently emerged as popular approaches to overall causal effect 

estimation. FS is a recently-proposed approach from the machine learning literature that is 

similarly rooted in tree-based approaches, designed specifically for the purposes of 

estimating TEH. In §3 each method is compared qualitatively, in §4 via simulation study, 

and in §5 in the context of an actual CER investigation. The discussion is concluded in §6.

1.1 | Notation and Estimation of the Overall Average Treatment Effect

Let i index individuals within a sample of size n, randomly sampled from a much larger 

population of interest. Ti is a binary indicator of an individual’s point exposure status and Xi 

a p-dimensional vector of measured pre-treatment covariates. Lowercase ti, xi are 

realizations of their uppercase counterparts. Y1i and Y0i represent the potential outcomes 
that would have been observed had individual i been assigned to treatment or control, 

respectively. On the difference scale, the causal effect of treatment on individual i is Y1i − 

Y0i. The Fundamental Problem27 precludes observation of this individual treatment effect 

(ITE), so we instead consider the average treatment effect (ATE) as our estimand, defined in 

(1).

E Y1 − Y0 = E Y1 − E Y0 (1)

= EFX
E[Y T = 1, X = x] − E[Y T = 0, X = x] . (2)

There are variables associated with both T and Y such that the quantity measured in (2) is 

not a treatment effect (TE), but a spurious measure of association that is in part due to 

dissimilarities in their distribution across treatment arms. These problematic covariates are 

referred to as confounders, defined here as the subset of X required for strong ignorability29 

to hold. For the purposes of this discussion, we assume that the available covariates 

measured in X contain (at least) all confounders required to satisfy the assumption of strong 

ignorability and estimate causal treatment effects. The notation above also implies the Stable 

Unit Treatment Value Assumption (SUTVA).28

1.2 | Treatment Effect Heterogeneity

Variables E = E1, E2, … ⊆ X that define subpopulations across which the treatment effect 

differs are called effect modifiers,30 with effect modification being synonymous with TEH. 

As noted by Hernán & Robins30 and Rothman31, whether a variable is an effect modifier 
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depends on the scale on which the effect is being measured, be it additive as used here, 

multiplicative, or the odds ratio. To reflect this dependence, some authors use the 

terminology effect-measure modification. It is possible for a variable to be both an effect 

modifier and a confounder, which further emphasizes the importance of simultaneous 

confounder adjustment and TEH identification.

Mapping these statements back to our notation, effect modifiers E comprise a subset of X, a 

collection of variables which deserve some clarification. First note that identifying TEH 

requires that causal effect identifiability assumptions (e.g., strong ignorability in §1.1) 

defined at the population level must hold within each subgroup. An implication is that 

achievement of ignorability is particular to a subpopulation, meaning that each 

subpopulation has its own set of confounders, and its own set of relationships among the 

confounders, treatment, and outcome. For example, a particular variable can be a confounder 

in more than one subpopulation but have different relationships with the outcome in each. 

Thus let variables X be the union of effect modifiers E and confounder sets from each 

subpopulation.

Our conceptualization of effect modification is different from that of causal32, p. 268 or 

biologic31, p. 202 interaction, the combined effect of treatment T and a second exposure on 

the outcome Y. In this context, it is of interest whether the effect of T depends on the value 

of this second treatment (or vice versa in the symmetric argument)33,Definition 2. 

Contrastingly, effect modifiers are characteristics of observational units used to define 

subpopulations33,Definition 1. Our conceptualization of effect modification is also different 

from that of mediation, a causal concept that aims to understand “how an effect occurs”32 by 

considering the pathways between T and Y and variables on those pathways, termed 

mediators. Effect modification is a causal concept that aims to understand “for whom an 

effect occurs”.32

2 | REGRESSION TREES FOR CHARACTERIZING TEH

Assuming that strong ignorability is satisfied by measured covariates X and a modeling 

approach has been selected (as will be discussed in §3), there are different estimation 

procedures that an analyst could consider in fitting a model to data. One such procedure is 

the fitting of a step function with a classification or regression tree (CART).

A classifier or classification rule is “a systematic way of predicting what class a case is in”.
16 In the most general sense, identifying TEH amounts to classifying observations according 

to how the treatment affects their outcome. A tree is one type of classifier, a sequence of 

binary covariate-based decision rules with its depth equal to the maximum number of 

decisions that have to be made to classify an observation. The tree represents a partitioning 

of the covariate space into terminal nodes or “leaves”, where within each leaf, observations 

are of the same class (i.e., a classification tree) or the predicted outcome is constant (i.e., a 

regression tree). To prevent overfitting (i.e., an overly-fine partitioning of the covariate space 

that is particular to the sample used to build the tree), an oversized tree is “grown” 

(constructed) then “pruned” (modified by removing “branches”, subtrees that do not contain 

the root node). Trees are summed into a new larger tree by adding each observation’s 
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predictions from the summand trees. Boosting is the summing of many low-depth trees (i.e., 

“weak learners”) into a larger tree, a method known to improve predictive performance.17 

Bootstrap aggregation (bagging) is the averaging of many full-sized trees, as grown from 

bootstrap samples.17, Chapter 8.7

In our causal context, similar to that of Hill23, component trees are not intended to address 

confounding; the virtue of BART and other tree-based ensemble methods is the complexity 

(e.g., high order interaction terms) of the model built from the the summing of the simple 

component trees, a flexibility that is very difficult to achieve with traditional regression. In 

exchange for this flexibility, however, we lose the ability to characterize the partition created 

by terminal node membership. Terminal node membership is not used to make final 

subgroup determinations; in practice an ensemble method yields a set of n predictions, and it 

is this set that is partitioned.

CART does not require the prespecification of any relationships between Y, T, and/or X, and 

the relationships that it does estimate are quite flexible. Further, CART is potentially 

nonparametric and is able to yield valid estimates when data are missing at random. CART 

has relevance to the goal of identifying TEH because the classifications can be thought of as 

the detection and characterization of subgroups by effect modifiers. As discussed in the 

previous section, each subgroup has its own set of confounders, and its own set of 

relationships among Y, T, and X. These subgroup-specific relationships can be thought of as 

(statistical) interactions between treatment, confounders, and effect modifiers. Achievement 

of subgroup-specific ignorability can be thought of as the detection of many (potentially) 

high-order interactions, making CART a natural choice for TEH estimation.

3. | TREATMENT EFFECT MODELING APPROACHES

There are several approaches an analyst could pursue in modeling the treatment effect, and 

within each approach, several methods to choose from. In this section we describe three 

classes of approach and from each, a representative method that has been previously used for 

the explicit purpose of causal effect estimation. For each representative method, we outline 

its statistical framework and discuss how it may be used to identify subgroups.

The tree-based methods highlighted here average across many simple or unstable models, 

improving variance but losing direct interpretability of the estimated subgroups. Further, the 

analyst must a priori specify a maximum number of possible subgroups to investigate, 

relying on the ability to collapse across subgroups if the data indicate fewer. After deciding 

on a method and how to use that method to assign group membership, interpretation of 

which characteristics define each subgroup relies on the analyst’s ability to inspect 

covariates distributions within each group to infer what characterizes them. Assuming 

ignorability is satisfied by some subgroup-specific confounder covariate set Xsubgroup, 

unconfounded subgroup-specific treatment effect estimation is possible. TEH is present if 

the estimated treatment effects vary across the subgroups.

A necessary condition for such estimation is that the analyst can extrapolate the relationships 

estimated from the treatment arm to the control arm, and vice versa. This extrapolation relies 
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on positivity, the assumption that within every level of Xsubgroup, the probability of treatment 

is bounded away from 0 and 1. This is an assumption that our causal interpretations rely on, 

and should be empirically justified. Our ability to provide such justification depends on the 

estimation method, so the discussion of each estimation method includes an examination of 

positivity.

3.1 | Modeling Class 1: Outcome conditional on covariates and treatment

By far the most common modeling approach is to model the conditional mean of Y | X, T. 

The overwhelmingly most popular class of models within this approach is parametric linear 

regression, which models the conditional mean as a linear combination of covariates. To see 

how this modeling approach allows for causal inference, consider the linear regression 

model

E[Y X, T] = β0 + β1X1 + … + βpXp + γ0T + γ1TX1 . (3)

SUTVA and ignorability allow the difference in conditional means to represent the 

conditional average treatment effect (ATE):

γ0 + γ1X1 = E[Y X, T = 1] − E[Y X, T = 0]
difference in conditional means

= E Y1 X − E Y0 X = E Y1 − Y0 X
conditional ATE

. (4)

First considering the case where γ1 ≡ 0, we see that the conditional ATE is γ0, constant for 

all values of X. Because of the collapsibility of the mean, γ0 is also the marginal average 

treatment effect. If γ1 ≠ 0, then the linear predictor contains a (statistical) interaction term, 

which embeds the a priori belief that the average treatment effect is not additive and its 

magnitude depends on the value of X1. Use of (statistical) interaction terms is one way of 

specifying possible TEH, but requires knowledge of the covariates that define the underlying 

subgroups, infeasible when considering a large number of covariates.

Another set of methodologies within this modeling class estimate the disease risk score,34,35 

a special case of Mietennen’s confounder score36 and used when the outcome is binary. A 

disease risk score is the conditional probability of experiencing the outcome while 

unexposed to treatment Pr(Y = 1| X, T = 0) and is a tool for ranking subjects on how “case-

like” they are.36, p.611 Related to the disease risk score is the prognostic score, a recasting of 

the disease risk score in the language of potential outcomes.37 In both cases, observations 

are stratified by score and the treatment effect estimated within each stratum.

Representative Method: Bayesian Additive Regression Trees (BART)—A 

popular alternative to parametric regression for estimating (3) is Bayesian Additive 

Regression Trees (BART)38,39 which we will explore in some detail for its potential to 

provide exploratory analysis of TEH. Following the notation of Chipman, George, & 

McCulloch38 let 𝒯 j, j = 1, …, m represent a tree with Bj terminal nodes; that is, a partition of 
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the population into Bj subgroups. Let M j = μb j
|b j = 1, …, B j  be the set of mean outcomes 

across the subpopulations defined the terminal nodes of tree 𝒯 j. Also let g xi, ti |𝒯 j, M j

represent the mapping of observed covariate and treatment pair (xi, ti) to a terminal node 

within tree 𝒯 j with mean μb j
∈ M j . An individual’s outcome is then modeled as the sum of 

m trees

Y i = εi + ∑
j = 1

m
g xi, ti 𝒯 j, M j , εi N 0, σ2 (5)

where m is fixed. This is an example of boosting, the construction of a large tree by 

summing together simple trees. In the Bayesian model, the m simple trees and outcome 

variance σ2 are the unknown parameters; the data are y the vector of observed outcomes, and 

X the matrix of observed covariate data. A Gibbs sampler is used to sample from the 

posterior distribution of the boosted tree. Each posterior draw is used to generate a predicted 

outcome Y i for all observations i. Notationally, let the kth posterior draw be denoted as 

𝒯(k) = 𝒯1
(k), M1

(k) , …, 𝒯m
(k), Mm

(k) , σ(k) , and the vector of n predicted outcomes generated 

from this tree denoted as Y(k) . The set 𝒯 = 𝒯(1), 𝒯(2), …, 𝒯(K)  denotes the K posterior 

draws.

As Hill23 contributes in her reframing of BART from a predictive methodology into a 

methodology for causal effect estimation, Y(k) is the vector of predicted potential outcomes, 

corresponding to the treatment actually received. Ycounterfactual
(k)  is another vector of predicted 

potential outcomes, but corresponding to the treatment not received. The ITE predicted from 

𝒯(k) is then the appropriate difference in the predicted potential outcomes. This prediction of 

ITEs is repeated ∀ 𝒯(k) ∈ 𝒯 (envision a K × n matrix, with the ith column representing K 
samples from the posterior distribution of the ITE for the ith observation). Estimates of the 

ITE for each individual (as well as σ2) are then obtained by summarizing across the K 
posterior draws, for example, by averaging to take the posterior mean estimate. It is this 

averaging across K boosted trees (rather than inference based on one boosted tree) that 

differentiates BART from traditional boosted methods.

Although subgroup estimation is not explicitly part of the model specification or estimation 

output, the analyst is still able to investigate the empirical distribution of ITEs for clues. For 

example Foster et al.21 refer to Ycounterfactual
(k)  as the “virtual twin” of Y(k), and suggest 

regressing the predicted ITEs on X, towards finding a single subgroup with a treatment 

effect that is “enhanced“ relative to the ATE. Hill23 proffers visualization of the modes of 

the predicted ITEs (by histogram for example) for hints about the underlying number of 

subgroups. Alternatively, the analyst can a priori set the number of subgroups to ten (say), 

and group observations based on deciles of the empirical distribution and estimate a TE 

within each subgroup.
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When using BART or other outcome regression models, valid causal inference relies on 

positivity, but empirical positivity violations (e.g., a level of Xsubgroup with only treated 

observations) will not be automatically evident. In fact, outcome regression will yield causal 

effect estimates whether or not positivity is violated. This issue can be partially overcome by 

assuming any empirical violations are random rather than deterministic40, and checking that 

the unconditional probability of treatment within the finite subgroup sample is bounded 

away from 0 and 1.

3.2 | Modeling Class 2: Treatment conditional on covariates

Modeling T | X is referred to as propensity score estimation, where the propensity score e(X) 

= Pr(T = 1 | X) is the conditional probability of treatment41. This modeling approach is 

typically employed as part of a covariate dimension reduction strategy, where the analyst 

attempts to satisfy ignorability by conditioning on e(X) rather than the covariates 

individually41, Theorem 3. The use of e(X) allows us to adjust for confounding while averting 

the need to model how each covariate relates to the outcome of interest or at least alleviating 

the consequences of misspecifying such a model42.

Propensity score methods are used in designing observational comparative studies, that is, 

the structuring “to obtain, as closely as possible, the same answer that would have been 

obtained in a randomized experiment comparing the same analogous treatment and control 

conditions in the same population”43. This can be accomplished, for example, by matching 

or subclassifying treated and untreated observations with similar values of the propensity 

score. A key benefit of this approach is that it permits the analyst to empirically judge the 

plausibility of the hypothetical study design before analysis of any outcome. After grouping 

observations on the propensity score, the analyst can empirically assess covariate balance, 

the similarity of covariate distributions among treated and control units with similar values 

of the propensity score.

In addition to empirical verification of the hypothetical study design and covariate balance, 

use of propensity scores to adjust for confounding empirically alerts the analyst to violations 

of the positivity assumption: when the propensity score model discriminates treatment 

groups too well, it yields subgroups that are homogeneous with respect to treatment, thus 

empirical justification of causal interpretation is absent, the treatment effect is undefined, 

and overall inference must be restricted to observations with defined treatment effect 

estimates.

Estimation of the propensity score itself has traditionally been done via logistic regression, 

but the literature shows movement towards more flexible alternatives. For example, Woo et 
al. 44 evaluate the use of generalized additive models in propensity score estimation, where 

the linear predictor is replaced with a flexible additive function. Ghosh45 generalizes 

propensity score estimation as an example of confounder dimension reduction and discuss 

the theoretical validity of “covariate sufficiency” in causal inference.

Representative Method: Generalized Boosted Models (GBM)—One of the most 

popular flexible alternatives to traditional logistic regression is the use of generalized 

boosted models (GBM)24. We use this method to estimate the conditional log odds of 
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treatment logit Pr T i = 1| Xi , by summing together many low-depth regression trees. Again 

following the notation of Chipman, George, & McCulloch,38 let g xi |𝒯 j, M j  represent a 

mapping of an observed covariate value to a terminal node within tree 𝒯 j with mean 

μb j
∈ M j = μb j

|b j = 1, …, B j . In this model, μb j
 is the mean log odds of treatment for 

observations in terminal node bj.

The estimation algorithm is initialized at tree 𝒯0 with B0 = 1 node and 

M0 = logit(t ) where t  is the unconditional proportion of treated individuals in the sample. 

During the jth of m iterations, a low-depth tree fit to residuals 

ri = ti − expit g xi |𝒯 j − 1, M j − 1 , where expit g xi |𝒯 j − 1, M j − 1 , is the predicted 

probability of treatment based on the tree from the previous iteration. Let the number of 

nodes on this residual tree be denoted by B j* and b j𝓁*  represent the set of observations in 

terminal node 𝓁 ∈ 1, …, B j*  For each terminal node b j𝓁*  an update is calculated and added to 

𝒯 j − 1 to generate 𝒯 j . The end result of this algorithm is a sequence of trees with 

increasingly better fit to the data. To prevent overfitting, the algorithm is stopped at the 

iteration that minimizes some average measure of covariate imbalance across the two 

treatment arms (e.g., the average standardized absolute mean difference, or the Kolmogorov-

Smirnov statistic).

The resulting estimated propensity score can be used to group individuals, but such grouping 

requires an a priori specification of the number of subgroups. The analyst could set the 

number of subgroups to ten (say) and group observations based on deciles of the empirical 

propensity score distribution, then estimate a TE within each subgroup.

Recall, however, that our goal is to group observations that are similar, where the desired 

similarity is in the ITE. While estimating differential effects across groups defined by the 

estimated propensity score is commonplace, note that these groups are not defined based on 

observations’ ITE. Rather, observations are grouped based on the likelihood of receiving 

treatment, so assessment of TEH is typically restricted to whether the treatment effect varies 

with values of the estimated propensity score. This can provide an overall assessment of the 

presence of TEH, but as the propensity score is a scalar summary of a multivariate covariate 

vector, deriving clinical or scientific interpretability from knowing that the treatment effect 

varies with the propensity score is challenging. Thus TEH across values of the propensity 

score does not provide the specificity of heterogeneity we are interested in. If an effect 

modifier is associated with Y and not T – in other words, if an effect modifier is not also a 

confounder –then propensity score methods will not be able to detect it. By ignoring 

outcome data and focusing solely on the relationship between T and X, the propensity score 

model has difficulty learning about who experiences the treatment effect differently.

3.3 | Modeling Class 3: Outcome and treatment jointly, conditional on covariates

A relatively recent approach is considering the conditional joint distribution of the outcome 

and treatment by modeling (Y, T) | X. Nelson & Noorbaloochi46 define a multidimensional 
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sufficient summary S(X), a balancing score such that (Y , T) ⊥ ⊥ X |S(X) . Wang, Parmigiani, 

& Dominici47 take a Bayesian variable selection perspective, defining a Bayesian adjustment 

for confounding (BAC) methodology for estimating average treatment effects with linear 

regression models by averaging over the posterior probability of covariate inclusion in a 

joint model for (Y, T).

Representative Method: Facilitating Score (FS)—The representative approach from 

this model class that we investigate in detail is that of Su et al.,25 who define the 

multidimensional facilitating score a0(X) as a statistic that satisfies the following conditional 

independence:

X ⫫ Y0, Y1, T a0(X)
relaxation

X ⫫ T a0(X)
addresses confounding

and X ⫫ Y0, Y1 a0(X)
addresses effect modification

. (6)

Estimation of a0(X) involves joint modeling of (Y0, Y1, T), precluded by the Fundamental 

Problem.27 Thus Su et al.25 instead propose a multidimensional weak facilitating score a(X), 

that satisfies the following as derived from the above relaxation:

X ⫫ T a(X)
addresses confounding

and E Y1 − Y0 X = E Y1 − Y0 a(X)
addresses effect modification

. (7)

The weak FS a(X) is therefore a balancing score, and conditioning on a(X) defines a 

subpopulation within which the average treatment effect is constant. This is the first method 

discussed thus far that has explicitly addressed the issue of TEH.

To estimate the weak FS, Su et al.25 use the conditional independence

(Y , T ⫫ X h X (8)

for a statistic h(X). The validity of this independence is a consequence of a factorization 

theorem applied to the joint distribution of observed data f Y , T X y, t x) .25, Theorem 7 By this 

theorem, the statistic h(X) that fulfills the preceding conditional independence also fulfills 

definition (7) of a weak facilitating score.25, Theorem 3 This then allows for indirect 

estimation of the weakFS by jointly modeling (Y, T). Regression trees16 are used for this 

modeling, where the fact that the joint conditional density f Y ,T X y, t x  is constant within a 

terminal node implies (Y , T) ⫫ X within that node. This within-node independence implies 

(8); that is, that the facilitating score is constant within a given node. Because a single tree 

model is known to be unstable (i.e., a small change in the data can result in a large change in 

the final tree structure),17, p.312 Su et al.25 propose an aggregated grouping strategy (similar 

to bagging) to average across K possible tree structures. Again adopting the notation of 

Chipman, George, & McCulloch,38 to generate one possible tree structure, a bootstrap 
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sample is generated to grow and prune tree 𝒯k to Bk terminal nodes. This tree is then 

applied to the original data. An n × n pairwise distance matrix Dk is generated from the 

resulting tree classifications, where matrix element

dii′
(k) =

1 if observations i, i′ fall into the same terminal node of 𝒯k

0 otherwise
(9)

The distance matrices are then averaged to obtain D = 1
K ∑k = 1

K D
k
, and a clustering 

algorithm (e.g., multidimensional scaling, partitioning around mediods) applied to D to 

obtain the final data stratification. The end product is the assignment of each observation to 

a subgroup, and a TE can be estimated within each.

Similar to BART, issues of sparsity may preclude empirical justification of positivity, but 

this can be partially overcome through assumptions made of the larger subpopulation that 

the sample represents and checking that the unconditional probability of treatment within 

each subgroup is bounded away from 0 and 1. We note that although the estimation 

algorithm of Su et al.25 ensures empirical subgroup positivity through particular stopping 

rules within the node-splitting procedure, these rules also increase the potential to conceal 

true subgroups. For example, if there is a tree node that contains observations from two 

subgroups but there are too few treatment observations, the procedure will not split that node 

and inference will be made on the whole node.

4 | COMPARISON OF METHODOLOGIES: SIMULATION STUDY

We evaluate the ability of the three approaches discussed in §3 to identify TEH by 

considering the representative method from each approach; these methods are summarized 

in Table 1.

4.1 | Data Structure and Analysis

Letting 𝓁1 ∈ A, B, C, D, D*  denote a particular simulation scenario, Table 2 defines possible 

underlying correlation structures for Y , T , X1, …, X6, E1, E2, E3 . Let Y N(μ𝓁1
, 1) denote the 

continuous outcome, and T Bern(p𝓁1
) the binary treatment. There is one covariate 

associated with the treatment only, X5 ~ Bern(0.5). There is one covariate associated with 

the outcome only, X6 ~ N(0,1). There are four confounders of the effect of treatment on 

outcome, X1, X2, X3, X4
i.i.d.N(0, 1) . In addition, there are three binary effect modifiers, 

E1, E2, E3
i . i . d . Bern(0.5) . These three variables define eight subgroups (Group 1, …, Group 

8), with six unique treatment effects among them. As determined by μ𝓁1
 and the eight 

unique values of (E1, E2, E3), the subgroup-specific ATEs are 1, 2, 5, 5, 6, 6, 9, and 10. 

Regardless of the underlying data generation mechanism, models are fit using all available 

covariates (similar to what might be done in practice).
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Within one of the 1000 simulation iterations, a dataset of size n = 1500 is generated 

according to §4.1 and TEH evaluated using each of the methods described in §3. In the case 

of BART and GBM, such evaluation is done by partitioning the estimated probability 

distribution (be it of the outcome or treatment) into deciles, then estimating a TE within each 

subgroup defined by the deciles. In the case of the facilitating score (FS), the dissimilarity 

matrix D is partitioned into 10 subgroups using the partitioning around mediods method and 

a TE estimated within each. In practice the analyst will know neither the number nor relative 

sizes of the true underlying subgroups; thus success of a method is judged in part by its 

ability to group similar observations together. Typical measures of concordance are 

complicated by our estimation of more subgroups (ten) than truly exist in the population 

(eight), as well as the unequal sizes of the true subgroups, leading to members of true 

subgroups necessarily split across estimated subgroups. This process is explained in detail 

below, as is our proposed measure of concordance. Example code used to simulate these 

data and estimate partitions is available online.26

4.2 | Results

To summarize the results of a single simulation iteration, subgroups are numbered in 

ascending order by the estimated treatment effect. If an individual is in a subgroup for which 

there is an undefined treatment effect (e.g., its subgroup is entirely comprised of individuals 

on treatment), it is assigned to an “undefined” subgroup. For example, if only seven of ten 

subgroups have a defined treatment effect, then the 8th, 9th, and 10th subgroups are empty 

and the individuals in the three subgroups are all reassigned to the same “undefined” 

subgroup. In the ordering of subgroups, the “undefined” group is placed last.

The estimated partition is cross-tabulated with the eight true groupings, which are also 

ordered by the magnitude of their average treatment effect (envision a 8×11 table where each 

row corresponds to true subgroup membership and each column corresponds to estimated 

subgroup membership). Within this cross-tabulation table, row percentages for each of the q 
= 1,2,…, 8 rows are calculated representing the proportion of units in true treatment group q 
that are assigned each of the estimated sub-groups (columns). This table of row percentages 

is constructed for each simulation iteration. The resulting collection of tables is averaged 

over the 1000 simulation iterations to yield a single table of cell-specific averages. A single 

average indicates how often a method places an individual from true subgroup q in to each 

of the 11 estimated subgroups. Averages for the different data generation scenarios and the 

different estimation methodologies are visualized in Figure 1.

To ease explanation, consider the fourth block in the second row of Figure 1 –the table 

summarizing data generated under Scenario D* and using GBM to address TEH. The last 

row of this table summarizes results for observations in Group 8, the true subgroup with the 

largest ATE. While not displayed here (but displayed in the full, annotated version of this 

image in Appendix 2 of the Supplementary Materials), the number visualized by the red cell 

color is “4”, the average percentage of units in Group 8 that were assigned to the estimated 

subgroup with the smallest treatment effect. This average is taken across the simulations for 

which this estimated subgroup had membership. For this first cell, the average is taken 

across all 1000 simulation iterations, because by design, there is always membership in the 
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smallest group. Consider, however, the 10th cell in this row visualizing the value “20”. On 

average across the 8 simulations for which there was membership in the 10th subgroup, 20% 

of units in Group 8 were assigned to the subgroup with the tenth (i.e., largest) treatment 

effect. Of special note is the “37” visualized in the 11th column of the first row; on average 

across the 92 simulation iterations for which there was at least one estimated subgroup with 

an undefined treatment effect, 37% of observations in Group 1 were placed in an estimated 

subgroup having an undefined treatment effect. Said simply, using GBM to estimate TEH, 

over one-third of observations in true Group 1 can be expected to have an undefined 

treatment effect. We note that GBM was the only estimation procedure that yielded 

subgroups with an undefined treatment effect; the cell-specific averages presented for BART 

and FS were across all 1000 simulation iterations. The denominators for the cell-specific 

averages presented for GBM are not explicitly provided within the figure, but are contained 

in Appendix 1 of the Supplementary Materials.

Measures of concordance between Figure 1 and what we expect to see are given in Table 3. 

Defining “truth” as the color arrangement we expect to see for a particular estimation 

method and simulation scenario, we calculate the Euclidean distance of each observed cell 

color (i.e., a block in Figure 1 ) from its expected cell color, in red-green-blue (RGB) color 

space. We then average these cell-specific distances over the 80 cells to get a summary 

measure of how far our observed data are from what we expect. (Note that the 11th 

undefined column was omitted from these calculations, under the assumption that 

membership in this column is reflected by absence in the remaining 10 columns included in 

the calculation.) Scaling these distances by the maximum distance (the distance between 

random assignment of and perfect assignment), we get a measure of distance from what we 

expect to see on the [0,1] scale. Letting (Rc, Gc, Bc) represent the expected color of cell c 
and (rc, gc, bc) the observed color, we define this distance in Equation (10) below.

1
80 cells ∑

c ∈ 80 cells
Rc − rc

2 + Gc − gc
2 + Bc − bc

2 (10)

Scaling this quantity by the distance between detecting no heterogeneity and detecting the 

exact partition of the data, then subtracting from 1, we get a measure of concordance that is 

similar to the traditional definition of sensitivity, in that we are conditioning on the truth and 

measuring agreement with this truth. Note that when the truth is ‘no heterogeneity’ as in 

simulation scenario A, we are calculating a measure of specificity. Sensitivity and specificity 

for each estimation procedure is presented in Table 3.

Figure 2 presents a second summary of the simulation results. The structure of this grid is 

pattered after Figure 1, where each row is an estimation method, and each column is a data 

generation scenario. Letting j = 1,…, 1000 denote the simulation iteration, the ten treatment 

effect estimates generated during the jth iteration are plotted, with the x-axis corresponding 

to magnitude; this is repeated for all 1000 simulation iterations. For each estimated 

treatment group (e.g., TE(1)), a boxplot is used to help visualize the distribution of estimates 

in that group. Recall from §4.2, the estimated treatment groups are always sorted from 
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smallest TE to largest; so TE(1) will always be the estimated subgroup with the smallest 

treatment effect. For clarity, the x-axes of the forest plots have been omitted, but there are 

vertical dashed lines denoting the true average treatment effects (1,2,5,6,9,10)

4.3 | Discussion

Figure 1 is a qualitative metric that allows for broad comparisons of the “performance” of 

each TEH identification strategy under several different data generation scenarios, where 

“performance” refers to the ability of the method to group truly similar observations 

together. For BART and GBM, deciles are used to define the estimated subgroups; for our 

sample size of 1500, each of the 10 estimated subgroups is expected to contain 150 

individuals. While there is no analogous sample size imposed on the subgroups estimated by 

FS, the groups tend to contain between 110 and 180 individuals. If we consider that 

individuals in true Group 1 have value (E1, E2, E3) = (0,0,1) and 

Pr E1, E2, E3 = (0, 0, 1) = 1/23 = 0.125, then we expect 0.125×1500 ≈ 188 individuals to be 

in Group 1. In a procedure that does a good job of grouping truly similar observations 

together, we’d expect to see Group 1 concentrated within the first estimated decile and the 

remaining 188 – 150 = 38 observations in the contiguous decile.

Looking at the results from BART we see exactly what we expect given the particular data 

generation scenario. Under Scenario A there is no effect modification, and observations from 

each of the true Groups are evenly distributed across the estimated subgroups (as seen in 

Appendix 2 of the Supplementary Materials). Under Scenarios B, C, and D, where effect 

modification is present, 150/188 = 80% of observations in true Group 1 are in the first 

estimated decile, and 38/188 = 20% are in the contiguous decile. These percentages are 

reflected in the underlying cell color; the full range of colors is given by the scale at the 

bottom of the figure. In true Group 2 there are 188 individuals, with 150 – 38 = 112 in the 

second decile and 188 – 112 = 76 in the third. Again, we see exactly what we expect, with 

112/188 = 60% of true Group 2 in the second decile and 76/188 = 40% in the third, and 

these percentages reflected in the underlying cell color. As demonstrated by these 

percentages, because the true subgroup sizes are not multiples of the estimated subgroup 

sizes, the estimated subgroups are heterogenous with respect to the true subgroups.

This heterogeneity is also made obvious in Figure 2. We expect the first estimated subgroup 

to be completely comprised of individuals from true Group 1 and the second estimated 

subgroup to have 38/150 = 25% from true Group 1 and 112/150 = 75% from true Group 2. 

Thus we would expect the treatment effect of the first estimated subgroup (i.e., TE(1)) to be 

1, and the estimated treatment effect of the second estimated subgroup to be 25% × 1 + 75% 

× 2 = 1.75, and this is exactly what we see under Scenarios B, C, and D for BART. Of note 

is the boxplot associated with the third estimated subgroup, which we expect to be 

comprised of 76/150 = 51% from true Group 2 and 74/150 = 49% from true Group 3, with 

an expected treatment effect of 51%×2+49%×5 = 3.5. This particular boxplot echoes the 

feature of Figure 1 where the estimated subgroups are heterogenous with respect to the true 

subgroups. This also emphasizes the importance of estimating a large number of subgroups 

Anoke et al. Page 14

Stat Med. Author manuscript; available in PMC 2020 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relative to the true number, because the analyst will want the estimated subgroups to be 

homogeneous.

Returning to the BART results under Scenarios A (in Appendix 2 of the Supplementary 

Materials), B, C, and D (in Figure 1), not only is the distribution of true Groups 1 and 2 as 

expected, the distribution of all eight true Groups is as we would expect. Within these 

scenarios BART does an excellent job of grouping truly similar observations. This is 

demonstrated by the clustering of large percentages in a given row, and the diagonal pattern 

of cell coloring. As explained in detail above, the spread over three versus two columns is 

purely a function of the true group size; larger groups will spread over more columns. Table 

3 quantifies this concordance, reporting high “sensitivities” across all simulation scenarios. 

We do see, however, that when there’s high nonlinearity in the outcome model as in 

Scenario D* there is some degradation in performance.

Next considering the GBM analysis, the results confirm our earlier hypothesis, that an effect 

modifier must be associated with treatment for the propensity score to have any chance of 

detecting the resulting TEH. Under Scenario B where there is effect modification but the 

EMs are not associated with treatment (i.e., the EMs are not confounders), GBM does no 

better than random assignment of observations. This is demonstrated by the equal (≈ 10%) 

allocation of each true subgroup (rows) across the ten estimated subgroups (columns), by the 

relatively uniform red coloring across the summary table, and by the relatively small 

“sensitivity” reported in Table 3. However in Scenario D where all three EMs are associated 

with treatment, GBM is able to detect some of the underlying data structure. Looking 

generally at the distribution of cell percentages/coloring in this table, we see two blocks of 

orange & yellow coloring, in the upper left and the lower right. What is being manifested in 

this separation is GBM’s detection of the one EM (E3) that has a strong association with 

treatment relative to the other two EMs (logistic regression coefficients of (E1, E2, E3) = 

(−0.1,1.1, −4)) and the other covariates in the dataset (see Table 2 ). The four rows (the first, 

second, third, and fifth) with more orange coloring on the left represent the four true 

subgroups with E3 = 1 and the remaining four rows represent the subgroups with E3 = 0.

Perhaps the most interesting aspect of the results from GBM is the 11th “undefined” 

column, where the method is alerting us to positivity violations. There are certain 

combinations of EMs that lead to extreme average propensity score values within that 

subgroup. For example, observations with (E1, E2, E3) = (0,0,1) and (E1, E2, E3) = (1,0,1) 

have average propensity scores of 0.06 and 0.04, respectively. Such a low average propensity 

score means that in finite settings like this one, where GBM is able to (somewhat) correctly 

group these observations together, often the estimated subgroups will not have any treated 

observations and the TE will be undefined. Figure 1 quantifies this, with brighter colors in 

the 11th column indicating more extreme positivity issues.

Now looking towards the results generated by FS, under Scenario B where there is effect 

modification and no confounding, the blocks of color suggest that the method is able to 

group observations by the magnitude of their treatment effect, rather than their covariate 

values: true subgroups with ATEs of 1 and 2 are grouped together (rows 1 and 2), as are true 

subgroups with ATEs of 5 and 6 (rows 3 through 6), and true subgroups with ATEs 9 and 10 
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(rows 7 and 8). A preliminary investigation of PAM partitioning the data into 20 subsamples 

revealed four large groups, implying that specifying more subgroups would have detected 

more structure, but that not all structure would have been detected due to the relatively weak 

association between E1 and Y.

Comparing the FS results of Scenario C to Scenario B, we see the beginnings of a 

bifurcation of the middle block of observations. Because we have now introduced covariates 

that have treatment and outcome associations of similar strength to E2, the decision trees 

constructed by FS choose E2 less often as a variable that defines a decision rule, instead 

choosing the other covariates. Because E2 has become relatively less important in defining 

subgroups, the movement of observations is towards the groups defined by strong EM E3. 

Thus, the third and fifth rows, which have value E3 = 1, are moving towards the grouping of 

the first and second rows which also have value E3 = 1; similarly for the fourth and sixth 

rows with value E3 = 0.

Our final comments on FS are about Scenario D, which demonstrates a potential pitfall of 

empirical positivity enforcement through algorithmic stopping rules. As expected, FS is able 

to group observations by strong EM E3. Different from Scenario C where E3 is not 

associated with treatment, here E3 has a strong negative association with treatment. Thus 

observations with E3 = 1, those in rows 1, 2, 3, and 5, have very low values of the propensity 

score. Decision tree nodes with these observations cannot be split any further because the 

stopping rule requiring a minimum number of treated observations will have been triggered. 

Comparatively, observations with E3 = 0 have moderate propensity score values, so are able 

to be further divided by E2.

While the above simulation study was intentionally simplistic in its data generation, 

Appendix 5 in the Supplementary Materials present an analogous simulation where data are 

generated to more directly mimic the covariate distribution observed in the CER 

investigation of §5. The general conclusions of this supplementary simulation study are the 

same as those presented here.

5 | COMPARISON OF METHODOLOGIES: CER FOR CARDIOVASCULAR 

STENTS IN MEDICARE BENEFICIARIES

Drug-eluting stents (DES) have been widely adopted as a non-inferior alternative to bare-

metal stents (BMS) for treatment following myocardial infarction (MI),48 with clinical-trials 

evidence indicating important effect modification by diabetes49 and age.50,51,52 In this data 

analysis, we consider the comparison of drug-eluting stents (DES) to bare-metal stents 

(BMS) as treatment of myocardial infarction (MI), by looking at the association of each with 

the two-year revascularization rate. Our goal in this exploratory analysis is to evaluate 

whether TEH is present, as determined by the three estimation methods under consideration 

and using our knowledge of their operating characteristics.

5.1 | Data Structure

De-identified inpatient data on 38 covariates were generated by 54 099 Medicare 

beneficiaries hospitalized in the continental United States in 2008 with their first MI. An 
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unadjusted comparison of the two-year revascularization rate in DES and BMS patients 

yields a risk difference of −0.055, indicative of a worse outcome with BMS and thus 

consistent with the literature, but thought to be confounded by patient characteristics that 

help determine treatment choice. As summarized in Table 4, patients receiving BMS 

generally have a higher baseline risk profile.

To evaluate TEH, each of the three estimation methods were applied to the data. In the case 

of BART and GBM, such evaluation was done by partitioning the estimated probability 

distribution (be it of the outcome or treatment) into 500 quantiles, then estimating a TE 

within each subgroup defined by these quantiles. In the case of FS, the dissimilarity matrix 

D is partitioned into 500 subgroups using PAM and a TE estimated within each.

5.2 | Results

The results of this data analysis are summarized in Figure 3. For each estimation method, the 

subgroup-specific treatment effects (the risk difference) and associated uncertainty intervals 

are plotted in ascending order. The red vertical line denotes the marginal estimated risk 

difference. None of the estimation methods were able to estimate 500 subgroups, for 

differing reasons. In the case of BART, there were several hundreds of patients with the 

same estimated ITE, and those subgroups could not be disaggregated. Furthermore, the 

relatively small within-group and between-group variation is a manifestation of an important 

distinction in the BART estimation procedure: what is being calculated within each 

subgroup is an average of estimates (ITEs), rather than a function of observed outcomes. For 

GBM, 24 of the 500 subgroups had an undefined treatment effect (i.e., at least one treatment 

arm with less than 2 observations), 3 for FS.

Focusing on the results from BART (which proved most promising in the simulation 

studies), we investigate whether any individual covariates exhibit a clear association with 

subgroup membership. Towards this goal, we plot ITEs and subgroup average ITEs across 

the distribution of each covariates, as illustrated for four covariates in Figure 4. To ease 

explanation, consider the top-most plot marked age. The y-axis represents the subgroup-

specific average age in years, and the x-axis represents the subgroup-specific ATE (again 

measured on the risk-difference scale). A red dot represents a subgroup, generated as 

described earlier: the 54 099 posterior means are partitioned into 500 subgroups, and the 

average age and average TE (taken as the average of the posterior mean ITEs within that 

subgroup) are plotted. Thus, we expect 500 red dots in this single plot. To generate the 

values that the gray dots represent, we applied the subgrouping process used on the posterior 

means (i.e., partitioned into 500 subgroups and calculated subgroup-specific averages) to 

each of the 1000 posterior draws of 54 099 ITEs, and plotted a random subset of 100.

5.3 | Discussion

A qualitative analysis of the forest plots in in Figure 3 suggests that none of the three 

estimation procedures detect any treatment effect heterogeneity; the variability in subgroup-

specific estimates is as one might expect from sampling variability. However the successful 

performance of BART in the simulation studies leads us to further investigation, as displayed 

in Figure 4.
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Considering Figure 4, there is evidence of quantitative effect modification by age; it appears 

that DES lead to better outcomes in younger patients, a benefit that decreases to nearly zero 

in older patients. These conclusions are supported by the literature, where it is known that 

DES generally leads to better outcomes than BMS but the increased comordibities, bleeding 

risk, and frailty of elderly patients may negate the beneficial effects.50,51,52 There is also 

compelling evidence of quantitative effect modification by hypertension, where absence of 

hypertension is associated with better outcomes within DES patients, as compared to BMS 

patients. The figure does not imply effect modification by Medicaid eligibility or diabetes.

The lack of evidence of effect modification by diabetes may come as a surprise because of 

the physiological53,54 and randomized clinical trial49 evidence that supports the general 

understanding among clinicians that the effect of stent type on adverse cardiovascular 

outcomes is different within diabetic patients. However what we are seeing is a well-known 

issue with measurement of diabetes prevalence: it is subject to high rates of 

misclassification.55 High blood pressure, on the other hand, is positively associated with 

diabetes56 and is much easier to determine. So in fact, it is possible that we are seeing the 

effect modification of diabetes through a proxy.

6 | CONCLUSIONS

The goal of a TEH estimation method is to provide a partitioning of the covariate space into 

interpretable subgroups, identifiable by covariate values. Such a partition would be extracted 

from the data, rather than specified a priori by the researcher. Historically, detection of TEH 

has involved identification of effect modifiers by subject matter experts, then an evaluation 

of the estimated treatment effect within each subgroup. This sort of a priori specification 

precluded exploratory analyses of TEH (for good reason, out of a desire to constrain the type 

I and II error rates), treated confounding and TEH as separate issues, and was not scalable to 

high-dimensional data. Uncertainty in confounder and/or effect modifier selection was not 

addressed by these methods. Thus out of necessity, we have seen an evolution of estimation 

procedures to match the increased complexity of our research questions and our data.

We contribute to the ongoing discussion by briefly reviewing and evaluating three general 

classes of modeling approach, through a performance comparison of representative modern 

methods from each class. We considered the ability of each method to detect subgroups in an 

exploratory, hypothesis-generating manner. Our simulation studies revealed that GBM, as a 

representation of using propensity scores to estimate causal effects, is not able to detect 

effect modifiers that are not associated with treatment; that is, effect modifiers that are not 

also confounders. However, GBM is able to alert the analyst to positivity violations whereas 

the representative methods from the other modeling classes extrapolate, possibly 

inappropriately. For example, FS, as a representation of the joint modeling of outcome and 

treatment conditional on covariates, potentially fails to disaggregate when the treatment 

prevalence is extreme, leading the analyst to draw conclusions on the aggregate. BART, as a 

representation of modeling the outcome conditional on covariates, does not require 

observations in both treatment arms to calculate the subgroup ATE so positivity violations 

may go unnoticed. The ability of each method to estimate an unbiased subgroup-specific 

treatment effect is related to its ability to group similar observations together, and to the 
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number of subgroups that the sample is initially partitioned into by the analyst. When the 

initial partition is too coarse, the resulting subgroups are still heterogeneous with respect to 

the true subgroups, leading to biased treatment effect estimates. The conclusions drawn from 

our simulation studies were used to evaluate the results of a comparative effectiveness 

analysis, looking at the effect of stent type on an adverse cardiovascular outcome. Diabetes 

status and age are known in the cardiovascular literature as an effect modifier, and presented 

itself as such in our analysis, although through the correlated hypertension covariate.

Our analyses do have some limitations, that present opportunities for future work. Our 

heuristic study was designed to gain some intuition about the more mathematically-rigorous 

evaluative measures, so we do not address measurement of uncertainty in the subgroup-

specific treatment effect estimates, nor any of the classical statistical performance metrics 

(e.g., consistency). There are also potential problems with using the same data to estimate 

subgroups and treatment effects, and future work would explore ways to avoid this. Future 

work would also explore ways to estimate the number of underlying subgroups from the 

data, rather than a priori specification by the analyst. Lastly, we explicitly explored methods 

designed to “automatically” detect which of the measured variables are confounders and/or 

effect modifiers. This was motivated by the desire to address settings where the sheer 

number of measured covariates or limited contextual knowledge precluded prior 

specification of such variables. However, such analyses entail important limitations. All 

methods we consider rely on the assumption that the entirety of X is measured pretreatment 

and thus unaffected by T. If this assumption was violated, such automated procedures could 

be susceptible to forms of bias such as posttreatment selection bias or M-bias. Furthermore 

more, if the available variables in X do not contain important confounders or proxies, then 

the methods explored here would still suffer from unobserved confounding bias.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Visualization of results from Simulation Study 4. Details regarding how the figure was 

constructed, and how to interpret the figure, are given in §4.2. A full, annotated version of 

this image, including the quantities visualized by the colors as well as a summary of 

Simulation Scenario A, can be found in Appendix 2 of the Supplementary Materials
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FIGURE 2. 
Box plots of point estimates of the ATE across 1000 replicates of each simulation scenario, 

with layout analogous to that of Figure 1 in the main text. For clarity, the x-axes of the plots 

have been omitted, but there are vertical dashed lines denoting the true average treatment 

effects (1,2,5,6,9,10). Summary results for Simulation Scenario A can be found in Appendix 

3.1 of the Supplementary Materials.
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FIGURE 3. 
Visualization of results from the data analysis of §5. Details regarding how the figure was 

constructed, and how to interpret the figure, are given in §5.2.
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FIGURE 4. 
Visualization of results from the data analysis of §5. Covariates displayed are age, Medicaid 
eligibility, prior diabetes diagnosis, and prior hypertension diagnosis. The y-axis represents 

the subgroup-specific average, and the x-axis represents the subgroup-specific ATE (on the 

risk-difference scale). A red dot represents a subgroup, generated as described in §5.2: the 

54099 posterior means are partitioned into 500 subgroups, and the average covariate 

measure (e.g., average age) and average TE (taken as the average of the posterior mean ITEs 

within that subgroup) are plotted. Thus, we expect 500 red dots in a single plot. To generate 
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the values that the gray dots represent, we applied the subgrouping process used on the 

posterior means (i.e., partitioned into 500 subgroups and calculated subgroup-specific 

averages) to each of the 1000 posterior draws of 54099 ITEs, and plotted a random subset of 

100.

Anoke et al. Page 27

Stat Med. Author manuscript; available in PMC 2020 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anoke et al. Page 28

TABLE 1

Summary of statistical methods being compared.

Approach Representative Method Summary + Assumption Simulation Notes

Y | X, T Bayesian Additive Regression Trees 
(BART)38,39 & application to causal 
effect estimation23

Tree-based modeling of potential 
outcomes.

Used recommended prior and 
hyperparameter values.39

T | X Propensity score estimation with 
Generalized Boosted Regression 
(GBM)24

Tree-based modeling of logit[e(x)].
 T ⫫ X e X .

Used recommended parameter values.
24, pp.409–10

Y,T | X Tree-based Facilitating Score (FS) 
estimation25

Tree-based modeling of 
f Y , T | X(Y , T | X)
X ⫫ T | h(X) and
E Y1 − Y0 | X =

E Y1 − Y0 | h(X) .

Used aggregated grouping to generate K = 
100 trees of maximum depth 8, from a 
bootstrap sample of ⅔ of the total dataset. 
Each node has ≥ 20 observations, with ≥ 5 
observations from each treatment group.25
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TABLE 2

Summary of data generation scenarios for Simulation Study 4.

𝓁1 Data Generation Scenario Definition

A confounding and no effect modification p𝓁1
= expit 0.1X1 − 0.1X2 + 1.1X3 − 1.1X4 + 0.4X5

μ𝓁1
= − 3.85 + 0.5X1 − 2X2 − 0.5X3 + 2X4 + X6 + 5T

B effect modification and no confounding p𝓁1
= expit 0.4X5

μ𝓁1
= − 3.85 + X6 − E1 − 2E3 + 5T + TE1 + 4T E2 − 4T E3

C effect modification and confounding effect modifiers p𝓁1
= expit 0.1X1 − 0.1X2 + 1.1X3 − 1.1X4 + 0.4X5

μ𝓁1
= − 3.85 + 0.5X1 − 2X2 − 0.5X3 + 2X4 + X6 − E1 − 2E3

+5 T + T E1 + 4T E2 − 4T E3
D effect modification and confounding by p𝓁1

= expit 0.1X1 − 0.1X2 + 1.1X3 − 1.1X4 + 0.4X5

−0.1E1 + 1.1E2 − 4E3)
μ𝓁1

= − 3.85 + 0.5X1 − 2X2 − 0.5X3 + 2X4 + X6 − E1 − 2E3

+5 T + T E1 + 4T E2 − 4T E3
D* effect modification and nonlinear confounding by effect 

modifiers
p𝓁1

= expit 0.1X1 − 0.1X2 + 1.1X3 − 1.1X4 + 0.4X5

−0.1E1 + 1.1E2 − 4E3)

μ𝓁1
= −3.85 + 0.5X1 − 2X2 − 0.5X3 + 2X4 + X6 − E1 − 2E3

2

+5 T + T E1 + 4T E2 − 4T E3
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TABLE 3

Summary of “specificity” (column 1) and “sensitivity” (columns 2–5) calculations for Simulation Study 4, 

with quantities calculated according to Equation (10) and given as percentages.

Scenario A
confounding and

no effect modification

Scenario B
effect modification

and no confounding

Scenario C
effect modification

and confounding

Scenario D
effect modification and

confounding by EMs

Scenario D*
effect modification &

nonlinear confounding by EMs

Bayesian Additive Regression Trees 
(BART)

+ partitioning ITE
distribution into deciles

95.1 98.0 97.9 96.3 61.8

Generalized Boosted Models (GBM)

+ partitioning e(X)
distribution into deciles

98.5 1.0 0.6 11.0 1.3

Facilitating Score (FS)
+ partitioning D into 10

subgroups using PAM

95.6 42.6 30.5 23.3 −2.9
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TABLE 4

Baseline characteristics (% experiencing unless otherwise indicated) and one-year hospital readmission rate 

for DES (“treated”) and BMS (“untreated”) patients (columns 1 and 2). See §5.1 for details on the population 

that generated these data.

DES
(30562)

BMS
(23537)

Race: white 90.2 90.1

Male 57.2 57.8

Age (years) 74.9 76.2

Region

 west 16.0 13.7

 midwest 27.7 30.0

 south 40.6 38.8

 northeast 15.7 17.5

COPD 15.7 16.9

Asthma 2.6 2.5

Prior Coronary artery bypass graft (CABG) performed 0.4 1.1

Prior congestive heart failure 6.8 7.1

Prior myocardial infarction 3.0 2.8

Unstable angina 3.2 2.3

Chronic atherosclerosis 90.6 88.4

Respiratory failure 2.3 2.6

Hypertension 69.2 65.8

Prior stroke 1.0 1.3

Cerebrovascular disease (non stroke) 2.7 3.1

Renal failure 5.4 6.2

Pneumonia 6.7 8.5

Malnutrition 1.2 2.2

Dementia 3.3 5.3

Functional disability 1.3 1.7

Peripheral vascular disease 4.4 4.7

Trauma in the past year 3.5 4.3

Major psychiatric disorder 1.2 1.6

Liver disease 0.2 0.5

Severe hematological disorder 0.4 0.7

Anemia 14.6 18.2

Depression 4.8 4.9

Parkinsons/Huntington 0.9 1.0

Seizure disorder 1.1 1.4

Chronic fibrosis 1.4 1.6

Vertebral fractures 0.6 0.7

Cancer 3.6 6.3
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DES
(30562)

BMS
(23537)

Eligible for Medicaid 12.0 13.2

Diabetes 29.9 26.3

Revascularization within two years 22.0 27.5
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