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Abstract

Diffuse large B-cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a 

clinically and genetically heterogeneous disease that is further classified into transcriptionally 

defined activated B-cell (ABC) and germinal center B-cell (GCB) subtypes. We carried out a a 

comprehensive genetic analysis of 304 primary DLBCLs that identifies low-frequency alterations, 

captured recurrent mutations, somatic copy number alterations (SCNAs) and structural variants 

(SVs), and defined coordinate signatures in patients with available outcome data. We integrated 

these genetic drivers using consensus clustering and identified five robust DLBCL subsets, 

including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal 

zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable 

alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A 
loss and associated genomic instability. The genetic features of the newly characterized subsets, 

their mutational signatures and the temporal ordering of identified alterations provide new insights 

into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of 

the clinical International Prognostic Index and suggest new combination treatment strategies. 

More broadly, our results provide a roadmap for an actionable DLBCL classification.

Introduction

DLBCL is the most common lymphoid malignancy in adults, accounting for up to 35% of 

non-Hodgkin lymphomas. Although DLBCL is curable with combination therapy (R-

CHOP) in over 60% of patients, the remainder develop recurrent or progressive disease that 

is often fatal. DLBCL is also a genetically heterogeneous disorder with multiple low-

frequency mutations, SCNAs and SVs1–8. Currently, these tumors are thought to arise from 

antigen-exposed B-cells that transit through the germinal center (GC)1. Aspects of the GC 

environment, including the high proliferation rate, physiologic activation-induced cytidine 

deaminase (AID)-mediated immunoglobulin receptor editing and aberrant somatic 

hypermutation (SHM) are conducive to malignant transformation1.

The heterogeneity of DLBCL is reflected in transcriptionally defined subtypes that provide 

insights into disease pathogenesis and candidate treatment targets9–14. The cell-of-origin 

(COO) classification identifies activated B-cell (ABC)-and GC B-cell (GCB)-type 
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DLBCLs1,9. ABC-DLBCLs are currently thought to be derived from B-cells that have 

passaged through the GC and are committed to plasmablastic differentiation1. These tumors 

have increased NF-kB activity and a subset exhibit genetic alterations in NF-kB modifiers 

and proximal components of the B-cell receptor (BCR) pathway and perturbed terminal B-

cell differentiation1,11,13,15. In contrast, GCB-DLBCLs are postulated to originate from 

light-zone GC B-cells1. A subset of these tumors have alterations in chromatin-modifying 

enzymes, PI3K signaling and Ga-migration pathway components and frequent SVs of 

BCL21,16–18. Although patients with ABC-DLBCLs are reported to have less favorable 

responses to standard therapy than those with GCB-DLBCLs8,9,19, targeted analyses of 

select alterations suggest additional genetic complexity remains to be defined2,11,18,20,21. 

Despite the recognized clinical and molecular heterogeneity in DLBCL, previous genomic 

studies of this disease have largely focused on single types of alterations – mutations, 

SCNAs or SVs.

To address these issues, we have performed whole exome sequencing (WES) with an 

expanded bait set to capture known SVs in 304 DLBCLs from newly diagnosed patients. 

Eighty-five percent of these patients were uniformly treated with R-CHOP and had long-

term follow-up; a subset of these patients were enrolled in the prospective multi-center 

RICOVER60 trial22. This representative and clinically annotated DLBCL cohort was used to 

comprehensively detect mutations, SCNAs and SVs and identify five groups of patients with 

outcome-associated coordinate genetic signatures, three of which were previously 

undescribed.

Results

Significantly mutated driver genes.

We detected mutations from WES data of 304 primary DLBCLs, 55% of which lacked 

patient-matched normal samples (Methods, Supplementary Fig. 1 and Supplementary Tables 

1 and 2). To include all 304 samples in the discovery cohort for candidate cancer genes 

(CCGs), we developed new computational methods to filter germline variants and artifacts 

from tumor-only samples (Methods and Supplementary Figs. 2 and 3). After filtering, we 

found a median of 3.3 and 6.6 mutations/Mb in the paired and tumor-only samples, 

respectively, suggesting that on average 3.3 germline variants per megabase persisted after 

filtering. Multiple lines of evidence indicated that these rare germline variants were spread 

throughout the genome and had minimal effect on the detection of CCGs (beta-binomial test, 

P=0.4; Methods and Supplementary Figs. 2 and 3).

We applied MutSig2CV23 to the 304 DLBCLs and detected 98 CCGs (q-value<0.1; Fig. 1 

and Supplementary Table 3a). Our CCG list includes previously reported mutational drivers, 

including the tumor suppressor, TP53; the chromatin modifiers, KMT2D(MLL2), CREBBP 
and EP300; components of the BCR, Toll-like receptor (TLR) and NF-kB signaling 

pathways, CD79B, MYD88, CARD11 and TNFAIP3(A20); certain components of the RAS 

pathway, KRAS, BRAF; NOTCH2 and the NOTCH signaling modifier, SPEN; and 

immunomodulatory pathway components, B2M, CD58, CD70 and CIITA (Fig. 1a)3–8. Due 

to improved methodology and increased sample size, we identified 40 additional previously 

undescribed CCGs in DLBCL8, many of which have defined roles in other lymphoid 
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malignancies or cancers (Supplementary Fig. 3r,s). These include additional modifiers of the 

BCR and TLR signaling pathways, PTPN6(SHP1), LYN, HVCN1, PRKCB and TLR2; 

histone genes, HIST1H1B, HIST1H1C, HIST1H1D, HIST1H2AC, HIST1H2AM, 
HIST1H2BK, HIST1H3B, HIST2H2BE; BCL11A, IL6, CCL4 (MIP-1β) and the PD-1 

ligand, CD274 (PD-L1) (Fig. 1a and Supplementary Fig. 4).

To identify genes with significant clustering in 3-dimensional protein structures, we used 

CLUMPS24 which revealed 22 CCGs (q-value<0.1). Notably, 7 of 22 CCGs were not 

captured by MutSig2CV, including an additional member of the KRAS-BRAF-MEK1 

pathway, MAP2K1(MEK1) (Supplementary Fig. 5a–d and Supplementary Table 3b). 

CLUMPS also provided insights into the putative function of mutations: TP53 alterations 

clustered in 2 distinct regions of the protein, the DNA binding site and the Zn2+-atom 

coordinating residues required for p53 structural integrity (Fig. 1b); non-canonical BRAF 
mutations perturbed the autoinhibitory interaction of the P and activation-loops (Fig. 1b and 

Supplementary Fig. 5e); and clustered mutations in CREBBP, PTPN6(SHP1) and GNAI2 
abolished polar interactions around the catalytic pocket (Fig. 1b and Supplementary Fig. 5). 

A second step in CLUMPS (called EMPRINT) identified enrichment of mutations at 

protein-protein interfaces. For example, RHOA mutations cluster at the binding interface 

with multiple Rho gaunaine nucleotide exchange factors (ARHGEFs), keeping RHOA in its 

inactive form and de-repressing PI3K signaling and Gamigration (Fig. 1c, Supplementary 

Fig. 6a–c and Supplementary Table 3c)1. In addition, CLUMPS identified mutation 

clustering at the acceptor groove of FBXW7 that limits CCNE1 recognition and CUL1/

SKP1/FBXW7-mediated degradation – a previously reported tumor suppressor mechanism 

in other cancers (Supplementary Fig. 6d,e and Supplementary Table 3c).

Mutational Processes.

Mutational processes leave a characteristic imprint, a mutational signature, in the cancer 

genome that reflects both DNA damage and repair. We applied our SignatureAnalyzer tool25 

that uses both the 3-base mutational sequence context and mutational clustering in genome 

coordinates to discover 4 signatures (3 signatures after removal of a single micosatelite 

instability case; Supplementary Methods, Fig. 2a, Supplementary Fig. 7a–c and 

Supplementary Table 4). The predominant mutational signature, which explained 80% of all 

mutations, was spontaneous deamination at CpG sites (C>T_CpG, hereafter “Aging”; Fig. 

2a–b and Supplementary Fig. 7). Consistent with the underlying etiology of this signature, 

older patients had more mutations driven by spontaneous deamination (Supplementary Fig. 

7d). We also identified two AID-driven signatures, canonical AID (c-AID) and AID2, that 

reflect different repair mechanisms following AID-induced deamination of cytosine to 

uracil. The cAID signature was characterized by increased C>T/G mutations at a known 

AID hotspot, the RCY-motif(R=A/G,Y=C/T)25,26. Consistently, cAID activity was enriched 

at sites of both physiologic and aberrant somatic hypermutation (SHM, Fig. 2a–b, 

Supplementary Fig. S7e and Supplementary Table 4)27. The AID2 signature was dominated 

by A>T/C/G mutations at WA(W=A/T)-motifs and shared some properties of the 

COSMIC9/non-canonical AID signature25,26.
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Next, we determined the relative contributions of aging, cAID and AID2 mutational 

processes to each CCG (Fig. 2c and and Supplementary Fig. 7f). Genes that are known 

targets of aberrant SHM, including BCL2, SGK1, PIM1, IGLL5 (Fig. 2c and Supplementary 

Table 4d,e)25, had predominant AID signatures (cAID+AID2) comprised of mutations with 

the lowest ratio of non-silent to silent mutations (Fisher’s Exact test, P=1.97×10−4) that 

clustered within 2kb of the transcription start site (Fisher’s Exact test, P=2×10−41), 

consistent with the AID mechanism. In contrast, genes including MYD88, KMT2D(MLL2), 
EP300, TNFAIP3(A20), TP53 and PRDM1(BLIMP1), had predominant aging mutational 

signatures (Fig 2c, Supplementary Fig. 7f–g and Supplementary Table 4c).

Chromosomal Rearrangements and SCNAs.

We next assessed recurrent SVs using a previously described targeted sequencing 

approach28 and a pipeline that included 4 different algorithms followed by a filtering and 

split-read validation step (Methods, Supplementary Figs. 1 and 8a–e and Supplementary 

Table 5). We identified at least 1 SV in 64%(189/296) of tumors; translocations that 

juxtaposed genes to strong regulatory elements were the most common SVs (Fig 3 and 

Supplementary Fig. 8d).

As expected1,29,30, IGH, BCL2, BCL6 and MYC were the most frequently rearranged genes 

(40, 21, 19, and 8%, respectively) followed by the PD-1 ligands, PD-L1 and PD-L2 (5%), 

then TBL1XR1 (4%), TP63 (3%), CIITA (3%) and ETV6 (2%)(Fig. 3a–g and 

Supplementary Figs. 8e and 9a–f). The IgH enhancer region was the predominant 

rearrangement partner (97%) of BCL2, and breakpoints were almost exclusively distal to the 

BCL2 open reading frame (ORF) (Fig 3a,d). Although Ig loci enhancers were the most 

common rearrangement partners for BCL6 and MYC (57% and 58%, respectively), multiple 

additional partners were identified; breakpoints in BCL6 and MYC were predominantly 

proximal to the ORFs (Fig 3b,c,e,f). PD-L1 and PD-L2 SVs involved multiple regulatory 

elements juxtaposed to intact ORFs with increased expression of the respective protein (Fig. 

3g–i), as previously described28. Less frequently, Ig-regulatory elements (IgH, Igκ, Igλ) 

were juxtaposed to additional partners with known roles in GC B-cells (BACH2, BCOR, 
FOXP1, miR-17–92, CCND1, CIITA, SOCS1, NFKBIE) (Supplementary Fig. 9a–g).

Next, we identified significantly recurrent SCNAs with the GISTIC2.0 program based on the 

WES data. We detected 18 arm-level and 18 focal regions of copy gain and 2 arm-level and 

32 focal regions of copy loss (q-value≤0.1,frequency≥3%;Fig. 4a). The frequencies of these 

SCNAs ranged between 5 and 32% and the number of genes within focal peaks varied from 

4 (2p16 gain) to 549 (1q23.3 gain). We did not observe chromothripsis in our dataset 

(Supplementary Note).

To provide insights regarding candidate driver genes in SCNAs, we leveraged available gene 

expression data and performed an integrative analysis2 (Supplementary Note and 

Supplementary Table 6). For each focal alteration, genes from the COSMIC Cancer Gene 

Census with a significant association between transcript abundance and SCNA were 

identified (Fig. 4a, Supplementary Table 6 and Supplementary Methods). In DLBCLs with 

focal 13q31.3 gain, the transcript with the highest fold change was miR-17–92 (Fig. 4a and 

Supplementary Table 6).
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CCGs were significantly more likely to reside within focal SCNAs (Fisher Exact test, 

P=1×10−44;Fig. 4a), suggesting that these driver genes were perturbed by multiple 

mechanisms. Significant genes altered by mutations, CN gain, and/or SVs included 

NOTCH2(1q23.3), CCND3(6p21.1), PD-L1/PD-L2/JAK2(9p24.1), and BCL2(18q/

18q21.33); those perturbed by mutations and CN losses included CD58(1q13.1), 

TNFAIP3(6q23.3), PRDM1(BLIMP1;6q21), B2M(15q15.3), PTEN/FAS(10q23.31), 

CD70(19p13.3), RHOA(3p21.31), TMEM30A(6q14.1) and TP63(3q28). Of note, 74% of 

DLBCLs exhibited genetic bases of immune escape7,28,31–33 including alterations of MHC 

class I loci, B2M, CD70, CD58, CD274(PD-L1), PDCD1LG2(PD-L2) and CIITA 
(Supplementary Fig. 9i).

Association of individual genetic features to outcome.

Next, we assessed the prognostic value of our identified genetic drivers for progression-free 

survival (PFS) and overall survival (OS) in the subset of patients who were treated with R-

CHOP-like therapy (n=259, median follow-up 78.5 months). Loss of 1q42.12, MYC SVs 

and gains of 18q21.33/BCL2, 13q31.3/miR-17–92 and 18p were independently predictive of 

inferior PFS; all retained significance when added to IPI risk groups (Fig. 4b,c, 

Supplementary Fig. 10a and Supplementary Tables 7). MYC SVs, 13q31.3 gain and 1q41.12 
loss were also associated with shortened OS alone and when added to International 

Prognostic Index (IPI) risk groups (Supplementary Fig. 10b–d and Supplementary Tables 7). 

Notably, the prognostically significant individual alterations were SCNAs or SVs rather than 

mutations (Fisher’s Exact test; PFS, P=0.007; OS, P=0.02).

Coordinate genetic signatures capture biologic heterogeneity.

DLBCLs in this series harbored a median of 17 (range:0–48) genetic drivers prompting 

additional analyses of co-occuring alterations. We applied non-negative matrix factorization 

(NMF) consensus clustering34 to the 158 identified genetic driver alterations and discovered 

five robust subsets of tumors (clusters) with discrete genetic signatures (hereafter coordinate 

genetic signatures; C1-C5; 51 to 72 samples each) and an additional subset without 

detectable alterations (C0;12 samples) (Methods, Fig. 5, Supplementary Figs. 11 and 12 and 

Supplementary Tables 8).

Cluster 5.—The 64 cluster 5 (C5) DLBCLs exhibited near-uniform 18q gain likely 

increasing expression of BCL2 and other candidate drivers such as MALT121,35. These 

tumors also had frequent mutations in CD79B (48%, 29 of 60) and MYD88 (50%, 30 of 60), 

alterations previously associated with ABC-type DLBCLs11,13,20. MYD88 mutations 

selectively involved L265P and often occurred in association with CD79B mutations 

(Fisher’s Exact test, P=0.036; Figs. 5 and 6a,b and Supplementary Fig. 13a). Additional 

alterations linked to ABC-DLBCLs, including gains of 3q, 19q13.42 and inactivation of 

PRMD1, were observed in this cluster2,36 as were the prognostically significant 18p copy 

gains (Fig. 4b and 5). In this cluster, 96% (45 of 47) of tumors with available COO 

designations typed as ABC-DLBCLs (Fisher Exact test, P<0.001).

Major components of the C5 signature, including frequent BCL2 gain, concordant 

MYD88L265P/CD79B mutations and additional mutations of ETV6, PIM1, GRHPR, 
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TBL1XR1 and BTG1 (Fig. 5), were similar to those recently described in primary CNS and 

testicular lymphoma28. Therefore, we identified systemic DLBCLs with CNS or testicular 

involvement and found that eight of nine patients with testicular disease were in this cluster 

(Fisher’s Exact test, P<0.001) as was one of two patients with CNS involvement. These data 

suggest that the C5 genetic signature is associated with extranodal tropism and extend the 

findings of targeted sequencing studies linking MYD88L265P with extranodal disease37,38. 

C5 DLBCLs have the highest contribution of cAID and associated aberrant SHM indicative 

of tumors that have passaged through the GC (Fig. 6c)1.

Cluster 1.—The majority of the 56 cluster 1 (C1) DLBCLs exhibited BCL6 SVs in 

combination with mutations of NOTCH2 signaling pathway components, predominantly 

activiating PEST-domain mutations of NOTCH2 and truncating mutations of its negative 

regulator, SPEN. C1 DLBCLs also had increased transcriptional abundance of NOTCH2 and 

BCL6 target genes by gene set enrichment analysis (GSEA) (Supplementary Fig. 13f). In 

addition, these tumors harbored frequent mutations of the NF-kB pathway members, BCL10 
and TNFAIP3(A20), and FAS (Fig. 5 and Supplementary Fig. 4). Alterations in NOTCH and 

NF-kB pathway components and FAS mutations were previously found in low grade 

marginal zone lymphomas (MZLs)39–42 and BCL6 translocations were described in 

transformed MZL43.

C1 DLBCLs had no histologic features of MZLs, suggesting that these tumors were either 

occultly transformed prior to diagnosis or that they derived de novo from a common 

extrafollicular B-cell precursor with shared genetic features. MZLs typically arise in a 

setting of chronic inflammation, often in response to pathogen-driven antigen stimulation44. 

Notably, C1 DLBCLs exhibited multiple genetic bases of immune escape, including 

inactivating mutations in B2M, CD70, FAS and SVs of PD-L1 and PD-L2 (Fig. 5 and 

Supplementary Figs. 4 and 9i)28,31.

The majority of C1 DLBCLs were classified as ABC-type tumors by transcriptional 

profiling (Fisher’s Exact test, P=0.01). Although 25% (13 of 51) of C1 DLBCLs exhibited 

MYD88 mutations, these were almost exclusively MYD88non-L265P in contrast to the 

predominant MYD88L265P found in C5 ABC DLBCLs (P<0.001, Fig. 6a,b and 

Supplementary Fig. 13a). MYD88L265 and MYD88non L265P differ in their ability to 

coordinate IRAK1/IRAK4-containing signaling complexes and activate NF-kB11. C5 and 

C1 ABC-DLBCLs also differ in the contribution of cAID to their mutational spectrum (Fig. 

6c and Supplementary Fig. 13d, C1 vs. C5, P<0.001; C1 vs. rest, P<0.001). In contrast to C5 

tumors, C1 DLBCLs have low to absent cAID activity, providing additional evidence of an 

extrafollicular origin and a lower rate of SHM (Fig. 6c)45.

Taken together, the coordinate genetic signatures of C1 and C5 ABC-type DLBCLs define 

subsets of tumors with distinct pathogenetic mechanisms. These findings (Figs. 5 and 6b) 

also suggest different targeted treatment strategies in the genetically distinct ABC-DLBCLs 

– inhibition of proximal BCR/TLR signaling and BCL2 in C5 and perturbation of NOTCH 

and BCL6 signaling and immune evasion mechanisms in C1.
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Cluster 3.—The majority of the 55 cluster (C3) DLBCLs harbored BCL2 mutations with 

concordant SVs that juxtaposed BCL2 to the IgH enhancer (Fisher Exact test, P=3.3×10−35; 

Fig. 5 and Supplementary Fig. 9h). C3 DLBCLs also exhibited frequent mutations in 

chromatin modifers, KMT2D, CREBBP and EZH2, and increased transcriptional abundance 

of EZH2 targets by GSEA (Supplementary Fig. 13g). These tumors also had alterations of 

the B-cell transcription factors, MEF2B and IRF8, and indirect modifiers of BCR-and PI3K-

signaling, TNFSF14(HVEM), HCNV1 and GNA13 (Fig. 5 and Supplementary Fig. 4). 

Additionally, these tumors had 2 alternative mechanisms of inactivating PTEN– focal 

10q23.31/PTEN loss and predominantly truncating PTEN mutations (Fig. 5). The 2 types of 

PTEN alterations are noteworthy because the PTEN N-terminal and C-terminal domains 

have distinct roles in antagonizing PI3K/AKT signaling, maintaining genomic stability and 

inducing murine B-cell lymphomas18,46,47. C3 genetic alterations have been described in 

follicular lymphoma (FL) and de novo GCB-type B-cell lymphomas4,16–18,36,48–53. 

Consistent with this finding, 95% (38 of 40) of C3 DLBCLs with available COO 

designations were GCB-type (Fig. 5).

Cluster 4.—The 51 cluster 4 (C4) DLBCLs were characterized by mutations in four linker 

and four core histone genes, multiple immune evasion molecules (CD83, CD58, and CD70), 

BCR/Pi3K signaling intermediates (RHOA, GNA13, and SGK1), NF-kB modifiers 

(CARD11, NFKBIE, and NFKBIA) and RAS/JAK/STAT pathway members (BRAF and 

STAT3).

C4 DLBCLs were primarily GCB-type (Fisher’s Exact test, P=0.01), suggesting that C4 and 

C3 DLBCLs represent genetically distinct subsets of GCB-tumors (Fig. 5). Comparison of 

the C3 and C4 genetic signatures further indicated that these GCB-DLBCLs utilize distinct 

mechanisms to perturb common pathways such as PI3K signaling. In contrast to C3 

DLBCLs, C4 tumors rarely exhibited PTEN alterations but harbored more frequent RHOA 
mutations (Fig. 5). Additionally, C4 DLBCLs rarely exhibited BCL2 alterations.

Unlike C3 tumors, C4 DLBCLs largely lacked alterations in chromatin modifying enzymes 

but frequently exhibited mutations in H1 linker histones and additional core histones that 

have also been described in FL52,54,55. The identified mutations in the globular or C-

terminal domains of H1 linker histones likely reduce their association with chromatin and/or 

perturb interactions with additional effector molecules (Supplementary Fig. 4)54–56. H1 

linker and core histone alterations may increase mutation rates by opening chromatin and 

exposing DNA to ongoing AID activity; indeed, C4 tumors have a significantly higher 

mutational density (P<0.0001; Supplementary Fig. 13C).

The distinct genetic features of C3 and C4 GCB-DLBCLs also suggest specific targeted 

therapies including inhibition of BCL2, PI3K and the epigenetic modifiers, EZH2 and 

CREBBP, in C3 GCB tumors and JAK/STAT and BRAF/MEK1 blockade in C4 GCB-

DLBCLs.

Cluster 2.—The 64 cluster 2 (C2) DLBCLs harbored frequent bi-allelic inactivation of 

TP53 by mutations and 17p copy loss (Fig. 5 and Supplementary Fig. 13e). Additionally, C2 

tumors often exhibited copy loss of 9p21.13/CDKN2A and 13q14.2/RB1, which perturb 
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chromosomal stability and cell cycle2. Consistent with these findings, transcriptionally 

profiled C2 DLBCLs had decreased abundance of TP53 targets and increased levels of E2F 

targets by GSEA (Supplementary Fig. 13h). C2 tumors also had significantly more driver 

SCNAs (P<0.0001) and a higher proportion of genome doubling events (Fig. 6d, P<0.001; 

Supplementary Fig. 13b). This cluster included both GCB-and ABC-DLBCLs, as did prior 

DLBCL cohorts with TP53 mutations in targeted analyses57. C2 DLBCLs shared features of 

previously described DLBCLs with TP53 alterations and multiple SCNAs of p53/cell cycle 

modifiers2. These tumors also exhibited more frequent copy gains of 1q23.3/MCL1. 

Prognostically significant SCNAs, including 13q31.31/miR-17–92 copy gain and 1q42.12 
copy loss, were also more common in these DLBCLs (Fig 5).

Cluster 0.—A small subset of 12 DLBCLs lacked defining genetic drivers. Significance 

analyses (MutSig2CV and GISTIC2.0) restricted to cluster 0 (C0) DLBCLs were also 

unrevealing. This group included increased numbers of T-cell/histocyte-rich LBCLs 

(Fisher’s Exact test P<0.001), a morphologically defined subtype with a brisk inflammatory/

immune cell infiltrate10. The absence of detectable drivers in these DLBCLs may reflect 

lower tumor purity or different pathogenetic events.

BCL2 and MYC alterations.—Recently, subsets of tumors with co-occurring BCL2 and 

MYC and/or BCL6 SVs and/or increased protein expression have been described and 

associated with poor outcome (“double and triple hit” DLBCLs)58. Notably, we detected 

prognostically significant MYC SVs and focal 18q21.33/BCL2 gain (Fig. 5, bottom) and 

additional alterations that perturb the expression of BCL2, BCL6 and MYC target genes in 

multiple clusters (Fig. 5; 18q gain, C5; BCL2 SVs, C3; 13q14.2/miR-15/16 loss, C2; BCL6 
SVs, C1; 13q31.3/miR-17–92 gain59, C2). However, tumors with co-occuring BCL2 and 

MYC SVs were significantly more frequent in C3 DLBCLs (Fisher’s exact test, P=0.003). 

These findings identify multiple genetic bases of BCL2 and MYC deregulation and suggest 

that current definitions of double and triple hit DLBCLs are insufficiently precise.

Temporal ordering of genetic events in DLBCL clusters.

We next determined the cancer cell fraction (CCF) for each genetic driver and used a CCF 

threshold of 0.9 to identify each alteration as clonal or subclonal; 74% of mutations, 49% of 

SCNAs, and 57% of SVs were clonal in this series (Supplementary Fig. 14, Supplementary 

Table 10a, and Methods). Each of the above-mentioned mutational signatures (Fig. 2) 

contributed to subclonal mutations, suggesting that all mutational processes were ongoing 

(Supplementary Fig. 14e). We also applied a method for mutation ordering60 in tumors that 

harbored pairs of alterations that were clonal and subclonal. Pairs with an excess of clonal to 

subclonal events were identified and highly significant pairs were highlighted (q-value<0.1; 

Fig. 6j, Supplementary Fig. 15, Supplementary Table 10 and Methods). As clonal alterations 

occur prior to subclonal events60, this method allowed us to order the timing of genetic 

alterations (Fig. 6e–j).

In C5 ABC-DLBCLs, defining mutations of CD79B, MYD88 and TBL1XR1 were largely 

clonal, whereas additional genetic events including 18q copy gain and PIM1, BTG1 and 

ETV6 mutations were more frequently subclonal (Fig. 6i,j). In C1 ABC-DLBCLs, mutations 
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associated with MZL, NOTCH2, SPEN and BCL10, and immune evasion, CD70 and B2M, 

were largely clonal, whereas FAS and TNFAIP3 mutations and BCL6 and PD-1 ligand SVs 

were often subclonal (Fig. 6e). In informative tumors, the ordering of paired alterations 

supported the hypothesis that BCL6 SVs were later, potentially transforming, events (Fig. 

6j).

The alterations in C3 GCB-DLBCLs were largely clonal (Fig. 6g), although a subset of 

BCL2 SVs were subclonal (Fig. 6g,j). In C4 primarily GCB-DLBCLs, defining alterations 

of immune evasion molecules, BCR/PI3K signaling intermediates, NF-kB modifiers and 

RAS/JAK/STAT pathways members were largely clonal (Fig. 6h). In contrast, mutations of 

linker and core histone genes were variably clonal and subclonal (Fig. 6h), suggesting that at 

least some of these alterations were later events.

C2 DLBCLs were largely characterized by clonal loss of 17p, followed by TP53 mutations 

(Fig. 6f,j). Certain prognostically significant genetic alterations, 18q21.33 copy gain and 

MYC SVs, were often subclonal (Fig. 4,6 and Supplementary Fig. 14a–d).

Outcome associations of DLBCL clusters.

We next assessed the prognostic significance of the newly defined coordinate genetic 

signatures and identified significant differences in PFS and OS (Fig. 6k,l and Supplementary 

Fig. 16a,b). Patients with C0, C1 and C4 DLBCLs had more favorable outcomes, whereas 

those with C3 and C5 tumors had less favorable outcomes (Fig. 6k,l and Supplementary Fig. 

16a,b). Notably, in patient with C3 tumors, outcomes were not dependent on co-occuring 

MYC/BCL2 SVs (Supplementary Fig. 16e). Patients with C2 DLBCLs had a distinct 

trajectory and a steady rate of progression over time (Fig. 6k,l and Supplementary Fig. 16a). 

The genetically distinct COO subtypes (C1 and C5 ABC-DLBCLs; C3 and C4 GCB-

DLBCLs) had marked differences in PFS and OS, with more favorable outcomes in the 

newly defined C1 ABC-and C4 GCB-DLBCLs (Fig. 6m and Supplementary Fig. 16d).

These findings likely explain the reported clinical and genetic heterogeneity within 

transcriptionally defined COO subsets9,19–21. For example, recent targeted studies identify 

poor prognosis subsets of ABC DLBCLs with BCL2 copy gain and GCB tumors with BCL2 
SVs, defining alterations of the genetically distinct C5 ABC and C3 GCB DLBCLs (Fig. 

5,6m and Supplementary Fig. 16d)21.

We next constructed a multivariate model considering both IPI and genetic signatures as 

variables, with low-risk IPI and favorable (C0/C1/C4) genetic signatures as reference (PFS, 

Fig. 6n; OS, Supplementary Fig. 16d). For low-risk IPI patients, those with C5 features had 

a hazard ratio (HR) of 2.01 compared to patients with favorable genetic signatures (Fig. 6n). 

For patients with favorable genetic features, those with high-risk IPIs had a HR of 3.44 

compared to those with low-risk IPIs (Fig. 6n). Patients with C5 features and high-risk IPI 

had a HR of 6.91 (3.44×2.01) compared to the reference group. Therefore, the coordinate 

genetic signatures captured outcome differences that were independent of the IPI (Fig. 6n, 

Supplementary Fig. 16c and Supplementary Table 11).
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Discussion

We expanded the landscape of recurrent genetic drivers in DLBCL through increased sample 

size and technical innovations, including analyses of WES data in the absence of paired 

normal samples. We also temporally ordered these alterations, gained insight into biologic 

function of certain mutations by overlaying them onto 3D protein structure and identified the 

dominant mutational processes in DLBCL exomes. Our studies highlighted the complexity 

of DLBCLs, which have a median of 17 different genetic alterations per tumor.

By integrating recurrent mutations, SCNAs and SVs, we defined five distinct DLBCL 

subsets, including previously unappreciated favorable risk ABC-DLBCLs with genetic 

features of an extrafollicular, possibly marginal zone origin (C1); poor risk GCB-DLBCLs 

with BCL2 SVs and alterations of PTEN and epigenetic enzymes (C3); a newly defined 

group of good-risk GCB-DLBCLs with distinct alterations in BCR/PI3K, JAK/STAT and 

BRAF pathway components and multiple histones (C4); and a COO-independent group of 

tumors with biallelic inactivation of TP53, 9p21.3/CDKN2A and associated genomic 

instability (C2). The key genetic features of these DLBCLs included mutations, SCNAs and 

SVs, indicating that all 3 types of alterations were needed to capture disease heterogeneity 

and outcome differences. Moreover, DLBCL cluster-associated genes were perturbed by 

multiple mechanisms.

Our approach to define genetically distinct DLBCL subsets is a framework for assessing 

previously unrecognized heterogeneity in transcriptionally defined subsets, linking 

mutational signatures with cluster-predominant pathogenetic mechanisms, assessing genetic 

bases of extranodal disease tropism and developing faithful murine models of human 

tumors. Most importantly, the DLBCL outcome-associated genetic signatures will guide 

development of rational single-agent and combination therapies in patients with the greatest 

need.

Methods

Patient samples.

Our multi-institutional, international group assembled a cohort of 351 patient samples 

diagnosed with a previously untreated, primary diffuse large B-cell lymphoma (DLBCL) of 

which 304 passed all below described quality controls. This 304 sample dataset was 

obtained from 4 sources: 129 samples from patients enrolled in the prospective, randomized, 

multi-center RICOVER60 trial22; 103 samples from a DFCI/BWH cohort; 67 samples from 

the Mayo Clinic and University of Iowa Specialized Program of Research Excellence 

(SPORE) (51 previously reported WES analysis5,61); and 5 samples from the University of 

Göttingen, Germany. Forty-four percent (135 of 304) of samples had a paired normal 

specimen and 55% (168 of 304) of samples were obtained from formalin-fixed paraffin 

embedded (FFPE) tissue (Supplementary Figure 1 and Supplementary Table 1). All patients 

had a diagnosed primary DLBCL per WHO criteria; this diagnosis was confirmed for all 

RICOVER60 samples by a central pathological review as previously described22, and all 

DFCI/BWH and Mayo cases were confirmed by an expert hematopathologist (SJR). The 

patient characteristics are equally distributed across the different sources and summarized in 
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Supplementary Table 2. A total of 85% (259/304) of patients were uniformly treated with 

state-of-the-art therapy (rituximab-containing CHOP-like regimen) and had long-term 

follow-up (median: 78.5 months). This study was approved by the institutional review board 

(IRB) of the Dana-Farber Cancer Institute and the IRBs of all other participating institutions. 

All relevant ethical regulations were followed. Informed consent was obtained from the 

human subjects on clinical trial. Per IRB protocol and approval, written human subject 

cosents were waived for the additional samples.

Whole exome sequencing (WES).

DNA quality control.—Tumor and normal DNA was extracted as previously described 

from lymph node samples, blood and 31 B-cell lymphoma cell lines, respectively2,5. DNA 

quality control was performed as previously described62. Briefly, genomic DNA was 

quantified using Quant-iT PicoGreen® dsDNA Assay Kit (ThermoFisher Scientific, USA) 

and identities of all tumor/normal DNA pairs were confirmed by mass spectrometric 

fingerprint genotyping of common SNPs.

Exome sequencing.—Whole exome capture was performed using the Agilent SureSelect 

Human All Exon 44Mb v2.0 bait set (Agilent Technologies, USA) as previously 

described28,63,64. In summary, genomic DNA was sheared, end repaired, ligated with 

barcoded Illumina sequencing adapters, amplified, size selected and subjected to in solution 

hybrid capture using the Agilent SureSelect Human All Exon v2.0 bait set63,64. Resulting 

exome Illumina sequencing libraries were then qPCR quantified, pooled, and sequenced 

with 76 base paired-end reads using Illumina GAII or HiSeq 2000 sequencers (Illumina, 

USA). In addition, raw sequencing reads of previously in house generated and published 

WES data for 49 DLBCL tumor/normal paired samples5 were processed through identical 

pipelines as the newly generated WES data (Supplementary Figure 2a,8a). Exome 

sequencing of cell lines with the spiked-in bait set for SV detection was performed as 

previously described28. The new WES data has been deposited in the dbGAP database 

(www.ncbi.nlm.nih.gov/gap) with the accession number phs000450.v1.p1.

Alignment and Quality Control.

To prepare read alignments for analysis, we processed all sequence data through the Broad 

Institute’s data processing pipeline, “Picard” (http://picard.sourceforge.net/) as previously 

described28. For each sample, this pipeline combines data from multiple libraries and flow 

cell runs into a single BAM file. This file contains reads aligned to the human genome with 

quality scores recalibrated using the TableRecalibration tool from the Genome Analysis 

Toolkit (GATK)65. Reads were aligned to the Human Genome Reference Consortium build 

37 (GRCh37) using BWA (version 0.5.9-tpx http://bio-bwa.sourceforge.net/). Variant 

detection and analysis of the BAM files were performed using the Broad Institute’s Cancer 

Genome Analysis infrastructure program “Firehose” (http://archive.broadinstitute.org/

cancer/cga/firehose). Firehose facilitates comparison of BAM files from matched tumor/

normal pairs and coordinates the execution of specific modules including quality control, 

local realignment, mutation calling, small insertion and deletion identification, 

rearrangement detection, variant annotation, computation of mutation rates and calculation 

of sequencing metrics. Module versioning and logging of the specific analytical parameters 
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is also tracked. The median sequencing depth of the exome region in the tumor samples 

meeting all quality control cut offs is 87.6x (range: 39–206.8). Additional quality control, 

see Supplementary Note.

Copy Number Analysis from WES data.

Initial estimates of exome-wide copy number profiles were determined using ReCapSeg66 

which creates a copy number profile based on coverage across the exome and a panel of 

normals which obviates the need for a paired normal. The allele-specific copy number was 

determined using Allelic Capseg as previously described67,68. For paired samples, Allelic 

Capseg called heterozygous sites from the paired normal, while for the tumor-only samples 

heterozygous sites were called from the tumor itself. While this method has lower sensitivity 

for discovering sites with loss of heterozygosity (LOH) in the tumors, when paired samples 

are run with this method, they show high fidelity to the results when run with a paired 

normal (Supplementary Fig. 3g).

Significance analysis of recurrent SCNAs using GISTIC2.0.—Arm-level and focal 

peaks of recurrent copy number alterations were identified from the results of Allelic Capseg 
using GISTIC2.0 (version 129) as previously described69. Regions with germline copy 

number variants were excluded from the analysis. Events with a q-value of less than 0.1 

were reported significant. We specified a 99% confidence interval to determine wide peak 

boundaries.

Mutation Calling.—Somatic single nucleotide variants (SNVs) and small insertions and 

deletions (Indels) were identified using MuTect (Firehose CallSomaticMutations v13170, 

and Indelocator (Firehose CallIndelsPipeline v7762), respectively. When a paired normal 

was not available, we chose a normal sample from our DLBCL cohort that showed no 

evidence of tumor in normal contamination and otherwise acceptable QC metrics to remove 

common germline and potentially remove artifacts resulting from batch effect. Mutations 

were annotated using the oncotator tool (v68).71 Of note, we detected a total of 67,518 

unfiltered mutations in tumor samples with a paired normal and 364,692 in samples without 

a paired normal. Stringent filtering as described below reduced the numbers to 20,328 and 

31,586 for samples with and without paired normal, respectively. All significant analyses 

(MutSig2CV, CLUMPS, SignatureAnalyser tool) were performed on the filtered MAF file. 

The True-Positive-Rate = Sensitivity (= detected true mutations / all true mutations) for 

MuTect in tumor/normal (TN) pairs is above 90% in a blind simulated competition among 

algorithms called “Dream challenge 3” (https://www.synapse.org/#!Synapse:syn312572/

wiki/63089). For our tumor-only pipeline, the sensitivity is higher than 90% relative to TN 

pair detection (Supplementary Fig. 2g).

Artifact Filtering.

OxoG-artifacts were filtered as previously described72. In brief, OxoG is an artifact 

signature results from oxidative damage to guanine during library preparation, which causes 

guanine to pair with adenine instead of cytosine, ultimately causing an observed G>T 

mutation. These artifacts will only occur on one strand whereas a somatic event will show 

the change on both strands of DNA, and this orientation bias is used to distinguish real 
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events from artifacts. This cohort also had single nucleotide artifacts resulting from the use 

of FFPE samples, wherein formaldehyde causes deamination of cytosine resulting in C>T 

mutations similar to that of the aging signature but with the same orientation bias observed 

in OxoG events, allowing us to use the same algorithm for determining orientation bias 

which has previously been used on FFPE samples73. In addition to the canonical OxoG and 

FFPE artifacts, this cohort had an artifact characterized by recurrent mutations in repetitive 

regions that have many potential sites for mapping in the genome. To control for this, we 

first realigned SNV-containing regions with Novoalign v3.02.08 (http://novocraft.com) and 

preserved those variants that showed evidence in both sets of BAMs74. Subsequently, SNV-

and Indel-containing regions were reassembled using an approach similar to that of 

Haplotype caller65,75. We rejected variants in regions with sufficient coverage after 

reassembly that did not have evidence of an alternate allele.

Panel of Normals (PoNs) Filtering.—To remove sequencing artifacts and frequent 

germline events (for tumor-only samples), SNVs and Indels were filtered using version 8 of 

the in-house PoNs which includes 8,334 WES normals74. Briefly, the panel includes for 

each site eight values, which describe the percent of normals, different modes of artifact and 

the likelihood that the event is a germline event at that site.

Estimation of purity, ploidy and cancer cell fraction (CCF) using ABSOLUTE.
—For paired samples, purity, ploidy and cancer cell fraction (CCF) estimates for mutations 

and copy number were determined applying the ABSOLUTE algorithm as previously 

described76. Candidate models were reviewed by three independent reviewers (BC, AJD, 

CS) and discordances in the solution picks were resolved by discussion. ABSOLUTE 
models based on AllelicCapseg results and mutation calls from tumor-only samples were 

similarly reviewable to those that came from paired samples. Due to the prevalence of 

heterozygous germline sites in the mutations going into ABSOLUTE, the solutions called 

were more driven by the ABSOLUTE copy number profile than the allele frequency 

distribution in tumor-only samples than for paired samples. However, when ABSOLUTE 
solutions were called, independently, on 147 available paired lymphoma samples and those 

same sample samples run without pairs, there was a high correlation in calls of ploidy and 

purity (Supplementary Fig. 3e,f).

Germline Somatic Logodds Filter for Tumor-only Samples.—For each event that 

passed all preceding filters (SNV or Indel), its CCF, purity, ploidy and local copy number 

were used to determine the log ratio of the probability that its allele fraction is consistent 

with the allele fraction modeled for a hypothetical germline event and the probability it is 

consistent with a modeled somatic event. For additional details, see Supplementary Note.

ExAC Filtering.—After applying the Germline Somatic Log odds filter, we used the ExAC 

database as a final criterion for excluding potential germline events77. Using 147 paired non-

hypermutator samples, we selected the allele frequency in ExAC that yielded 98% 

sensitivity which cut out 50% of the remaining putative germline events.

Significance analysis of recurrently mutated genes (MutSig2CV).—Significantly 

mutated genes were identified applying the MutSig2CV algorithm and genes with a q-value 
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of less than 0.1 were reported as significant23. Notably, with the increased background 

mutation rate from 3.3/MB to 6.6/MB, the power to detect CCGs present in 10% of patients 

dropped from 100% to 98% in tumor-only samples.

Measuring the effect of remaining germline events on determination of 
significant mutated genes using the tumor-only pipeline.—To evaluate the 

performance of the newly developed tumor-only pipeline, the paired normals of our DLBCL 

cohort were run as tumor-only samples through the tumor-only pipeline as a null model, 

using one of the paired normal as the “normal” for the others, leaving us with a total of 134 

samples run through this pipeline. Despite the size of the cohort, when running Mutsig2CV 

on these samples after all filtering 0 to 3 (assigning each normal its paired tumor’s purity, 

assuming 10% or 90% purity) significant genes were found (Supplementary Fig. 3f), 

suggesting that any germline sites remaining after this pipeline are most likely randomly 

distributed throughout the genome and unlikely to affect the significantly mutated genes 

detected by Mutsig2CV60. Additionally, we performed a beta binomial test to determine if 

the number of mutations from tumor-only samples occurring in SMGs was significantly 

overrepresented. The p-value was calculated as:

P = ∑
MTO

MTO + MTN
βb(x, MTO + MTN, NTO + 1, NTN + 1) = 0.41

Where βb is the beta-binomial probability density function, NTO is the number of tumor-
only samples (NTO=169), NTN is the number of tumor-normal paired samples (NTN =134), 
MTO is the number of non-silent SMGs detected in tumor-only samples (MTO=1516), and 

MTN is the numberof non-silent SMGs detected in tumor-normal paired samples 

(MTN=1033).

Targeted DNA-sequencing for the detection of chromosomal rearrangements

Library Construction, sequencing and pre-analysis processing.—Targeted 

rearrangements (Supplementary Table 5a) were captured from either leftover uncaptured 

libraries from WES or genomic DNA, sequenced using an Illumina sequencing platform, de-

multiplexed and aligned to the reference sequence b37 edition from the Human Genome 

Reference Consortium with bwa as described previously28. A total of 296/304 samples had a 

mean read depth is 221.4x and met all quality control checkpoints and 99% of samples had a 

power greater than 0.996 to detect chromosomal rearrangements.

Chromosomal rearrangement pipeline.—Somatic rearrangements were detected 

using four different calling algorithms, BreaKmer78, Lumpy79, dRanger and SVaBA80, 

followed by Breakpointer validation, filtering and a CCF estimation module (Supplementary 

Fig. 8a), as described in Supplementary Note.

Consensus clustering of genetic alterations

Generation of gene sample matrix.—All significant mutated genes (MutSig2CV and 

CLUMPS, q-value ≤0.1 and frequency ≥3%), significant regions of SCNAs (GISTIC2.0, q-
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value ≤0.1 and frequency ≥3%) and chromosomal rearrangements (frequency ≥3%) were 

assembled into a gene sample matrix (Supplementary Table 8a; non-synonymous mutations, 

2; synonymous mutations, 1; no-mutation, 0; High grade CN gain [CN ≥ 3.7 copies], 2; low 

grade CN gain [3.7 copies ≥ CN ≥ 2.2 copies], 1; CN neutral, 0; low grade CN loss [1.1 ≤ 

CN ≤1.6 copies], 1; high grade CN loss [CN ≤ 1.1 copies]; chromosomal rearrangement 

present, 3; chromosomal rearrangement absent, 0; chromosomal rearrangements not 

assessed, na).

Assessing bias in individual genetic alterations due to remaining germline 
and FFPE artifacts.—Fisher’s exact test was applied to each putative genetic driver 

alteration in the gene sample matrix to determine if any of the putative genetic drivers 

occurred more than expected by random chance in tumor-only samples compared to patient-

matched tumor-normal samples. This analysis revealed no outliers after FDR correction, 

suggesting that there is not a strong bias of remaining germline effect in the discovery of 

CCGs (Supplementary Table 3e and Supplementary Fig. 3g). The same Fisher’s exact test 

was applied to assess if a putative driver is overrepresented in FFPE tissue compared to 

fresh-frozen tissue. After calculating the false discovery rate using the Benjamini-Hochberg, 

one focal amplification, 21q22.3, was highly significant and the 15 focal amplifications were 

exclusively found in FFPE samples (Supplementary Table 3f and Supplementary Fig. 3m). 

To further investigate the quality of this focal peak, the distribution of the difference in 

amplitude of adjacent targets as a noise measurement was plotted against other focal peaks 

(Supplementary Fig. 3o), where the distribution was found to be more irregular and to have 

the highest standard deviation. The higher noise level of the focal amplification 21q22.3, 

combined with the fact that it only appeared in FFPE samples and the event was exclusively 

subclonal served as justification for removal of the event as a likely FFPE artifact. After the 

removal of this event, no other genetic alterations were significantly overrepresented in 

FFPE after false discovery rate correction (Supplementary Table 3f and Supplementary Fig 

3n).

Non-Negative matrix factorization consensus clustering.—To robustly identify 

tumors with shared genetic features, we applied a non-negative matrix consensus clustering 

algorithm34 with slight modifications. Briefly, we passed the gene sample matrix containing 

mutations, SCNAs and chromosomal rearrangements (Supplementary Table 8a) to the NMF 

consensus clustering algorithm (input parameters k=4–10) bypassing the matrix 

normalization so that the cluster distance metric depended directly on the variant number in 

the gene-sample matrix. The NMF consensus clustering algorithm provided the cluster 

membership of each sample, the cophenetic coefficient for k=4 to k=10 clusters and 

silhouette values for the “Best cluster” (k=5) (Supplementary Table 8b). Samples without 

genetic drivers in the input matrix to the clustering were assigned to cluster C0. In addition, 

we identified marker genes associated with each cluster by applying a fisher test (2×2 table 

with variant present or absent as one dimension and within-cluster or outside-cluster the 

second dimension) and corrected the p-values using the FDR procedure (Supplementary 

Table 8c). Features with a q-value ≤0.1 were selected as cluster features (Supplementary 

Table 8c) and visualized as a color-coded heatmap using GENE-E (Figs. 5 and 

Supplementary Fig. 12; https://software.broadinstitute.org/GENE-E/)
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Mutual exclusivity/co-occurrence estimations. For each gene of interest, the significance of 

the co-occurrence or mutual exclusivity for each pair of different events (mutations, 

amplification, deletion or structural variant) that affects that gene was calculated using a 

Fisher test, and then corrected for false discovery using the Benjamini-Hochberg method.

Inferred timing of genetic alterations

CCF matrix of putative drivers.—First, we assembled for each of the 158 candidate 

driver events (for criteria, see generation of gene sample matrix above) the cancer cell 

fraction. When multiple events appeared in the same patient, the estimate based on the event 

with the highest coverage was used for mutations and SVs, while the one based on the 

longest segment was used for copy number alterations, as in each case this should represent 

the best-measured estimate (Supplementary Table 10a). In addition to the actual CCF value, 

for each genetic feature we added a binary distinction if this is clonal or subclonal alteration 

with 0.9 being the threshold.

Event ordering analysis.—To infer the timing of genetic events in each cluster and the 

overall cohort, we applied the method previously described for mutation ordering60. Briefly, 

we first identified for all driver alterations event pairs where events occurred such that one 

event was subclonal and the other was clonal (Supplementary Table 10b). The “effect-size” 

to quantify alteration pairs according to clonal and sub-clonal mixtures is simply the 

difference in counts of clonal and subclonal samples. Next, we assumed a null model in 

which the timing of genetic events was random, allowing us to perform a formal binomial 

test to determine if one event was more frequently clonal than the null model 

(Supplementary Table 10c). Of note, we restricted the test to those event pairs that were 

powered to achieve a significant result (q-value ≤0.1) when occurring as maximal effect.

Clinical endpoint analyses.

Statistical analyses were performed using R v3.3.2 with additional packages survival v2.41–
2 for survival analyses, qvalue v2.6.0 for false discovery rate control, and knitr v1.15.1 for 

reproducible research.

OS was defined as time from treatment until death from any cause. Subjects not confirmed 

dead were censored at the time last known to be alive. Progression-free survival (PFS) was 

defined as time from treatment until the earliest time of progression or death from any cause, 

and censored at time last known to be alive and free of progression.

Univariate and multivariable analyses of time-to-event endpoints were performed on the R-

CHOP treated cohort (n=259) using Cox regression. Genetic features had to be present in at 

least 3% of samples of the R-CHOP treated cohort to be tested for outcome associations. 

Hazard ratios (HR) with 95% confidence intervals (CI) and Wald p-values were reported for 

model covariates; likelihood-ratio tests and p-values were reported for multivariable models. 

Log-likelihoods of nested models were compared using a chi-square test to assess 

improvement in model fits. Median event times were estimated using the method of Kaplan 

and Meier (KM) and reported with 95% CIs; Greenwood’s formula was used to approximate 

the variance of KM estimate, and 95% CIs were generated using the log-log transformation. 
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Differences in survival curves were assessed using log-rank tests. Median follow-up time 

was estimated using the reverse KM method.

Fisher’s exact test was used to test for association between categorical variables. Odds ratios 

(OR) and 95% CIs were calculated for binary outcomes from contingency tables or logistic 

regression for continuous predictors. The Wilcoxon or Kruskal-Wallis rank-sum test was 

used to assess a location shift in the distribution of continuous variables between two or 

more than two groups, respectively. Descriptive statistics (proportions, medians, etc.) were 

reported with 95% exact binomial CIs or range. All p-values were two-sided, and 

adjustments for multiple hypothesis testing was performed using the method of Benjamini 

and Hochberg; p-and q-value thresholds for significance were set at 0.05 and 0.2, 

respectively.

Additional Methods.

Additional quality control metrics, detailed descriptions of the estimation of and correction 

for tumor-in-normal content (deTiN), the germline somatic log odds filter for tumor-only 

samples, the clustering and visualization of mutations in protein structures (CLUMPS) 

method, the correlation between driver genes and GISTIC2.0 peaks, the assessment of 

chromothripsis, the mutational signature analysis, the integrative analysis of gene expression 

and copy number data, the description of the chromosomal rearrangement pipeline, and the 

immunohistochemical staining protocol for PD-1 ligands are described in Supplemental 

Methods.

Code Availability

Data processing was done in the Broad Firehose computing environment (http://

archive.broadinstitute.org/cancer/cga/firehose). Code for modules from firehose as well as 

visualization and post-processing scripts are available upon request. The custom code for the 

NMF consensus clustering is available through GitHub at https://github.com/broadinstitute/

DLBCL_Nat_Med_April_2018.

Data Availability

Sequence data that support the findings of this study is being deposited in the dbGAP 

database (www.ncbi.nlm.nih.gov/gap), accession number phs000450. Newly generated 

U133plus2 Affymetrix gene expression array data has been uploaded to GEO, accession 

number GSE98588. All the data are available within the article, supplementary information 

and supplementary data file or from the authors on request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Recurrently mutated genes in 304 primary DLBCLs.
a, Number and frequency of recurrent mutations (left), gene-sample matrix of recurrently 

mutated genes (color-coded by type, center), ranked by their significance (MutSig2CV q-

value, right). Total mutation density across the cohort is shown at the top, allelic fraction of 

mutations at the bottom. Asterisk indicates hypermutator case. b, Genes that were also 

idenitified by CLUMPS include: TP53, CREBBP, KLHL6, BRAF, STAT6, and GNAI2. 

Representative examples of genes with significant spacial clustering in protein structures 

(gray): TP53 (top; PDB:4MZR), BRAF (middle; PDB ID:4G9R), GNAI2 (bottom; PDB:

1AGR). Mutated residues are shown in red and color intensity scales with number of 

mutations. Polar interactions in dotted yellow lines. Frequently mutated residues are labeled 

in black. Co-crystalized proteins are shown in blue (Zn+, Type II dihydroquinazoline 

inhibitor and GDP). c, Co-crystal structure of RHOA (gray) and ARHGEF18 (cyan; PDB:

4D0N) highlights mutational clustering at the RHOA-ARHGEF interface. Residues at the 

interface in black.
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Figure 2. Mutational signatures operating in primary DLBCLs.
a, Mutation signature analysis with the clustering information of mutations quantified by the 

nearest mutation distance (NMD) identified three mutational signatures; C>T mutations at 

CpG islands (C>T CpG, hereafter “Aging“), canonical AID (cAID) and a secondary AID 

signature (AID2) in 303 DLBCL samples. One sample with a predominant contribution of 

the MSI signature activity (SNVs > 5,000; Methods) was excluded. b, Signature activity (the 

number of mutations assigned to each signature) in each group of clustered (red; NMD ≤ 

1kb) and non-clustered mutations (blue; NMD > 1kb) across 303 DLBCL samples sorted by 

decreasing mutation count. c, Relative enrichment of signature activities in significantly 

mutated genes with at least 10 mutations. Number of mutations per gene on the right. Genes 

are sorted by prevalence of the aging signature. Error bars show the standard error of the 

mean.
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Figure 3. Chromosomal rearrangements in primary DLBCLs.
a-c, SVs of BCL2 (a, green), BCL6 (b, blue), MYC (c, red) and partner genes (gray) are 

visualized as Circos plots. Genes also targeted by somatic mutations are highlighted in 

black. Thickness of partner linking lines indicates frequency (numbers indicate frequency 

>1). d-f, Breakpoints within BCL2 (d), BCL6 (e) and MYC (f) are plotted in their indicated 

genomic context. Arrows indicate the transcription start site in the coding direction; boxes 

indicate exons including first coding exon (red); green bar below indicates which exons are 

protein coding. Translocation partners are indicated by the shading of the circle at the tip of 

each breakpoint (IgH, black; Igκ, dark gray; Igλ, light gray; non-Ig partners, white and 

name of partner gene above). g, Circos plots of chromosomal rearrangements involving the 

PD-1 ligand loci, PD-L1 and PD-L2, (orange). Labeling as in (a-d). h, Stick figures for 

indicated translocations involving either PD-L1 or PD-L2. See (h) for details. Raw reads 

count visualized below. Reads mapping to the first and second partner gene are highlighted 

in green and orange, respectively. i, PD-L1/PAX5 (left panel, PD-L1, brown; PAX5, pink) 

and PD-L2 (right; PD-L2, brown) immunohistochemical (IHC) analyses of the cases in (h). 
IHC was repeated twice with similar results.
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Figure 4. Recurrent SCNAs and outcome association of individual genetic factors.
a, GISTIC2.0-defined recurrent copy number gains (red, left) and losses (blue, right) are 

visualized as mirror GISTIC plots, with arm-level events, left and focal events, right. 

Chromosomes on the vertical axis. Green line denotes q-value of 0.1. SCNAs are labeled 

with their associated cytoband/arm followed in brackets by the frequency of the alteration, 

the number of total genes and COSMIC-defined cancer genes in GISTIC2.0-defined regions, 

respectively. For focal events, COSMIC cancer genes with a positive correlation to gene 

expression in our data (fold change >1.2, q<0.25) are indicated within the brackets. Genes 

that are also significantly mutated (in black) or subject to chromosomal rearrangement 

(n=>2, green) in our dataset are highlighted after the brackets. Other important drivers are 

labeled in gray. b, Kaplan Meier plots of individual genetic factors predictive for PFS in 

univariate and multivariate models of the R-CHOP treated cohort with PFS data (n=254); 

alterations present, dashed line; P values derived from log-rank test. c, Forest plots visualize 

the multivariate analysis of IPI risk groups and individual genetic factors for PFS in the R-

CHOP treated cohort with PFS data (n=254).
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Figure 5. Identification of groups of tumors with coordinate genetic signatures.
a, Non-negative matrix factorization consensus clustering was performed using all CCGs, 

SCNAs and SVs in the 304 DLBCL samples (columns). Clusters C1-C5 with their 

associated landmark genetic alterations are visualized (boxed for each cluster). Samples 

without driver alterations are represented as Cluster C0. Genetic alterations that are 

positively associated with each cluster are identified by a one-sided Fisher test and ranked 

by significance (q<0.1, green line, bar graph to the right). Non-synonymous mutations, 

black; synonymous mutations, gray; single CN loss (1.1 ≤ CN ≤1.6 copies), cyan; double 

CN loss (CN ≤ 1.1), blue; low level CN gain (3.7 copies ≥ CN ≥ 2.2 copies), pink; high 

grade CN gain (CN ≥ 3.7 copies), red; chromosomal rearrangement, green; no alterations, 

white; gray-crossed, not assessed. Header shows cluster association (C0, gray; C1, purple; 

C2, blue; C3, orange; C4, turquoise; C5, red), COO classification (ABC, red; GCB, cyan; 

unclassifiable, yellow; not assessed, gray), TCHRBCL cases (black, yes; white, no), and 

Chapuy et al. Page 27

Nat Med. Author manuscript; available in PMC 2019 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



testicular involvement (black, yes; white, no; gray, na). Outcome-associated alterations that 

are not part of a specific cluster, SVs of MYC and 18q21.33 copy gain are shown below.
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Figure 6. Type and incidence of MYD88 mutations, cAID mutational signature activity, inferred 
timing of genetic drivers and outcome association of DLBCL clusters.
a, Type of MYD88 mutations. b, Frequency of MYD88L265P and MYD88other mutations 

across clusters C1-C5 (n=292); P values by two-sided Fisher’s Exact test. c, Fraction of 

cAID mutational signature activity in clusters C1-C5 (n=292) as a Tukey boxplot (center, 

median; box, interquartile range [IQR]; whiskers, 1.5x IQR); P values by two-sided Mann-

Whitney U test. d, Ploidy as inferred by ABSOLUTE in clusters C1-C5 (n=292) as scatter 

plot (red line, median). DLBCLs with genome doublings (an inferred ploidy ≥ 3) are 

indicated in red; P value by two-sided Fisher’s Exact test. e-i, Cancer cell fractions (CCF) of 

clusters C1-C5 (C1, n=56; C2, n=66; C3, n=55; C4, n=51; C5, n=64) are plotted and ranked 

by the fraction of clonal events of each landmark alteration (high to low, right panel). 

Median CCF in red bar, error bar represents the interquartile range. Mutations, black; CN 

gain, red; CN loss, blue; SVs, green. The threshold for assigning an alteration to be “clonal” 

is a CCF of ≥0.9 (green dotted line). j, Timing of cluster-associated alterations is visualized 

with early events at top; late events at bottom. Color indicates alteration type as above. 
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Arrows between 2 alterations are drawn when 2 drivers are found in one sample with an 

excess of clonal to subclonal events. Line type of arrows indicates significance derived from 

a binomial test (solid thick arrow, q value < 0.1; dotted line, too few clonal-subclonal pairs 

to formally test with binominal test). k, Kaplan Meier plots for PFS for all clusters, C0 

(gray), C1 (purple), C2 (blue), C3 (orange), C4 (turquoise), C5 (red). l, KM plot for PFS for 

favorable DLBCL clusters (C0, C1,C4) in black, C2-DLBCLs in blue and unfavorable 

DLBCLs (C3, C5) in pink. The p-value obtained using the log-rank test. m, KM plot for PFS 

for the genetically distinct GCB-DLBCL clusters (C3 and C4; left), the ABC-DLBCL 

clusters (C1 and C5; middle) and C2 DLBCLs. The p-value obtained using the log-rank test. 

n, Forest plots visualize HR and p-values obtained from the multivariate analysis of clusters 

and IPI for PFS. k-n, Analyses were performed in the R-CHOP treated cohort with PFS data 

(n=254).
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