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Abstract

The intestinal microbiome is perturbed in patients with new-onset and chronic autoimmune

inflammatory arthritis. Recent studies in mouse models suggest that development and pro-

gression of autoimmune arthritis is highly affected by the intestinal microbiome. This makes

modulation of the intestinal microbiota an interesting novel approach to suppress inflamma-

tory arthritis. Prebiotics, defined as non-digestible carbohydrates that selectively stimulate

the growth and activity of beneficial microorganisms, provide a relatively non-invasive

approach to modulate the intestinal microbiota. The aim of this study was to assess the ther-

apeutic potential of dietary supplementation with a prebiotic mixture of 90% short-chain

galacto-oligosaccharides and 10% long-chain fructo-oligosaccharides (scGOS/lcFOS) in

experimental arthritis in mice. We here show that dietary supplementation with scGOS/

lcFOS has a pronounced effect on the composition of the fecal microbiota. Interestingly, the

genera Enterococcus and Clostridium were markedly decreased by scGOS/lcFOS dietary

supplementation. In contrast, the family Lachnospiraceae and the genus Lactobacillus, both

associated with healthy microbiota, increased in mice receiving scGOS/lcFOS diet. How-

ever, the scGOS/lcFOS induced alterations of the intestinal microbiota did not induce signifi-

cant effects on the intestinal and systemic T helper cell subsets and were not sufficient to

reproducibly suppress arthritis in mice. As expected, we did observe a significant increase

in the bone mineral density in mice upon dietary supplementation with scGOS/lcFOS for 8

weeks. Altogether, this study suggests that dietary scGOS/lcFOS supplementation is able

to promote presumably healthy gut microbiota and improve bone mineral density, but not

inflammation, in arthritis-prone mice.
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Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint

inflammation and progressive destruction of cartilage and bone. Inflammatory cells such as T

cells, B cells and macrophages accumulate in the inflamed joint, which results in synovitis and

tissue destruction [1]. Although the exact etiology is unknown, RA is considered to be driven

by genetic as well as environmental factors [1]. Several recent studies have shown that the com-

position of intestinal microbiota is perturbed in patients with new-onset as well as chronic RA

[2–5]. This suggests that the microbiome may be an environmental factor that can influence

the development of RA.

RA patients have increased levels of T helper-17 (Th17) cells in their peripheral blood

mononuclear cells [6]. These Th17 cells are considered to be a major pathogenic mediator in

RA, as these cells produce IL-17, a potent inducer of matrix metalloproteinases and proinflam-

matory cytokines such as interleukin-(IL)6 and IL-8. [6–9]. In addition, regulatory T (Treg)

cells, which normally downregulate inflammation, were shown to have decreased suppressive

activity in RA patients [10]. Intestinal microbiota strongly influences immune homeostasis

and by altering the Th17/Treg cell balance the development of autoimmune diseases in mice

[11–14]. Several studies have shown that development and severity of spontaneous arthritis in

K/BxN and IL-1 receptor antagonist deficient (IL-1Ra-/-) mice is strongly reduced in germ-

free (GF) mice [11, 15, 16]. In addition, colonizing arthritis prone SKG mice with Prevotella-

dominated microbiota of RA patients resulted in increased intestinal Th17 levels and aggra-

vated arthritis development compared with mice receiving microbiota of healthy controls [17].

Furthermore, colonizing mice with the human gut commensal Prevotella histicola suppressed

Th17 responses and the development of inflammatory arthritis after immunization with colla-

gen type II [14]. These observations suggest that the intestinal microbiota plays an important

role in the development of autoimmune arthritis, which makes modulation of the intestinal

microbiota an interesting novel approach to suppress autoimmunity.

Prebiotics, defined as non-digestible carbohydrates that selectively stimulate the growth

and activity of beneficial microorganisms, provide a relatively non-invasive approach to mod-

ulate the intestinal microbiota [18]. Dietary supplementation with a prebiotic mixture of 90%

short-chain galaco-oligosaccharides and 10% long-chain fructo-oligosaccharides (scGOS/

lcFOS) is known to particular promote the growth of beneficial bacteria such as bifidobacteria

and lactobacilli [19–21]. In addition, several animal and clinical studies demonstrated that die-

tary supplementation with scGOS/lcFOS suppresses acute allergic symptoms, a process depen-

dent on the induction of Treg cells [22–26]. Furthermore, multiple studies showed a beneficial

effect of scGOS/lcFOS on bone mineral density [27–31]. Something which could be beneficial

in the context of RA, as bone mineral density has been shown to be reduced in RA patients

[32, 33].

The aim of the current study was to assess the efficacy of microbiota modulation using

scGOS/lcFOS as a therapeutic approach for T cell-dependent autoimmune experimental

arthritis in IL-1Ra-/- mice, which develop spontaneous arthritis due to excessive IL-1 receptor

signaling [34]. We recently reported that IL-1Ra deficiency results in reduced diversity and

richness, and causes specific taxonomic alterations characterized by increased Helicobacter
spp. and decreased Ruminococcus spp. and Prevotella ssp., which specifically induces Th17 dif-

ferentiation in intestinal lamina propria [16]. In addition, tobramycin-induced alterations of

commensal intestinal microbiota suppressed arthritis in IL-1Ra-/- mice [16].

In this study we describe a significant increase in the bone mineral density after mice were

on a diet supplemented with 5% scGOS/lcFOS for 8 weeks. Using high-throughput 16S rRNA

marker gene sequencing, we here show that dietary supplementation with scGOS/lcFOS had a
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pronounced effect on the composition of the fecal microbiota. However, scGOS/lcFOS-

induced alterations of the intestinal microbiota did not induce any significant beneficial effects

on the intestinal and systemic T helper cell subsets and were unable to reproducibly suppress

arthritis.

Materials and methods

Mice

IL-1Ra deficient mice on BALB/c background were kindly provided by Dr. M. Nicklin (Shef-

field, England). The mice were housed in filter-top cages under specific pathogen-free condi-

tions and the water and food were provided ad libitum. Age- and gender-matched littermates

were used in all experiments, the average age at the start of the experiments was 8 weeks.

Development of arthritis was scored macroscopically by two blinded observers using an arbi-

trary scoring system as follows; 0, no redness and swelling; 0.25, slight redness; 0.5, slight red-

ness and swelling; 0.75–1, mild redness and swelling; 1.25–1.5, moderate redness and swelling;

1.75–2, severe redness and swelling. Only hind paws were scored, because arthritis develop-

ment in the front paws is rare in this model [35]. Littermates reaching the inclusion score of

0.5–1.0 of arthritis were split, regrouped with animals of the same sex, and randomly divided

over the different treatment cages with different scGOS/lcFOS-containing food pellets pro-

vided. All animal procedures were approved by the ethics committee of the Radboud Univer-

sity Medical Center and were performed according to the appropriate codes of practice

(approval number RU-DEC2010-082).

Prebiotic diet

The groups either received standard AIN-93 synthetic feed control diet or a diet supplemented

with a mixture of scGOS (Vivinal GOS, Borculo Domo, Zwolle, The Netherlands) and lcFOS

(Raftiline HP, Orafti, Wijchen, The Netherlands) at a ratio of 9:1. The experimental diets con-

tained either 1%, 2.5% or 5% scGOS/lcFOS added to standard AIN-93 synthetic feed (Research

Diet Services, Wijk bij Duurstede, The Netherlands). The mice stayed on their respective diets

for 8–10 weeks.

Microbiota sequencing and data analysis

After 8 weeks of dietary intervention, feces were collected and fecal bacterial DNA was isolated

using phenol/chloroform-based extraction method combined with bead-beating [36]. As

described in detail previously [16], sequencing was performed by DNAVision (Charleroi, Bel-

gium) on a Roche 454 GS-FLX System using 16S rRNA bar-coded primers targeting the

V5-V6 conserved DNA regions (forward primer 784F: 5’-AGGATTAGATACCCTGGTA-3’,

reverse primer 1061R: 5’-CRRCACGAGCTGACGAC-3’) [37]. For gene sequence analysis, a

customized workflow based on Quantitative Insights Into Microbial Ecology (QIIME version

1.2) was adopted (http://qiime.org/) [38]. Settings recommended in QIIME 1.2 tutorial were

applied. Additionally, reads were filtered for chimeric sequences using Chimera Slayer as

described before [39]. Operational taxonomic unit (OTU) clustering was performed with set-

tings as recommended by QIIME [40] using an identity threshold of 97%. The Ribosomal

Database Project classifier version 2.2 was used for taxonomic classification [41]. Hierarchical

clustering of samples was performed using the average distances between samples with

weighted UniFrac as distance measure as implemented in QIIME. For statistical analysis and

generation of figures, QIIME implemented R-packages, SciPy [42] (www.Scipy.org), Graph-

pad Prism version 5.0, and Microsoft Office Excel 2007 were adopted.
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Histology. For histological assessment of arthritis, total ankle joints were isolated and

fixed in 4% formaldehyde for 4 days, thereafter decalcified in 5% formic acid and embedded in

paraffin. Tissue sections of 7μm were stained using Haematoxylin & Eosin to study synovial

inflammation, chondrocyte death and cartilage and bone erosion. Safranin O staining was per-

formed on the sections to determine proteoglycan depletion. Each parameter was scored on a

scale from 0–3 in a blinded manner.

Lymphocyte isolation

Mice were sacrificed by cervical dislocation, immediately followed by isolation of the popliteal

lymph nodes (pLN) and small intestine (SI). pLNs were disrupted on a 70 μm cell strainer, and

the cells were collected in RPMI-1640 (Gibco; Invitrogen) supplemented with 10% FCS and

gentamycin (50mg/l, Centrafarm). The SI was placed in ice-cold PBS and mesenteric fat and

Peyer’s patches were removed. This was followed by incubation with 33 mM EDTA on ice for

30 minutes to remove epithelial cells, and subsequent digestion with 1 mg/ml collagenase-D

(Roche) and 10 μg/ml DNAse I (Sigma) at 37˚C for three cycles of 15 minutes. Lamina propria

lymphocytes (LPLs) were then harvested at the interphase of a 40:80% Percoll gradient

(Sigma), washed thoroughly and stimulated and stained as described below.

Flow cytometry

LPLs and pLN cells stimulated for 4 hours with PMA (50 ng/ml; Sigma), ionomycine (1 μg/ml;

Sigma), and the Golgi-traffic inhibitor Brefeldin (1 μl/ml; BD Biosciences). Cells were stained

with anti-CD3-PE (BD Pharmingen) or anti-CD3-APC (eBioscience) and anti-CD4-APC

(Biolegend) or anti-CD4-FITC (BD Pharmingen). Next, the cells were fixed and permeabilized

using fixation/permeabilization buffer (eBioscience). For intracellular staining the cells were

incubated in permeabilization buffer (eBioscience) containing anti-IL-17-FITC (Biolegend),

anti-IFNγ-FITC (BD Pharmingen), anti-IL-4-PE (BD Pharmingen) or Foxp3-FITC

(eBioscience). An appropriate isotype matched control antibody was used in all FACS analyses.

Cells were analyzed on a FACS Calibur using the CellQuest software (BD Biosciences). Results

were analyzed with FlowJo version 7.6.5.

RNA isolation and quantitative real-time polymerase chain reaction

(qPCR)

Tissues were homogenized using a MagNA Lyser instrument (Roche). RNA was isolated in

TRIzol reagent (Sigma) as described before [15]. Quantitative real-time PCR (qRT-PCR) was

performed using the StepOne System (Applied Biosystems) using the SYBR green Master Mix

(Applied Biosystems). Primer sequences were as follows: for GAPDH (House-keeping gene),

50-GGCAAATTCAACGGCACA-30 (forward) and 50-GTTAGTGGGGTCTCGCTCTG-30

(reverse); for T-bet 5’-CAACAACCCCTTTGCCAAAG-3’ (forward) and 5’-TCCCCCAAG
CAGTTGACAGT-3’ (reverse); for RORγt 5’-CTGTCCTGGGCTACCCTACTGA-3’ (for-

ward) and 5’-AAGGGATCACTTCAATTTGTGTTCTC-3’ (reverse); for FoxP3 5’-AGGAG
AAGCTGGGAGCTATGC-3’ (forward) and 5’-GGTGGCTACGATTGCAGCAA-3’ (reverse);

for IFNγ 5’-TCTTCTTGGATATCTGGAGGAACTG-3’ (forward) and 5’-AGAGATAATC
TGGCTCTGCAGGAT-3’ (reverse); for IL17a 5’-CAGGACGCGCAAACATGA -3’ (forward)

and 5’- GCAACAGCATCAGAGACACAGAT -3’ (reverse); for IL10 5’-ATTTGAATTCCC
TGGGTGAGAA-3’ (forward) and 5’-ACACCTTGGTCTTGGAGCTTATTAA-3’ (reverse).

Dietary scGOS/lcFOS supplementation and the effect on the intestinal microbiota and experimental arthritis
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Dual-energy X-ray absorptiometry (DEXA) scanning

To assess the effect of scGOS/lcFOS on bone mineral density, dual-energy X-ray absorptiome-

try (DEXA, Lunar PIXImus) scanning was performed after 10 weeks of treatment. A whole-

body scanner and specifically designed software for small animals was used as described previ-

ously [43]. The mice were anesthetized for the duration of the procedure by exposure to 2.5%

isoflurane-oxygen gas via a nose cone. One scan per mouse was performed and bone mineral

density (g/cm2) was calculated with PIXImus software. The head was excluded from the calcu-

lations using a manual region of interest.

Statistics. Differences in the relative abundance of bacterial taxa between treatment

groups were evaluated using Mann-Whitney U test. We corrected for multiple testing using

the Benjamini and Hochberg procedure with false discovery rate (FDR) set at 25%, and differ-

ences with a p-value < 0.05 which passed the FDR test were considered statistically significant.

Kruskal-Wallis with a Dunn’s post-test was used to compare cell levels, arthritis histology

scores, gene-expression and bone mineral density between treatment groups. For arthritis

scores, two-tailed Mann-Whitney U test was performed for area under the curve.

Results

Prebiotic diet containing scGOS/lcFOS alters the composition of intestinal

microbiota in IL-1Ra-/- mice

To determine the effect of a prebiotic diet containing scGOS/lcFOS on the intestinal micro-

biota, IL-1Ra-/- mice were fed either a control diet, or a diet containing 1 or 2.5% scGOS/

lcFOS for 8 weeks. The diet was well tolerated and did not cause any growth retardation or

weight loss. 16S rRNA marker gene pyrosequencing was performed on DNA from fecal sam-

ples collected after 8 weeks of intervention to identify changes in the intestinal microbiota. The

average sequencing depth, total number of reads and operational taxonomic units (OTU) were

not affected by the scGOS/lcFOS diet and remained comparable between the experimental

groups (S1 Table).

Furthermore, we did not observe any significant changes in the number of observed species,

Chao1 index, Shannon index or phylogenetic distance whole tree metric (S1A–S1C Fig). In

addition, principal coordinates analysis (PCoA) based on weighted UniFrac distances showed

no clear differences between the different groups (S1D Fig). Although we did not observe any

significant effect on bacterial richness and diversity, the scGOS/lcFOS diet significantly altered

the composition of the intestinal microbiota. A prominent effect observed in the 2.5% scGOS/

lcFOS fed mice compared to the control group was a highly significant increase in the family

Lachnospiraceae (Fig 1 and S2 Table). However, the resolution of the 16S gene pyrosequencing

was not sufficient to identify the genera within the family Lachnospiraceae that were increased

in the 2.5% scGOS/lcFOS fed mice (Fig 1 and S2 Table).

A significant increase in the genus Lactobacillus was observed for mice receiving the 2.5%

scGOS/lcFOS, corroborating results observed previously by Vos et al. (Fig 1 and S2 Table)

[20]. The genus Barnesiella (family Porphyromonadaceae) was increased as well in the 2.5%

scGOS/lcFOS group (Fig 1 and S2 Table), although still represented a low abundant taxon. A

significant near complete elimination of bacteria belonging to the genus Turicibacter (family

Erysipelotrichaceae) was observed in the 2.5% scGOS/lcFOS fed mice (Fig 1 and S2 Table). In

addition, the genera Oscillibacter (family Ruminococcacea), Enterococcus (family Enterococca-

ceae), Streptococcus (family Streptococcaceae), Lactococcus (family Streptococcaceae) and Clos-
tridium (family Clostridiaceae) were significantly decreased in the 2.5% scGOS/lcFOS group

(Fig 1 and S2 Table), although none of these taxa were highly dominant among the microbiota.

Dietary scGOS/lcFOS supplementation and the effect on the intestinal microbiota and experimental arthritis
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None of the observed differential abundant taxa in the 2.5% scGOS/lcFOS group were found

to be significant in the group receiving the 1% scGOS/lcFOS diet; however, the fold changes

for the 1% scGOS/lcFOS group correlated significantly with the change for the 2.5% scGOS/

lcFOS group (Spearman rank test: rho 0.45, p-value 0.003). Altogether, these data show that a

2.5% scGOS/lcFOS diet alters the composition of the intestinal microbiota.

Treatment of arthritic IL-1Ra-/- mice with scGOS/lcFOS diet has no effect

on the progression of experimental arthritis

To determine the efficacy of scGOS/lcFOS in the treatment of joint inflammation as well as

cartilage and bone destruction during experimental arthritis, IL-1Ra-/- mice with ongoing

arthritis under conventional microbial status were orally fed a control diet or a diet containing

1% or 2.5% scGOS/lcFOS for 8 weeks. The severity of arthritis over time was comparable

between the group receiving the 1% scGOS/lcFOS diet and the control group. The mice in the

2.5% scGOS/lcFOS group showed a trend toward reduced arthritis severity scores over the

entire 8-week study period; however, this effect was not significant (p = 0.0571; Fig 2A). Aim-

ing to maximize the observed effects of the dietary scGOS/lcFOS supplement, we replicated

Fig 1. Prebiotic diet containing scGOS/lcFOS significantly alters the composition of intestinal microbiota of IL-1Ra-/- mice. Phylogenetic tree

created by Cytoscape software showing specific changes in intestinal microbial community at different taxonomic levels in the mice fed 2.5% scGOS/

lcFOS diet compared to mice fed a control diet. Nodes represent taxa, and the size of each node represents its relative abundance. The color blue indicates

an increase in the 2.5% scGOS/lcFOS fed mice compared to control mice, while the color red indicates an decrease in the 2.5% scGOS/lcFOS fed mice.

The thickness of the green border indicates the degree of statistical significance by Mann-Whitney U test, uncorrected.

https://doi.org/10.1371/journal.pone.0219366.g001
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the experiment with IL-1Ra-/- mice receiving either 2.5% or 5% scGOS/lcFOS supplemented

diets. However, this study showed no effect of the prebiotic diet on arthritis scores at any dose

(Fig 2B). Histological examination of the ankle joints confirmed this lack of therapeutic

Fig 2. Oral treatment of arthritic IL-1Ra-/- mice with prebiotic scGOS/lcFOS has no effect on the progression of

arthritis. (A-B) Arthritis severity scores (0–2 per paw) of IL-1Ra-/- mice fed a control diet or a diet containing either 1% or

2.5% scGOS/lcFOS (A) or 2,5 or 5% scGOF/lcFOS (B) for 8 weeks. (C) Histological scores of synovial inflammation,

proteoglycan (PG) depeletion, bone erosion, chondrocyte (chond.) death and cartilage erosion. Data shown mean + SEM of

8–9 mice per group. Treatment started when mice had a score of 0.75–1. NS = not-significant (p = 0.0571) as tested by

Kruskal-Wallis with Dunn’s post test.

https://doi.org/10.1371/journal.pone.0219366.g002
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efficacy of the scGOS/lcFOS diet and revealed no significant effects on inflammation, bone

and cartilage damage (Fig 2C).

To determine the effect of the different scGOS/lcFOS diets on the local T cell response, we

determined the gene expression of the transcription factors Tbet, RORγt and FoxP3 and cyto-

kines IFNγ, IL17a and IL10 (relevant for Th1, Th17 and Tregs, respectively) in pLNs, which

drain the arthritic ankle joint. The gene expression of Tbet and RORγt was significantly

reduced in pLNs of the mice which received the 2.5% scGOS/lcFOS diet compared to the con-

trol mice (Fig 3A, 3B, 3D and 3E). However, this was not reflected and supported by a reduc-

tion in the expression of IFNγ and IL17a. Furthermore, the expression of Treg-related FoxP3
was also not affected by the scGOS/lcFOS diet, whereas IL-10 expression was only increased in

the 1% scGOS/lcFOS diet group (Fig 3C and 3F).

In addition, we isolated cells from the draining lymph nodes and performed flow cyto-

metric analysis. This analysis showed no effect of the different scGOS/lcFOS doses on the

abundance of Th1, Th2, Th17 and Treg cells in pLNs (S2A–S2D Fig). Based on these data, we

conclude that scGOS/lcFOS-induced alterations of the intestinal microbiota were not suffi-

cient to significantly alter the joint-associated T helper cells subsets and reproducibly suppress

arthritis.

Prebiotic diet containing 5% scGOS/lcFOS diet significantly improves bone

mineral density

Because of lack of clear therapeutic effects in the first experiment with 1% and 2.5% scGOS/

lcFOS, we included a secondary readout parameter as positive control in the study with 2.5%

and 5% scGOS/lcFOS. For this, bone mineral density was added as additional readout. It has

previously been described that scGOS/lcFOS diet can increase intestinal mineral absorption

from diet and thereby improve bone mineral density in rats [27–31]. Therefore, we performed

DEXA scanning to measure bone mineral density in our mice. This revealed that a prebiotic

diet containing 5% scGOS/lcFOS significantly improves the overall bone mineral density of

IL-1Ra-/- mice (S4A Fig). The bone mineral content (BMC) also tended to be increased in the

5% scGOS/lcFOS treated mice; however, this increase was statistically not significant (S4B

Fig). This finding indicates that the scGOS/lcFOS diet has a beneficial effect on bone mineral

density during experimental arthritis, and that despite the lack of anti-arthritic effects, the

scGOS/lcFOS levels were sufficient to have systemic effects in these mice.

scGOS/lcFOS diet has no effect on intestinal T helper cell subsets in IL-

1Ra-/- mice

Intestinal microbiota are known to greatly influence the balance between pro-inflammatory

and regulatory mucosal T cell responses [44]. Considering the observed effects of scGOS/

lcFOS on the intestinal microbiota, we investigated the gene expression of the transcription

factors Tbet, RORγt and FoxP3 relevant for differentiation of Th1, Th17 and Tregs, respec-

tively, in ileum, mesenteric lymph nodes (mLN) and spleen of IL-1Ra-/- mice fed 1% and 2.5%

scGOS/lcFOS diet. We observed no effect of the scGOS/lcFOS diet on expression levels of

these genes in any of the tissues we tested (S4A–S4C Fig). However, FoxP3 mRNA expression

in the colon of 2.5% and 5% scGOS/lcFOS fed mice was slightly, but not significantly,

increased compared to mice on a control diet (S4D Fig).

In addition, we analyzed the effect of the 2.5% and 5% scGOS/lcFOS diet on T helper cell

subset in the small intestine lamina propria with flow cytometry. The small intestine lamina

propria (SI-LP) of mice on the 5% scGOS/lcFOS diet contained slightly increased percentages

of Th17, Th1 and Tregs, however these effect failed to reach statistical significance (S5A–S5C
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Fig). In contrast, the percentage of IL-4 producing Th2 cells present in the SI-LP showed a

non-significant reduction in the 5% scGOS/lcFOS group compared to the control group (S5D

Fig). We conclude from these data that although a scGOS/lcFOS diet significantly affected the

intestinal microbiome, it did not alter mucosal T helper cell subsets in intestinal lamina

propria.

Fig 3. Oral treatment of arthritic IL-1Ra-/- mice with prebiotic scGOS/lcFOS has no effect on T cell subsets during arthritis. (A-B)

Gene expression of Tbet (A), RORγt (B) and FoxP3 (C) in joint draining lymph nodes of arthritic IL-1Ra-/- mice fed a control diet

(n = 5) or a diet containing either 1% (n = 5) or 2.5% (n = 8) scGOS/lcFOS. Relative mRNA expression is shown as 2-ΔCt �10000,

corrected for GAPDH. �p<0.05 by Kruskal-Wallis with Dunn’s post test.

https://doi.org/10.1371/journal.pone.0219366.g003
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Discussion

Recent developments in the fields of microbiome research and immunology have shown that

intestinal microbiota play a critical role in the maintenance of immune homeostasis [45–47].

Therefore, modulation of the intestinal microbiota may offer an interesting novel approach to

suppress autoimmunity. In this study, we assessed the efficacy of microbiota modulation using

a specific prebiotic mixture as a therapeutic approach in experimental arthritis.

For the study presented here we used IL-1Ra-/- mice which spontaneously develop arthritis

due to excessive IL-1 receptor signaling [34]. We have previously shown that arthritis develop-

ment in these mice is highly dependent on the intestinal microbiome as arthritis is strongly

attenuated under germ-free conditions [15, 16]. In the current study we show that a 2.5%

scGOS/lcFOS dietary supplementation had no significant effects on the microbial richness or

diversity in IL-1Ra-/- mice; however, it resulted in an altered composition of the intestinal

microbiota. This was most notably characterized by a significant increase in Lachnospiraceae
spp. and Lactobacillus ssp.. Members of the family Lachnospiraceae have recently been linked

to alleviation of experimental encephalomyelitis [48]. It was hypothesized that the increase in

Lachnospiraceae resulted in an increased production of intestinal butyrate [48]. Butyrate is a

short chain fatty acid known to induce differentiation of Treg cells and reduce colonic inflam-

mation [49–52]. In addition, a recent study showed that the composition of microbiota prior

to arthritis onset differs between the collagen induced arthritis (CIA)-susceptible and CIA–

resistant mice [53]. This study found that Lachnospiraceae was more abundant in CIA-resis-

tant mice, while Lactobacillaceae was more abundant in CIA-susceptible mice [53]. Further-

more, Lachnospiraceae was found to be decreased in gut microbiota of psoriatic arthritis

patients [54]. In our study, however, the increase in Lachnospiraceae did not result in a signifi-

cant suppression of IL-1Ra-/- arthritis.

In addition, it has been reported that Clostridium difficile-infected mice with a microbiota

dominated by Lachnospiraceae developed a milder disease [55]. Another clinical study showed

that the presence of Lachnospiraceae was associated with lower risk of Clostridium difficile
infection in adult recipients of allogeneic hematopoietic stem cells transplantation [56]. Fur-

thermore, imbalances observed in the gut microbiota of inflammatory bowel disease patients

was characterized by reduced abundance of Lachnospiraceae [57]. These studies suggest a ben-

eficial role for Lachnospiraceae in gut health and protection against pathogens.

In mice, scGOS/lcFOS dietary supplementation also resulted in an increased prevalence of

fecal bifidobacteria and lactobacilli [20]. In accordance with these studies, we observed an

increase of 2.83% in Lactobacillus in the 2.5% scGOS/lcFOS fed mice in comparison to control

diet, however bifidobacteria were absent in our IL-1Ra-/- mice and could therefore not be

affected in our study. Added to infant formulas, scGOS/lcFOS has been described to stimu-

lated the growth of bifidobacteria and lactobacilli and reduce the numbers of pathogenic bacte-

ria [19, 58, 59]. In addition, a recent paper described that infants receiving scGOS/lcFOS

supplemented formula showed increased Bifidobacterium and decreased Clostridium and

Lachnospiraceae [60]. In agreement with this study Clostridium was decreased in the scGOS/

lcFOS treated mice in our studies; however, we observed a strong increase in the family Lach-
nospiraceae. Therefore, the effects observed in our study differ markedly from the effects

observed in infants, suggesting that the effect of scGOS/lcFOS depends on the host and endog-

enous microbiome at start of treatment.

In this study we show that bone mineral density is increased in mice fed a diet supple-

mented with 5% scGOS/lcFOS. This is in agreement with previous studies which showed that

a scGOS/lcFOS mixture increases mineral absorption and bone mineral density in rats [27–

31]. Similar to our current study, these studies observed an increase in the abundance of
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Lactobacillus in the rats receiving the scGOS/lcFOS supplemented diet [28]. In addition, those

studies reported a reduction in cecal pH values [27, 28]. It was therefore hypothesized that the

scGOS/lcFOS diet increased the production of organic acids (short chain fatty acids and lactic

acids) by lactic acid bacteria such as Lactobacillus, which lowers the pH and thereby improves

mineral absorption [27]. However, since we do not have 16S data of mice receiving 5% scGOS/

lcFOS we do not know which bacteria are responsible for this effect in our study. Altogether,

the significant improvement of the bone mineral density suggests that the scGOS/lcFOS prebi-

otic mixture has beneficial effects on the bone in the context of arthritis.

We previously showed that the aberrant microbiota in IL-1Ra-/- mice specifically induced

IL-17 production by intestinal lamina propria lymphocytes, an effect that could be transferred

to wild-type mice by fecal microbiota [16]. Previous studies showed that a scGOS/lcFOS con-

taining diet enhanced the percentage of Th1 cells and tended to reduce Th2 response in mice

[61, 62]. In another study it was shown that suppression of the allergic responses by scGOS/

lcFOS depends on the presence of CD25+ Tregs [22, 23]. Furthermore, lactobacilli are thought

to induce Treg differentiation by modulating dendritic cell function [63]. In addition, butyrate

produced by Lachnospiraceae could also induce Treg differentiation [49]. This suggests that a

scGOS/lcFOS diet and subsequent increase in Lactobacillus and Lachnospiraceae could cause

an anti-inflammatory shift in Th cell responses. However, analysis of the intestinal lamina pro-

pria lymphocytes with flow cytometry in our study did not show any effect on Th cell subsets.

This suggests that despite the effect of scGOS/lcFOS on the intestinal microbiota, the diet did

not result in modulation of the intestinal immune response in IL-1Ra-/- mice. Excessive IL-1

signaling is known to downregulate TGF-β-induced Foxp3 expression and enhance Th17 dif-

ferentiation [64]. The lack of modulation of Th cells and arthritis development in our studies

could be due to the enhanced IL-1 signaling in IL-1Ra deficient mice, overruling the immune

suppressive effects of the scGOS/lcFOS-modulated microbiota.

Although we did not find convincing evidence for an improvement of host immune (proin-

flammatory) responses by effect of scGOS/lcFOS prebiotics, the observed strong lactobacillo-

genic effect is in line with literature [19–21]. Interestingly, others have reported certain

Lactobacillus species to be associated with RA, which raises the question whether a depletion

of these taxa could potentially ameliorate arthritis onset or progression. For example, Zang

et al. described a dysbiosis in the microbiota of gut and oral niches from RA patients, based on

shotgun metagenomics sequencing data, and specifically reports an overrepresentation of L.

salivarius at these sites [3, 65]. Liu et al. has also found significantly more Lactobacillus in the

fecal microbiota of RA compared to healthy controls [66]. They furthermore showed in a CIA

mouse model that oral pretreatment with strains of L. salivarius and L. plantarum isolated

from RA patients was able to reduce the arthritis phenotype in a Th17-dependent manner

[67]. Intriguingly, in that same study they reported a reduction in bone erosion in CIA mice

treated with the lactobacilli. In conclusion, although lactobacilli are generally considered bene-

ficial gut commensals for the host, it can be assumed that different Lactobacillus species or

strains exert different (immune) responses in the context of RA. Unfortunately, technical limi-

tations in short-length 16S rRNA marker-gene sequencing does not allow for confidently clas-

sifying microbiota to the level of (sub)species. Therefore, we cannot speculate on the different

subsets of lactobacilli that were present in our samples.

Another possibility is that the specific microbiota modulated by the scGOS/lcFOS diet were

not relevant to the ongoing inflammatory processes and that the Th17-driving bacteria were

not affected. We recently demonstrated that IL-1Ra deficiency reduces the intestinal microbial

diversity and richness, and causes specific alterations in composition of the intestinal micro-

biota [16]. The taxonomic alterations in IL-1Ra-/- mice were characterized by overrepresenta-

tion of the genera Helicobacter, Rikenella, Butyricimonas and Streptococcus, while the genera
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Prevotella, Parasutterella, Xylanibacter, Ruminococcus, and Barnesiella were underrepresented

in the IL-1Ra-/- mice compared to the WT mice [16]. Interestingly, in the 2.5% scGOS/lcFOS

fed mice Streptococcus were decreased and Barnesiella was increased compared to the control

group. This might suggest that a 2.5% scGOS/lcFOS diet can partly restore the dysregulated

microbiota of IL-1Ra-/- mice. Treatment of IL-1Ra-/- mice with tobramycin significantly

reduced arthritis severity and resulted in a near-complete elimination of Helicobacter and a

highly significant reduction of Clostridium [16]. In this current study, 2.5% scGOS/lcFOS diet

did not have a strong effect on Helicobacter, as only a small non-significant decrease was

observed in the 2.5% scGOS/lcFOS treated group (3.13% in control group vs. 2.08% in 2.5%

scGOS/lcFOS group). However, scGOS/lcFOS treatment did significantly reduce Clostridium
abundance (Fig 1), which was also one of the genera significantly affected by tobramycin treat-

ment. This suggests that bacteria which contribute to the progression of arthritis in IL-1Ra-/-

mice are only partly affected by scGOS/lcFOS supplementation.

Conclusions

Prebiotics such as scGOS/lcFOS have potential benefits in providing nutrient sources to spe-

cific beneficial bacteria to promote a diverse and healthy gut microbiota. In our study, we

observed an increase in Lactobacillus genus and Lachnospiraceae family after 8 weeks of die-

tary scGOS/lcFOS supplementation during arthritis. In addition, we found a beneficial effect

of the scGOS/lcFOS diet on BMD in arthritic mice. However, despite these positive effects on

bone and the microbiota composition, the scGOS/lcFOS diet did not induce a change in Th

cell subsets or a reproducible therapeutic effect on the progression of autoimmune arthritis in

IL-1Ra-/- mice. Altogether, despite the lack of anti-rheumatic effects, this study suggests the

ability of scGOS/lcFOS supplement to alter the gut microbiota into a more beneficial state and

improving the bone mineral density.

Supporting information

S1 Fig. Dietary supplementation with scGOS/lcFOS has no effect on bacterial richness and

diversity. (A) Chao index1, (B) Shannon index, (C) PD whole tree are shown. (D) Principal

coordinates analysis (PCoA) based on an unweighted UniFrac analysis of the intestinal micro-

bial composition. The position and distance of data points indicates the degree of similarity in

terms of both presence and relative abundance of bacterial taxonomies. Data (mean + SEM)

represent 16S rRNA gene 454-pyrosequencing analysis of intestinal microbiota of of IL-1Ra-/-

mice fed a control diet (n = 8) or a diet containing either 1% (n = 7) or 2.5% (n = 8) scGOS/

lcFOS for 8 weeks.

(TIF)

S2 Fig. Diet containing scGOS/lcFOS has no effect on Thelper cell subsets in joint draining

lymph nodes. Dot plots showing percentage of IFNγ+ Th1 (A) IL-4+ Th2 (B) IL-17+ Th17

(C) and FoxP3+ Treg cells among CD3+CD4+ cells isolated from the joint draining lymph

nodes of arthritic IL-1Ra-/- mice. The mice were on either 2.5% or 5% scGOS/lcFOS diet or

were fed a control diet. No significant differences as tested by Kruskal-Wallis with Dunn’s post

test.

(TIF)

S3 Fig. Prebiotic scGOS/lcFOS diet improves the overall bone mineral density in arthritic

IL-1Ra deficient mice. (A) Bone mineral density (BMD) and (B) Bone mineral content

(BMC) of arthritic IL-1Ra-/- mice. Dual-energy X-ray absorptiometry (DEXA) scanning was

performed after 10 weeks of dietary treatment with either 2.5% or 5% scGOS/lcFOS. �p<0.05
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by Kurskal-Wallis with Dunn’s post test.

(TIF)

S4 Fig. scGOS/lcFOS diet has no effect on Th cells subsets in IL-1Ra-/- mice. Gene expres-

sion of FoxP3, RORγt and Tbet in ileum (A), mesenteric lymph nodes (B), spleen (C) and

colon (D) of IL-1Ra-/- mice fed a diet containing either 1%, 2.5% or 5% scGOS/lcFOS. Relative

mRNA expression is shown as 2-ΔCt �10000, corrected for GAPDH. No significant differences

as tested by Kruskal-Wallis with Dunn’s post test.

(TIF)

S5 Fig. Intestinal T helper cells subsets are not affected by scGOS/lcFOS containing diet.

Dot plots showing percentage of IFNγ+ Th1 (A) IL-4+ Th2 (B) IL-17+ Th17 (C) and FoxP3

+ Treg (D) cells among CD3+CD4+ cells isolated from the small intestine lamina propria of

arthritic IL-1Ra-/- mice. The mice were on either 2.5% or 5% scGOS/lcFOS diet or were fed a

control diet. No significant differences as tested by Kruskal-Wallis with Dunn’s post test.

(TIF)

S1 Table. Relative abundance on family and genus level in IL-1Ra-/- mice fed either a con-

trol diet or a diet containing 1.0% or 2.5% short-chain galaco-oligosaccharides / fructo-oli-

gosaccharides (scGOS/lcFOS). Significant alterations by Mann-Whitney U (MWU) after

Benjamini-Hochberg correction (FDR) for multiple testing are in bold. The color blue indi-

cates an increase in the treatment group compared to the control group, while the color red

indicates a decrease.

(DOCX)

S2 Table. Prebiotic diet containing scGOS/lcFOS alteres the composition of intestinal

microbiota IL-1Ra-/- mice. Relative abundance on family and genus level in IL-1Ra-/- mice

fed either a control diet or a diet containing 1.0% or 2.5% short-chain galaco-oligosaccharides /

fructo-oligosaccharides (scGOS/lcFOS). Significant alterations by Mann-Whitney U (MWU)

after Benjamini-Hochberg correction (FDR) for multiple testing are in bold. The color blue

indicates an increase in the treatment group compared to the control group, while the color red

indicates a decrease.

(DOCX)

S1 File. Supportive information file. Excel file containing the raw data underlying the results

of this manuscript that lead to Figs 2 and 3 and S2–S5 Figs.

(XLSX)
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