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Abstract

Prediction of disease progress is of great importance to Alzheimer disease (AD) researchers and 

clinicians. Previous attempts at constructing predictive models have been hindered by 

undersampling, and restriction to linear associations among variables, among other problems. To 

address these problems, we propose a novel Bayesian data-mining method called Bayesian 

Outcome Prediction with Ensemble Learning (BOPEL). BOPEL uses a Bayesian-network 

representation with boosting to allow the detection of nonlinear multivariate associations, and 

incorporates resampling-based feature selection to prevent over-fitting caused by undersampling. 

We demonstrate the use of this approach in predicting conversion to AD in individuals with mild 

cognitive impairment (MCI), based on structural magnetic-resonance and magnetic-resonance–

spectroscopy data. This study included 26 subjects with amnestic MCI. The converter group (n = 

8) included subjects who met MCI criteria at baseline, but who converted to AD within 5 years. 

The non-converter group (n = 18) consisted of subjects who met MCI criteria at baseline and at 5-

year follow-up. We found that BOPEL accurately differentiated MCI converters from non-

converters, based on baseline volumes of the left hippocampus, the banks of the right superior 

temporal sulcus, the right entorhinal cortex, the left lingual gyrus, and the rostral aspect of the left 

middle frontal gyrus. Prediction accuracy was 0.81, sensitivity was 0.63 and specificity was 0.89. 

We validated BOPEL’s predictive model with an independent data set constructed from the 

Alzheimer Disease Neuroimaging Initiative database, and again found high predictive accuracy 

(0.75).

1. Introduction

Prediction of disease progress is of great importance to researchers studying Alzheimer 

disease (AD) [Chao et al. 2010; Chetelat et al. 2005a; Petersen et al. 2008], and to clinicians 

taking care of these patients. Mild cognitive impairment (MCI) is defined as a transitional 
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state between normal aging and early dementia. Amnestic MCI patients progress to AD at an 

annual rate of 10–15% [Petersen & Negash 2008]; this progression rate is much higher than 

the population AD incidence rate of 1–2% per year.

Magnetic-resonance (MR) examination provides a noninvasive and reliable means for 

examining brain structure and function. Due to the rapid evolution of this technology, 

researchers now have the potential to improve prognostic accuracy by combining 

information from several modalities.

Consequently, many researchers have attempted to use MR-derived features to identify the 

subset of MCI patients that will develop AD [Davatzikos et al. 2010; Devanand et al. 2007; 

Dickerson et al. 2001; Jack et al. 1999; Killiany et al. 2000; Korf et al. 2004; Modrego 

2006]. For example, Killiany et al. [Killiany et al. 2000] constructed a discriminant model to 

differentiate patients with MCI who ultimately developed AD within 3 years, from those 

who did not. Using volumes of the banks of the superior temporal sulcus and anterior 

cingulated as regions of interest, the model based on a discriminant function achieved 

sensitivity = 0.68 and specificity = 0.48. Most investigations of prediction of AD conversion 

have generated predictive models based on conventional statistical analysis or machine-

learning approaches, including discriminant function analysis [Killiany et al. 2000], logistic 

regression [Devanand et al. 2007; Dickerson et al. 2001; Korf et al. 2004], and support 

vector machines [Cuingnet et al. 2010; Davatzikos et al. 2010]. Many of these analyses have 

been hindered by undersampling, that is, a small number of subjects relative to a large 

number of observed variables. Undersampling often leads to over-fitting, a situation in 

which the predictive model describes noise, rather than true associations among the variables 

being observed.

To address these problems, we propose a novel outcome-prediction approach that we call 

Bayesian Outcome Prediction with Ensemble Learning (BOPEL). Constructing outcome-

prediction models based on image data is a challenging problem. Generalizability, a model’s 

ability to correctly classify a future case sampled from the same population used to generate 

the predictive model, is a crucial characteristic of a predictive model, in that it directly bears 

on the utility of applying that predictive model in the clinic. However, in many studies, the 

number of variables observed greatly exceeds the number of subjects. If the outcome-

prediction method does not incorporate feature selection or regularization, the resulting 

predictive model is prone to overfitting. In overfitting, a model is not only modeling the 

variation observed in the population, but also the variation due to noise. An overfitted model 

usually has poor generalizability. BOPEL uses regularization [Koller et al. 2009], feature 

selection [Duda et al. 2001], and ensemble learning [Duda et al. 2001] to address the 

overfitting problem. BOPEL is based on a Bayesian-network (BN) representation, which has 

an embedded Bayesian regularization procedure; this approach has achieved high prediction 

accuracy in a variety of applications [Friedman et al. 1997]. BOPEL also incorporates 

resampling methods [Duda et al. 2001] to stabilize the feature-selection process, and it 

utilizes boosting [Freund et al. 1996] to improve prediction performance.

In this paper, we applied BOPEL to an ongoing study of neuroanatomic and neurochemical 

features that may predict conversion from MCI to AD; we refer to this study as PCD 
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(prediction of cognitive decline). To validate the generated model, we applied it to an 

independent test sample acquired from the same population used to generate the predictive 

model. This independent test data set was constructed based on the Alzheimer Disease 

Neuroimaging Initiative (ADNI) database.

2. Materials

Subjects in the PCD study included 26 subjects with amnestic MCI. These individuals were 

recruited by the State-funded Alzheimer disease Research Center of California, University 

of California San Francisco, and Memory Disorders Clinic at the San Francisco Veterans 

Affairs Medical Center.

All participants had MCI at baseline, based on Petersen’s criteria [Petersen 2003]. All 

subjects were diagnosed after an extensive clinical evaluation, including a detailed history, 

physical, and neurological examination, neuropsychological screening, and study partner 

interview. Study partners had regular contact with, and knew the subject for, at least 10 

years. As part of the neurological examination, all subjects and study partners were queried 

about initial and current symptoms, under the following categories: (1) memory, (2) 

executive, (3) behavioral, (4) language, (5) visuospatial, (6) motor, and (7) other. The 

neuropsychological screening battery included the Mini Mental Status Examination 

(MMSE) [Folstein et al. 1975], the Weschsler Adult Intelligence Scale [Wechsler 1997], the 

Delis-Kaplan Executive Function System (DKEFS- Trail-making test; Color Word 

Interference test, FAS & category fluency tests) [Delis et al. 2001], the California Verbal 

Learning Test [Delis et al. 2000], and the Weschsler Memory Scale Visual Reproduction 

Test [Wechsler 1987]. The interview with the study partner was based on the Clinical 

Dementia Rating (CDR) to assess functional abilities, and on the Neuropsychiatric Inventory 

to evaluate behavior. Screening for depression was based on the 30-item Geriatric 

Depression Scale (self-report) and an interview with the study partner. Diagnosis was 

determined by consensus involving the neurologist, neuropsychologist, and nurse using only 

the diagnostic information described above.

Subjects were excluded if they met criteria for dementia (Diagnostic and Statistical Manual 

of Mental Disorders, Fourth Edition (DSM-IV)), a history of a neurological disorder, current 

psychiatric illness, head trauma with loss of consciousness greater than 10 minutes, severe 

sensory deficits, substance abuse.

Each participant underwent clinical and neuropsychological assessments annually. The 

diagnosis of AD was based on the National Institute of Neurologic and Communicative 

Disorders and Stroke and Alzheimer Disease and Related Disorders Association (NINCDS-

ADRDA) criteria [Tierney et al. 1988].

We divided these 26 participants into two groups. The converter group (n = 8) included 

subjects who met MCI criteria at baseline, but within up to 5 years of follow-up met the 

NINCDS- ADRDA criteria for AD. The non-converter group (n = 18) contained subjects 

who met MCI criteria at baseline and at follow-up.
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Each individual underwent structural MR examination and MR spectroscopy (MRS) at 

baseline. For each subject, high resolution T1-weighted MR images were acquired, with 

parameters: magnetization prepared rapid gradient echo imaging with TR/TE/TI = 300/9.7/4 

ms, 15° flip angle, 256 × 256 field of view. The T1-weighted volumes consisted of 154 1.5-

mm thick coronal images with 1 mm × 1 mm in-plane resolution. The reconstructed image 

voxel size was 1 mm × 1 mm × 1.5 mm. Figure 1 depicts the baseline T1-weighted images 

for two subjects in the PCD study. In light of results in the literature indicating that structural 

MR-based models can identify the subset of MCI patients that will develop AD [Dickerson 

et al. 2001; Killiany et al. 2000], we too used features derived from these structural-MR 

examinations to build a predictive model for AD conversion.

For single-voxel proton spectroscopy, the voxel was placed in the lowest portion of the 

posterior aspect of the parietal lobe, such that it did not overlap with the occipital lobe. 

Acquisition parameters were TR/TE/TM = 11800/20/10 ms, voxel volume was 8.1 mL, with 

dimensions of approximately 22.5 mm left-right, 24 mm anterior-posterior, and 15 mm 

superior-inferior, to cover most of the posterior cingulate gray matter. We selected the 

posterior cingulate region because several studies have reported metabolic changes in this 

region in MCI and AD patients [Chantal et al. 2004; Kantarci et al. 2000].

3. Methods

From a machine-learning perspective, outcome prediction is a supervised-learning problem 

with two time points: baseline and outcome, respectively. We can formulate this outcome-

prediction problem as one of generating a model from data and/or expert knowledge:

g:g X1, …, Xp C (1)

where C is the outcome variable, and Xi is feature i measured at baseline, and p is the 

number of features. We denote the set of features {Xi} by X. In this paper, we assume that C 
is binary. The feature vector X can include imaging-derived features—such as regional gray-

matter volume—feature vector X can include imaging-derived features—such as regional 

gray-matter volume—and/or demographic variables, such as age.

3.1 Background

A Bayesian network B is a probabilistic graphical model that represents a joint probability 

distribution over a set of variables X = {Xi}. B is defined formally as a pair B = {G, Θ}, 

where G is the graphical structure of the Bayesian network, and Θ represents the parameters 

that quantify the distribution over X. G is a directed acyclic graph (DAG), in which the edge 

Xi → Xj represents a probabilistic association between Xi and Xj. The parent set and child 

set of Xi are denoted by pa(Xi) and child(Xi), respectively. A BN represents a factorization 

of Pr(X1, …, Xp). That is,
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Pr X1, …, Xn = ∏
i = 1

n
Pr Xi | pa Xi . (2)

In a BN, each node Xi is associated with a conditional probability distribution Pr(Xi | pa(Xi)) 

(if Xi has no parents, it is associated with a marginal distribution). When variables in the 

Bayesian network are continuous, it is often assumed that Pr(Xi | pa(Xi)) is Gaussian. In this 

case, Pr(X1, …, Xp) will be Gaussian as well. However, assuming that Pr(X1, …, Xp) 

follows a multivariate Gaussian distribution could be too restrictive for many applications. 

Therefore, we herein adopt the discrete BN representation. When {Xi} are discrete, Pr(Xi | 

pa(Xi)) are represented as tables. Discrete BNs can model any distribution among {Xi}; 

therefore, we adopt the discrete BN representation in this paper. In a discrete BN, θijk = 

Pr(Xi = k | pa(Xi) = j) represents the conditional probability that node Xi assumes state k 
given that its parent set assumes joint state j. Θ = { θijk }.

A BN can be used as a predictive model [Friedman et al. 1997], in which prediction is 

performed by using Bayes’ rule. In particular, we can apply BN inference algorithms 

[Cowell 1998] to a BN model B to predict the value of C given evidence X, by computing 

Pr(C | X).

There are different classes of BN models, based on constraints on allowed model structures 

[Friedman et al. 1997]. One such BN-model class is called naïve Bayes, in which C is a root 

node, and the baseline tests X are represented as children of C. Naïve Bayes require fewer 

computational resources than unrestricted BN models, yet the former have been shown to 

demonstrate excellent classification performance in empirical studies [Rash 2001].

BN-generation algorithms can suffer from over-fitting. To prevent over-fitting, BOPEL 

incorporates ensemble-learning methods, which reduce model variability via averaging 

[Fred et al. 2005]. Ensemble learning can stabilize the model-generation process, even when 

data are undersampled [Fred & Jain 2005], and can improve classification performance 

[Breiman 1996; Breiman 2001; Freund & Schapire 1996].

3.2 Data preprocessing and feature extraction

Most structural MR studies of AD conversion have been based on regional volumes. We 

used Freesurfer (an MRI brain image processing software package) [Fischl et al. 2004] to 

process T1-weighted brain MR images and to compute regional volumes (for each of 70 

structures) and intracranial volumes. A brief description of this data-processing pipeline is as 

follows (see [Dale et al. 1999; Fischl et al. 1999; Fischl et al. 2004] for details): First, each 

scan was corrected for motion, normalized for intensity, and resampled to 1 × 1 × 1 mm. 

Then, extracerebral tissue was removed using a watershed skull-stripping algorithm, and 

images were segmented to identify dorsal, ventral, and lateral extent of the gray-white matter 

boundary, to provide a surface representation of cortical white matter. Then we generated a 

surface tessellation for each white-matter volume, by fitting a deformable template. We 

generated the gray matter-cerebrospinal fluid surface using a similar process. These surfaces 

were used to guide registration. After registering each scan to a probabilistic atlas [Fischl et 
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al. 2004], we obtained automated parcellation of each hemisphere into 35 regions. After 

parcellation, we computed the volume of each region. This automated procedure for volume 

calculation has been validated by several different research groups [Desikan et al. 2006; 

Fischl et al. 2004; Tae et al. 2008]. Finally, we normalized these regional volumes to total 

intracranial volume, and then normalized each feature to zero mean and unit variance.

To process the MRS image data, we first used the GAVA software application [Soher et al. 

2007] to perform baseline correction of the MRS data; GAVA uses a parametric model of 

known spectral components (metabolites) to fit metabolite resonances. GAVA generated 7 

neurochemical baseline features, which are metabolite levels in the posterior cingulate as 

determined from MRS: Myo-inositol (mI), NAA, Creatine (Cr), Choline (Cho), NAA/Cho, 

NAA/Cr, and Cho/Cr. We normalized these features to zero mean and unit variance.

3.3 Bayesian outcome prediction with ensemble learning (BOPEL)

BOPEL includes two components: predictive-model generation, and application of this 

model for prediction. The predictive-model–generation component takes the outcome, MR 

and MRS variables as input, and constructs a predictive model Bpred. BOPEL’s prediction 

component uses Bpred to infer the state of the outcome variable for a new patient, based on 

the states of the variables corresponding to the available baseline tests X.

The input to BOPEL’s model-generation process consists of a training data set, D = {X1, …, 

Xp, C}, where C is a binary outcome variable that assumes a value in {0, 1}, and Xi is a 

baseline feature (continuous or discrete). The output of BOPEL’s model-generation process 

is a predictive model Bpred.

Given a training set D, our goal is to automatically construct a predictive BN model Bpred; 

this process is referred to as BN generation. The most widely used approach to solving this 

problem is search-and-score based; that is, it defines a fitness metric, or score, which 

measures the goodness-of-fit of the candidate BN structure to the observed data, and uses a 

search method to find the BN structure that optimizes this metric. For this purpose, we need 

a metric to evaluate how well a Bayesian-network structure G models data D, while 

penalizing increasing model complexity to avoid over-fitting. The K2 score, as the marginal 

likelihood Pr(D|G), is among the most widely used BN-scoring functions [Cooper et al. 

1992; Herskovits 1991]. It is defined as

Pr D G = ∏
i = 1

n
∏
j = 1

qi ri − 1 !
Ni j + ri − 1 ! ∏

k = 1

ri
Ni jk!, (3)

where G is the graphical structure of predictive model Bpred, ri is the number of states of the 

ith variable, qi is the number of joint states of the parents of the ith variable, Nijk is the 

number of samples in D for which the ith variable assumes its kth state and its parents 

assume their jth joint state, and Ni j = ∑k Ni jk.
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In addition to a scoring metric, BN generation requires a search procedure to generate 

candidate BN structures. The search for an optimal BN model is NP-hard [Chickering 1996], 

so we must employ heuristic-search methods to find a solution. Another way to reduce the 

search space is to restrict the class of BN models under consideration; in BOPEL, we restrict 

search to naïve Bayes predictive models, because these models retain excellent prediction 

performance in empirical studies [Rash 2001].

Figure 2 illustrates BOPEL’s predictive-model–generation process. First, BOPEL converts 

any continuous baseline variables into corresponding discrete variables: for each continuous 

feature fi, we apply a binary threshold thi. We find the optimal threshold thi* based on the 

resulting binary variable’s K2 score. That is,

thi* = arg maxthi
K2 C, f i thi , G , (4)

where fi(thi) is the thresholding operator, and C → fi (i.e., C is a parent of fi) in G. We use 

the global line search method (http://solon.cma.univie.ac.at/software/ls/) to search for th*.

After discretization, BOPEL performs feature selection; that is, BOPEL identifies a highly 

predictive subset of variables in X. Feature selection often ameliorates the curse of 

dimensionality, avoids over-fitting, increases classification accuracy, and reduces 

computation time. BOPEL uses BN-structure generation for feature selection, which has 

been widely employed for generating BN predictive models [Friedman et al. 1997]. In 

BOPEL, the feature-selection process finds a subset of features X* such that

X* = arg maxx:x ⊂ vK2 B, D , (5)

where B is a Bayesian network in which C is a root node; BOPEL employs greedy search to 

find X*. After BOPEL generates the BN structure G, the child set of C constitutes the 

selected features. For example, if, after structure generation, we found that G contained the 

edges C → X1, and C → X3, then the selected feature set would be {X1, X3}.

One problem with this approach is that the feature-selection process may not be stable; that 

is, it may not return similar results given small perturbations of the input D. This instability 

may be due to the use of heuristic search, or due to small sample size, among other causes. 

To solve this problem, we employ ensemble learning to stabilize the feature-selection 

process. In particular, we apply bootstrap resampling to D, resulting in a re-sampled data set 

Di. Then, for each Di, we generate a BN model Bi, from which we obtain the feature set, 

Xi(C), from the children of C in Bi. If we resample the training data n times, we obtain a 

feature ensemble {X1(C), …, Xn(C)}. In the feature-aggregation step, we calculate the 

frequency of each feature in this ensemble, andthereby associate each feature in the 

ensemble with a frequency. We rank {Xi} based on these frequencies, and choose the top-

ranked features as the aggregated feature set. The number of highly ranked features to be 
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included in the model is determined based on internal cross-validation. We denote this 

ensemble-derived aggregated feature set by Xe.

Given Xe, we can construct a BN Be with Xe as the children of C. We then use maximum-

likelihood methods [Thiesson 1995] to estimate the parameters for this model. We can then 

use Be to predict outcomes for new cases. However, there is not an exact correspondence 

between data likelihood and label-prediction accuracy [Friedman et al. 1997]; that is, Be 

may not achieve high prediction accuracy, even though it consists of the most frequently 

identified predictive features. To solve this problem, we use boosting, one form of ensemble 

learning, to generate an ensemble of predictive models. BOPEL employs boosting for BN-

parameter estimation as follows. We start with a BN model with fixed structure (child(C) = 

Xe), and training data D; our goal is to generate a model ensemble Ξ. First, we initialize the 

weight of each instance di in D as wi = 1/|D|, and we initialize Ξ to the empty set. In 

iteration k, we use the weighted instances to estimate the parameters of the BN, which yields 

a BN model Bk; we then calculate the error, errk, of Bk as the total sum weight of the 

instances that Bk classifies incorrectly. If errk > 0.5, we end the algorithm. Otherwise, let βk 

= errk / (1 – errk); we multiply the weights of the correctly classified instances by βk, rescale 

{wi} by ∑wi, and add Bk to Ξ.

For a new case, BOPEL first preprocesses the data and extracts features, then computes the 

state of C that has the highest weighted vote based on Ξ, and returns that state of C as the 

predicted outcome.

4. Results

During the 5-year follow-up period, 8 of the 26 subjects had progressed to probable AD. 

Table 1 lists these subjects’ baseline demographic characteristics and a subset of the memory 

scores and measures of functional activities. The mini–mental state examination (MMSE) is 

a questionnaire test to screen for cognitive impairment; a higher score is better (total 

possible was 30). The CVTR score (from the California Verbal Learning Test II) measures 

total recall from 5 learning trials; a higher score is better. The functional activities 

questionnaire (FAQ) [Pfeffer et al. 1982] measures functional abilities; a lower score is 

better.

We used the Wilcoxon rank-sum test to detect group differences for continuous variables 

(age, education, MMSE, CVTR, and FAQ), and the Fisher exact statistic to detect group 

differences for categorical variables (sex and handedness). We found no significant 

difference in age, sex, handedness, education, MMSE, CVTR, or FAQ. We included age, 

sex, handedness, education, and MMSE as potential predictive variables for BOPEL.

We used BOPEL to construct a model for predicting whether or not a subject with MCI 

would convert to AD within 5-year period, based on structural MR and MRS features at 

baseline, and the demographical variables age, sex, handedness, education, and MMSE.

We used leave-one-out cross validation (LOOCV) to evaluate BOPEL’s prediction accuracy. 

In LOOCV, we partition the data set D into Ntotal data sets (Ntotal is the total number of 
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subjects in the study); in each iteration, one subject is left out to test the predictive model, 

and a model is generated based on the remaining subjects.

In this manner, we generated 26 training data sets, and 26 predictive models. We found that 

the selected features Xe were stable across different predictive models. In particular, of the 

26 predictive models that BOPEL generated during cross validation, 9 (35%) contained the 

same feature set, consisting of volumes of the left hippocampus (LH), the banks (i.e., 

adjacent cortical areas) of the right superior temporal sulcus (RSTSBank), the right 

entorhinal (REnt) cortex, the left lingual gyrus (LLing), and of the left rostral middle frontal 

gyrus (LRMF). Figure 3 shows the structure of the corresponding BN. Let M* denote this 

five-variable set. Other models differed only slightly from M* (i.e., by the inclusion or 

exclusion of no more than 2 variables). This high concordance was probably due to our use 

of ensemble learning to stabilize the model-generation process.

To estimate the consistency of feature selection, we defined edge frequency as

f E = 1
Ntotal

∑
i

I
E ∈ childi C

,

where I[condition] is a function that returns the value 1 if a condition is true, otherwise, it 

returns the value 0, and childi(C) is the child set of C in the ith model. The 26 models that 

BOPEL generated in the course of LOOCV contained a total of 13 different features. Of 

these features, 5 had frequency greater than 0.5 (that is, they were included in the majority 

of models): LH (frequency = 1.0), RSTSBank (frequency = 0.65), REnt (frequency = 0.80), 

LLing (frequency = 0.88), and LRMF (frequency = 0.58). We consider these features to be 

stable; that is, they were frequently detected across a series of perturbations of the data. 

These features exactly correspond to the features of M*. Table 2 lists baseline volumes for 

these five structures, for the converter and non-converter groups.

We defined predictive accuracy (acc) as

acc =
Ncorr
Ntotal

,

where Ncorr is the number of correctly labeled subjects, and we defined the error rate (err) as 

1 – acc. Sensitivity is the proportion of subjects who progress to AD and are labeled as 

converters by BOPEL. Specificity is the proportion of subjects who do not progress to AD 

and are labeled as non-converters by BOPEL. Positive predictive value (PPV) is the 

proportion of subjects with positive test results (labeled as converters) who are correctly 

labeled. Negative predictive value (NPV) is the proportion of subjects with negative test 

results (labeled as non-converters) who are correctly labeled. As estimated by LOOCV, 

BOPEL’s accuracy was 0.81, sensitivity was 0.63, and specificity was 0.89, positive 

predictive value was 0.71, and negative predictive value was 0.84.

To validate the model generated by BOPEL, we used an independent data set constructed 

from the Alzheimer Disease Neuroimaging Initiative (ADNI) database [Jack et al. 2008a] 
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(http://www.loni.ucla.edu/ADNI). In the ADNI database (version 2010-11-20), there were 

397 subjects with MCI at baseline. We found that the age distribution of the ADNI database 

was quite different from that of the PCD data set. Since age is an important factor in AD 

pathology, we selected subjects in the ADNI database that were age-matched to subjects in 

the PCD study. The gender distributions of the ADNI database and the PCD study were also 

different. To correct for bias introduced by gender-distribution differences, we selected 

subjects in the ADNI database that were sex-matched to subjects in the PCD study. That is, 

the PCD data set and the ADNI validation data set were age-, and sex-matched. A general 

practice in the machine-learning community is to ensure that the class distributions of the 

training data set and the validation data set are comparable. For our purposes, the 

proportions of converters in the PCD data set and the ADNI validation data set should be 

comparable. We thus selected 48 of these subjects to build a validation data set; Table 3 lists 

demographic information for these subjects.

Baseline T1-weighted MR examinations for these subjects were acquired according to the 

ADNI acquisition protocol [Jack et al. 2008a], and regional brain volumes were calculated 

by the ADNI investigators using FreeSurfer. We normalized these regional volumes to total 

intracranial volume, and then normalized each feature to zero mean and unit variance. The 

ADNI MR-acquisition protocol does not include MRS data. However, since the final 

diagnostic model based on the PCD data set only used features from structural MRI; the lack 

of MRS data in the ADNI validation data set had no effect on our validation.

Applying the predictive model built based on the PCD data set (which did not incorporate 

any information from the ADNI validation data set), and classifying subjects in the ADNI 

validation data set (converter or non-converter), we found that BOPEL’s prediction accuracy 

was 0.75, sensitivity was 0.56, specificity was 0.87, positive predictive value was 0.71 and 

negative predictive value was 0.76. Given complete independence of the data we used to 

build our predictive model and the test (ADNI) data, this experiment indicates that BOPEL’s 

model accurately predicts MCI-AD conversion.

5. Conclusion and Discussion

We found that BOPEL uses baseline structural-MR data to predict MCI to AD conversion 

with high accuracy. Of note, prediction accuracy was almost as high for independently 

acquired ADNI subjects.

BOPEL, a Bayesian approach to outcome prediction, has the following advantages over 

other approaches. First, it is accurate: BOPEL uses a BN representation with boosting to 

increase model-representation capacity, and incorporates resampling-based feature selection 

to prevent over-fitting. Second, the generated predictive model is stable even when data are 

undersampled, which is commonly the case in outcome-prediction studies: as demonstrated 

by the high concordance rate for Xe, ensemble learning increases the likelihood that the 

generated predictive model will be stable. Third, the models generated by BOPEL are 

declarative in nature, and can be easily understood. Other approaches, such as logistic 

regression, also have this advantage, however support vector machines and RBF networks do 

not.
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In our analysis of data from the PCD study to predict AD conversion, we found that five 

features were predictive of AD conversion. These features were volumes of the left 

hippocampus (frequency = 1.0), the banks of the right superior temporal sulcus (frequency = 

0.65), the right entorhinal cortex (frequency = 0.80), the left lingual gyrus (frequency = 

0.88), and the left rostral middle frontal gyrus (frequency = 0.58).

We found that volumes of the left hippocampus and of right entorhinal cortex are predictive 

of conversion from MCI to AD. Hippocampus and entorhinal cortex are among the 

biomarkers most consistently found to predict AD conversion [Devanand et al. 2007; Jack et 

al. 1999]. Devanand et al. [Devanand et al. 2007] evaluated the utility of MR hippocampal 

and entorhinal cortex atrophy in predicting AD conversion. They used logistic regression to 

build the predictive model, and found that hippocampal and entorhinal cortical atrophy 

contributes to the prediction of conversion to AD.

We also found that the volume of the banks of the right superior temporal sulcus was a 

predictor of AD conversion. Killiany et al. conducted discriminant function analysis, 

including a total of 14 variables: each of the 11 regions-of-interest, and age, sex, and 

intracranial volume for each subject. They reported that the volume of the banks of the right 

superior temporal sulcus contributed significantly to the discrimination of patients with MCI 

who ultimately developed AD within 3 years, from those who did not [Killiany et al. 2000]. 

The superior temporal sulcus region has been thought to play a role in memory, or in 

controlling or regulating attention necessary for memory [Salzmann 1995].

In this study, we identified the lower baseline volumes of the left lingual gyrus was 

predictive of AD conversion. Chetelat et al. analyzed MR images of 18 amnestic MCI 

individuals (7 converters) using voxel-based morphometry, and reported that the lingual gyri 

had lower baseline gray matter value in converters [Chetelat et al. 2005b]. Their finding is 

consistent with our finding. We found that lower baseline volume of the left rostral middle 

frontal gyrus was predictive of AD conversion. This biomarker for AD conversion is also 

reported in [Whitwell et al. 2008]. Whitewell et al. used voxel-based morphometry to assess 

patterns of gray matter atrophy in the MCI converter and MCI non-converter groups. They 

found that MCI converters show greater loss in the left rostral middle frontal gyrus.

We found hemispheric (left-right) differences in the five brain regions that are predictive of 

AD conversion: three of these regions are in the left cerebral hemisphere, and two are in the 

right hemisphere. Of existing studies that use regional volumes to predict AD conversion, 

some [Devanand et al. 2007; Dickerson et al. 2001; Killiany et al. 2000] have combined the 

volumes of left- and right-sided structures. However, Chételat et al. [Chetelat et al. 2005b] 

used voxel-based morphometry to map structural changes associated with conversion from 

MCI to AD and reported “essentially symmetrically distributed” GM loss in converters 

(Figure 5 in [Chetelat et al. 2005b]). Their findings suggest that there are no left-right 

differences in regions characterizing AD conversion. The discrepancy between Chetelat’s 

and our results can be explained as follows. First, our study was atlas-based, whereas 

Chételat’s study was voxel-based; therefore, the feature types in our and Chételat’s studies 

are not directly comparable. Second, Chételat et al. did not build a predictive model; their 

goal was to find regions demonstrating significantly greater GM loss in converters relative to 
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non-converters. It is possible that features manifesting group differences were not included 

in our predictive model. For example, in our study, baseline MMSE demonstrates some 

degree of group difference (p-value=0.11). However, baseline MMSE was not included in 

the predictive model because this feature provided no additional predictive power given the 

five features included in the model. Third, there are some differences between the study 

population in Chételat’s study and that of the PCD study. One significant difference is 

education. Subjects in the PCD study were more educated (mean education is more than 16 

years), relative to subjects in Chételat’s study (mean education is 10 years).

We included MRS features into the PCD study because several studies had demonstrated 

that MRS features differentiate normal elderly subjects, patients with AD, and patients with 

MCI [Chantal et al. 2004; Kantarci et al. 2000; Schuff et al. 2002]. We found that the final 

predictive model generated by BOPEL did not include MRS features. This result suggests 

that, given structural MR features, the additional predictive value of MRS features to predict 

AD conversion is not significant. However, we should be cautious accepting this finding 

because of small sample size.

In this study, we used the ADNI validation data set (a subset of the ADNI database) to 

validate the generated predictive model. Predicting AD conversion based on the ADNI study 

is a very challenging problem. In a recent study of predicting AD conversion based on 

ADNI, Cuingnet et al. [Cuingnet et al. 2010] used a SVM-based predictive model which 

used regional cortical-thickness as predictor variables. For evaluation, they randomly split 

the set of participants into two groups of the same size: a training set and a testing set. They 

reported sensitivity = 0.27 and specificity = 0.85. We obtained sensitivity = 0.56, and 

specificity = 0.87 for a subset of ADNI subjects. Relative to Cuingnet’s model, our model 

had much better sensitivity with similar specificity. However, we should be cautious 

regarding this finding since we only used a subset of ADNI subjects.

In this study, we used cross-validation and an independent validation data set to estimate 

model accuracy. However, most of the studies in [Devanand et al. 2007; Dickerson et al. 

2001; Killiany et al. 2000; Korf et al. 2004; Modrego 2006] reported discrimination 

accuracy only. That is, most researchers computed prediction accuracy by applying the 

predictive model to the training data that generated the model. For instance, Dickerson et al. 

[Dickerson et al. 2001] built a predictive model with sensitivity = 0.83 and specificity = 

0.72, based on entorhinal cortex as the neuroanatomic marker, and logistic regression as the 

classification approach. However, these sensitivity and specificity measures were obtained 

by applying the logistic regression to the same training data set. Relative to the accuracy 

estimated by cross-validation or an independent validation data set, discrimination accuracy 

yields an optimistic estimate of model generalizability and performance [Chen et al. 2010]. 

This is well recognized in the machine learning community [Duda et al. 2001].

This study focuses on predicting conversion from MCI to AD based on neuroanatomic and 

neurochemical features. This predictive model can provide valuable information regarding 

the mechanisms of AD physiopathology. However, our results do not imply that only 

neuroanatomic and/or neurochemical features can predict AD conversion. Other imaging-

derived or non-imaging features may also be predictive of AD conversion. Predictors of 
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conversion from MCI to AD include neuropsychological predictors, neuroradiological 

markers, AOPE genotype, depression, and blood and CSF biomarkers. For neuroradiological 

markers, Small et al. reported features derived from Positron Emission Tomography (PET) 

images obtained with 2-deoxy-2-[F-18]fluoro-D-glucose (after injection of FDDNP) can 

differentiate subjects with MCI from these with AD and normal controls [Small et al. 2006]. 

Jack et al. [Jack et al. 2008b] found that Pittsburgh Compound B (PiB) and MRI provided 

complementary information to discriminate between cognitively normal, amnestic MCI, and 

AD subjects; furthermore, diagnostic classification using both PiB and MR was superior to 

using either modality in isolation. With respect to neuropsychological predictors, Dierckx et 

al. [Dierckx et al. 2009] reported a score of 0 or 1 out of 6 on the Memory Impairment 

Screen plus as a good indicator of progression to AD among MCI patients. For blood and 

CSF biomarkers, many studies have focused on the discriminative power of β-amyloid and 

tau proteins to predict AD conversion. For example, Mitchell [Mitchell 2009] performed a 

meta-analysis including six studies with MCI subjects, and found that P-tau was modestly 

successful in predicting progression to dementia in MCI.

Overall, different predictors provide complementary information, and combining them can 

improve sensitivity and specificity. We plan to include these features in a BOPEL analysis 

and build more accurate model of AD conversion.

BOPEL is based on the discrete, rather than continuous, Bayesian-network representation. 

We adopted a Bayesian network classifier based on discrete variables, because it has been 

found to achieve high classification accuracy, it can represent nonlinear multivariate 

associations among variables, and it readily supports embedded feature selection. However, 

using discrete Bayesian networks in BOPEL required that we threshold all continuous 

variables, possibly leading to loss of information. Given that BOPEL accurately predicted 

AD conversion in individuals with MCI for the PCD data set, and for an independent data 

set constructed from the ADNI database, it is likely that thresholding did not cause severe 

loss of information in this study. In future work, we plan to implement methods for 

analyzing these data that do not involve discretization, to determine the effects of 

discretization on our results.

The automated procedure for volume calculation provided by FreeSurfer has been validated 

by several groups of investigators. Desikan et al. [Desikan et al. 2006] assessed the validity 

of this automated volume calculation system by comparing the regions-of-interest (ROIs) 

generated by FreeSurfer to those generated by manual tracing. They used intraclass 

correlation coefficients to measure the degree of mismatch between FreeSurfer and manual 

tracing. They found that the automated ROIs were very similar to the manually generated 

ROIs, with an average intraclass correlation coefficient of 0.835. Similarly, Tae et al. [Tae et 

al. 2008] reported that FreeSurfer’s automated hippocampal volumetric methods showed 

good agreement with manual hippocampal volumetry, with intraclass correlation coefficients 

of 0.846 (right) and 0.848 (left). This automated procedure for volume calculation was also 

used in the ADNI study.

In this paper, we restricted the Bayesian-network classifier architecture to the naïve Bayes 

class. There exist other types of Bayesian-network classifiers, such as unrestricted Bayesian-
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network classifiers [Friedman et al. 1997] and Bayesian-network classifier with inverse-tree 

structure [Chen et al. 2005]. In the future, we will examine whether the performance of 

BOPEL can be improved by using other types of Bayesian-network classifiers.

We also plan to extend our current work to evaluate BOPEL on data sets with large sample 

sizes, and on other biomedical data sets. There are a few relatively large-scale studies, such 

as the ADNI study [Jack et al. 2008a], in which 400 subjects who have MCI were recruited. 

Analyzing these data will allow us to quantify the effects of sample size on BOPEL’s 

prediction accuracy.

In these experiments we focused on outcome prediction for a single categorical outcome 

variable. Many other studies to predict who will develop AD in patients with MCI 

[Davatzikos et al. 2010; Devanand et al. 2007; Jack et al. 1999; Killiany et al. 2000; Korf et 

al. 2004; Modrego 2006] followed a similar overall approach. Other researchers have 

focused on a continuous outcome variable, such as predicting the time taken for MCI 

conversion to AD; this problem is usually modeled using regression. An interesting direction 

for our future work is to combine the ensemble learning used in BOPEL with regression 

analysis, which could provide an estimate of number of years till conversion.
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Appendix

Brain structures included in the analysis:

For the PCD dataset, the summary statistics and discretization threshold of 70 brain 

structures are listed in Table 4. For each structure, we calculate the mean and standard 

deviation of structure volume (adjusted by intracranial volumes). Then we normalize it to 

zero-mean and unit variance. After that, we discretize the normalized variable using the 

discretization threshold.
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Figure 1. 
Baseline T1-weighted MR images. A) is a 77.4 year old female MCI subject who remained 

stable within 5 years; B) is a 76.5 year old female MCI subject who converted to AD after 

2.4 years.
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Figure 2. 
An overview of the BOPEL algorithm.
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Figure 3. 
The structure of the Bayesian network M* generated by BOPEL. In this Bayesian network, 

C represents whether or not a subject with MCI will progress to AD. LH = left 

hippocampus, RSTSBank = the banks (i.e., adjacent cortical areas) of the right superior 

temporal sulcus, REnt = right entorhinal cortex, LLing = left lingual gyrus, LRMF= left 

rostral middle frontal gyrus.
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Table 1

Baseline demographic variables.

Non-converters (n = 18) Converters (n = 8) p-value

Age, years
(mean, SD)

75.1 (SD 7.9) 76.3 (SD 7.7) 0.57

Sex
(female:male)

4:14 2:6 1.0

Handedness
(right:left)

16:2 8:0 1.0

Education, years (mean, SD) 16.2 (SD 2.9) 17.3 (SD 3.0) 0.59

MMSE
(mean, SD)

27.7 (SD 1.4) 26.8 (SD 2.7) 0.11

CVTR 37.7 (SD 16.6) 30 (SD 8.7) 0.13

FAQ 4.9 (SD 6.6) 5.4 (SD 7.4) 0.89
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Table 2

Mean regional volumes that were predictive of AD conversion; standard deviations are in parentheses. We first 

adjusted these regional volumes to total intracranial volume, and then normalized them to zero mean and unit 

variance.

Non-converters (n = 18) Converters (n = 8) Discretization cutoff P-value

The left hippocampus 0.29 (0.99) −0.65 (0.69) 0.178 0.012

The right superior temporal sulcus bank 0.34 (0.96) −0.77 (0.61) −0.771 0.002

The right entorhinal cortex 0.42 (0.86) −0.95 (0.55) 0.605 < 0.001

The left lingual gyrus 0.41 (0.83) −0.93 (0.69) −0.104 0.001

The left rostral middle frontal gyrus 0.38 (0.88) −0.85 (0.71) −0.660 0.002
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Table 3

Mean demographic variables for ADNI validation data set; standard deviations are in parentheses.

Non-converters (n = 30) Converters (n = 18) p-value

Age
(mean, SD)

75.1 (6.0) 74.2 (3.5) 0.53

Sex
(female:male)

6:24 4:14 1.0

Education
(mean, SD)

15.6 (2.6) 15.3 (2.9) 0.73

MMSE
(mean, SD)

28.0 (1.3) 26.1 (2.5) 0.009
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Table 4

Neuroanatomic features used in the PCD study.

Name Mean volume (SD) threshold Name Mean volume (SD) threshold

Left hippocampus 219(36) 0.18 Right parsOpercularis 212(36) 0.13

Right Hippocampus 221(37) −0.73 Left parsOrbitalis 109(14) 0.08

Left Bankssts 153(28) −0.36 Right parsOrbitalis 153(26) 0.17

Right Bankssts 144(25) −0.77 Left parsTriangularis 175(29) −0.36

Left CaudalAnteriorCingulate 115(26) −0.18 Right parsTriangularis 214(28) −0.38

Right CaudalAnteriorCingulate 126(22) −0.20 Left pericalcarine 103(15) 0.19

Left CaudalMiddleFrontal 361(69) 0.00 Right pericalcarine 120(21) −0.03

Right CaudalMiddleFrontal 335(51) −0.13 Left postcentral 560(74) −0.16

Left Cuneus 158(26) −0.06 Right postcentral 517(78) −0.52

Right Cuneus 169(34) −0.19 Left posteriorCingulate 199(37) 0.00

Left Entorhinal 105(37) −0.79 Right posteriorCingulate 192(25) −0.87

Right Entorhinal 98(30) −0.60 Left precentral 703(100) 0.13

Left Fusiform 516(82) −0.53 Right precentral 728(111) −0.44

Right Fusiform 522(69) 0.09 Left precuneus 516(72) −0.57

Left inferiorParietal 675(121) −0.58 Right precuneus 535(98) −0.77

Right inferiorParietal 837(142) −0.87 Left rostral AnteriorCingulate 140(36) −0.61

Left inferiorTemporal 612(75) −0.7022 Right rostralAnteriorCingulate 107(19) −0.50

Right inferiorTemporal 592(87) 0 Left rostralMiddleFrontal 858(121) −0.66

Left isthmusCingulate 143(28) 0.078 Right rostralMiddleFrontal 883(115) −0.57

Right isthmusCingulate 124(26) −0.80 Left superiorFrontal 1294(179) −0.33

Left lateralOccipital 758(111) −0.02 Right superiorFrontal 1260(172) 0.00

Right lateralOccipital 719(104) −0.09 Left superiorParietal 752(109) −0.03

Left lateralOrbitofrontal 424(49) −0.63 Right superiorParietal 747(99) 0.06

Right lateralOrbitofrontal 425(53) −0.68 Left superiorTemporal 646(102) −0.42

Left lingual 359(64) −0.10 Right superiorTemporal 612(75) 0.21

Right lingual 358(57) 0.24 Left supramarginal 614(92) −0.69

Left medialOrbitofrontal 250(46) 0.14 Right supramarginal 584(90) −0.24

Right medial Orbitofrontal 273(33) −0.46 Left frontalPole 37(9) 0.05

Left middleTemporal 594(105) 0.25 Right frontalPole 50(12) −0.25

Right middleTemporal 663(101) −0.88 Left temporalPole 107(26) 0.079

Left parahippocampal 128(27) −0.72 Right temporalPole 115(23) −0.38

Right parahippocampal 115(21) −0.50 Left transverseTemporal 65(11) −0.26

Left paracentral 200(37) −0.29 Right transverseTemporal 49(8) −0.17

Right paracentral 217(36) −0.15 Left insula 371(43) −0.75

Left parsOpercularis 276(64) 0.11 Right Insula 376(38) −0.95
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