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Abstract

Estimation of liver function is important to monitor progression of chronic liver disease

(CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxe-

tate, a liver-specific contrast agent. For this method, we have previously developed a model

for an average healthy human. Herein, we extended this model, by combining it with a

patient-specific non-linear mixed-effects modeling framework. We validated the model by

recruiting 100 patients with CLD of varying severity and etiologies. The model explained all

MRI data and adequately predicted both timepoints saved for validation and gadoxetate

concentrations in both plasma and biopsies. The validated model provides a new and

deeper look into how the mechanisms of liver function vary across a wide variety of liver dis-

eases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and

increases excretion of gadoxetate. These mechanisms are shared across many liver func-

tions and can now be estimated from standard clinical images.

Author summary

Being able to accurately and reliably estimate liver function is important when monitoring

the progression of patients with liver disease, as well as when identifying drug-induced

liver injury during drug development. A promising method for quantifying liver function
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is to use magnetic resonance imaging combined with gadoxetate. Gadoxetate is a liver-

specific contrast agent, which is taken up by the hepatocytes and excreted into the bile.

We have previously developed a mechanistic model for gadoxetate dynamics using aver-

aged data from healthy volunteers. In this work, we extended our model with a non-linear

mixed-effects modeling framework to give patient-specific estimates of the gadoxetate

transport-rates. We validated the model by recruiting 100 patients with liver disease, cov-

ering a range of severity and etiologies. All patients underwent an MRI-examination and

provided both blood and liver biopsies. Our validated model provides a new and deeper

look into how the mechanisms of liver function varies across a wide variety of liver dis-

eases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and

increases excretion of gadoxetate.

Introduction

Measurements of liver function are important to determine the optimal therapeutic strategy in

cases of severe chronic liver disease (CLD), and for prevention of post-treatment hepatic fail-

ure [1]. Estimating liver function is also important when planning surgical treatment, because

postoperative hepatic function insufficiency is associated with both morbidity and mortality

[2]. Sensitive biomarkers for liver function would also be useful for the management and early

identification of drug-induced liver injury (DILI), which is a leading cause of acute liver failure

[3] and also of drugs being withdrawn from the market [4].

Different options for estimation of liver function are used clinically today, but they all have

some shortcomings. For instance, the primary clinical screening tool for liver injury in clinical

trials, serum alanine aminotransferase (ALT), neither indicates the severity of liver injury nor

estimates liver function [5]. In addition, ALT (and other transaminases) only indicates injury

at a late stage when substantial tissue damage has already occurred [6]. Alternative methods

for measuring liver function include Indocyanine-Green 15 retention rate (ICGR15) [7] and

Tc-99m galactosyl human serum albumin (GSA) [8], which both measure the liver´s capacity

to clear substances from the blood, and the galactose breath test [9], which measures the liver’s

metabolic capacity. These are all examples of global indicators that provide indirect measure-

ments of liver function. Furthermore, GSA involves the injection of a radioactive isotope,

which from a practical point of view is cumbersome and suffers from limited spatial and tem-

poral resolution, and importantly is not widely available. In summary, biomarkers that are sen-

sitive and respond early to changes in liver function would be beneficial both in a clinical

setting as well as in the pharmaceutical industry and regulatory agencies [10, 11]. Because of

the low quality of available measures of liver function, little is known about the more detailed

mechanisms of liver function, and about how these mechanisms change at different stages of

CLD.

One of the most promising state-of-the-art methods for assessing clearance-based liver

function is to use magnetic resonance imaging (MRI) in combination with the liver-specific

contrast agent gadoxetate (Bayer Schering Pharma, Berlin, Germany). This method has the

potential to allow investigation of liver function at a regional level without the need for any

ionizing radiation. As a liver-specific contrast agent, gadoxetate is actively accumulated within

hepatocytes [12] and is commonly used for characterizing lesions. The gadoxetate uptake is

mainly associated with the function of the organic anion-transporting polypeptide 1 (OATP1)

family of transporters [13]. The subsequent excretion into the bile occurs via the multidrug

resistance-associated protein 2 (MRP2) transporter [14]. These transporter proteins have
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important functions, such as mediating the clearance of bilirubin, toxins, drugs, and other

organic solutes [15]. For these reasons, gadoxetate MRI has the potential to facilitate study of

the aspect of liver function that has to do with these uptake and excretion processes.

There are a number of previous studies which indicate the high potential of gadoxetate

MRI as a biomarker for liver function. Early studies established a correlation between gadoxe-

tate MRI and common clinical markers for liver function [16]. A more recent study demon-

strates the ability of gadoxetate MRI to predict liver failure after surgery [17]. Furthermore, a

recent prospective follow-up study on patients with primary sclerosing cholangitis showed

that quantitative gadoxetate MRI could predict solid clinical endpoints, such as liver transplan-

tation, cholangiocarcinoma, and liver related death [18]. The approach used in that study sepa-

rated the population into two clear groups, one with>90% survival and one with<60%

survival. Finally, in rats, similar analyses have shown promising results of using gadoxetate

MRI as a biomarker for DILI [19, 20].

All the above clinical studies have used a simple analysis, called relative enhancement,

which simply compares signal intensity before and after gadoxetate injection; therefore, the

studies could not elucidate the detailed mechanisms of liver function. More advanced

approaches can make use of the information in an entire time series of images and use this to

extract different gadoxetate transport rates. Such methods require the use of mathematical

models. One common class of such models is the perfusion-based model [21, 22]. These mod-

els require images with a very high temporal resolution, which limits the spatial resolution,

meaning that the images cannot be used for conventional radiological reading. An alternative

to perfusion-based models is models based on simulation and optimization of ordinary differ-

ential equations. These models do not need such high temporal resolution, but can utilize the

high-spatial low-temporal resolution images used in clinical MRI protocols today. One such

model, describing how gadoxetate is distributed in the whole body, as well as taken up and

excreted by the liver, was described by Forsgren and colleagues [23].

While the Forsgren model can arguably be viewed as the most realistic gadoxetate uptake

model, it has several shortcomings. The model is the most realistic in the sense that it is the

only compartment model to describe the dynamics in liver, blood, spleen, and extracellular

extravascular space. Furthermore, the model has been validated in healthy humans with

gadoxetate doses up to 20 times higher than the clinical dose used for model training. On the

other hand, the model has not been personalized. One effective approach used for such

personalization is non-linear mixed-effects modeling (NLME; Fig 1A and 1B). NLME is effec-

tive because it can deal with low-informative data [24], which could allow for fewer images,

shorter clinical examinations, and more reliable parameters. However, NLME has not been

applied to any gadoxetate uptake model. Another shortcoming with the Forsgren model is that

it has not been tested in patients with liver diseases. Therefore, it is not known how the mecha-

nisms in the model vary across different stages and etiologies of CLD. Furthermore, the model

has not been validated with respect to other important independent measures such as biopsies

and post-procedural blood samples. These limitations have been due to the lack of relevant

data.

In this study, a new modeling framework is created (Fig 1C) by combining i) state-of-the-

art MRI processing of high resolution gadoxetate-enhanced time series [25, 26]; ii) the mecha-

nistic gadoxetate uptake model, [23]; and iii) NLME model parametrization methods. To vali-

date the model, a large clinical study was conducted by recruiting 100 patients, who were

subjected to a variety of different measurements. These new data validate the model in three

different ways. First, the extended model can describe patient variation across all stages of

CLD. Second, the model can predict quantified images from later time points, which were not

included in the estimation data; this implies the possibility of a shorter clinical protocol. Third,
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the model can predict independent validation data from blood samples and biopsies. Finally, it

is demonstrated how the estimated model properties, such as OAPT1 and MRP2 transport

rates, change with varying severity of CLD. These results point to a new avenue for estimation

of liver function.

Fig 1. NLME, the mechanistic model framework, and model. (A) The standard-two-stage (STS) method. The model is parametrized for each data set separately,

and then the parameter values are combined to derive population parameter distributions. (B) The ‘non-linear mixed effect’ (NLME) method. The shapes of the

population parameter distributions are first postulated, then distributions are parametrized to all datasets, and finally each patient is parametrized following the

population parameter distributions with a joint-likelihood function. This allows NLME to use the global information obtained from an entire cohort, which is

utilized to improve model parametrization for each individual subject. (C) The framework consists of gadoxetate-enhanced images, which are processed to obtain

gadoxetate concentrations in the liver. A mechanistic systems pharmacology model, describing how gadoxetate is taken up and excreted, is fitted to the data using

NLME parameterization to obtain reliable pharmacokinetic parameters, which can be used as biomarkers for liver function. (D) Schematic diagram of the

mechanistic model for quantification of liver transporter function. Rounded rectangles represent compartments in the model, with arrows indicating gadoxetate

fluxes between blood plasma and extracellular extravascular space (EES; kdiff), elimination via the kidneys to urine (CLr), uptake into hepatocytes (kph), back-flux

from hepatocytes into blood plasma (khp), and excretion from hepatocytes into bile (khb). Gadoxetate injection into the blood-plasma compartment is indicated in

blue. Gray areas show the signal part of the model in which compartmental gadoxetate concentrations are combined to predict the information in the gadoxetate-

enhanced MRI time series.

https://doi.org/10.1371/journal.pcbi.1007157.g001
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Results

Study population

A total of 100 patients, with suspected CLD were included in the study and each underwent an

MRI examination followed by two liver biopsies. Of these, eight patients were excluded

because they aborted the examination and one patient was excluded due to poor data quality,

giving a final cohort of 91 patients. The demographic characteristics and clinical diagnoses of

the final study population are presented in Table 1. None of the included patients showed

signs of hepatic decompensation.

The model framework is applicable to all stages of chronic liver disease

All patients were given an injection of gadoxetate and several MR-images were acquired over a

period of 30 minutes for each patient. Time series for each patient were made by quantifying

Table 1. Demographic and clinical data from of the final study population (N = 91).

Median Range

Male (N) 50

Age (Years) 53 20–81

BMI (kg/m2) 26.4 16.9–35.0

Bilirubin (μmol/L) 11 4–48

AST (μkat/L) 0.75 0.29–4.50

ALT (μkat /L) 1.10 0.19–9.10

ALP (μkat /L) 1.20 0.43–10.00

Fibrosis Stage

F0 29

F1 16

F2 25

F3 14

F4 7

Diagnosis

Normal 8

NAFLD 35

HCV 8

PSC 13

PBC 4

AIH 12

AIH-PSC overlap 2

AIH-PBC overlap 1

Hemochromatosis 1

DILI 2

Wilson´s disease 1

ALD 2

AAT deficiency 1

BMI body mass index, AST aspertate aminotransferase, ALT alanine aminotransferase, ALP alkaline phosphatase,

NAFLD non-alcoholic fatty liver disease, HCV hepatitis C virus infection, PSC primary sclerosing cholangitis, PBC
primary biliary cirrhosis, AIH autoimmune hepatitis, DILI drug induced liver injury, ALD alcoholic liver disease,

AAT deficiency α1-antitrypsin deficiency.

https://doi.org/10.1371/journal.pcbi.1007157.t001
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the change in R1 relaxation rate (ΔR1), which is proportional to gadoxetate concentration [27],

in the liver and spleen. These time series were used to parametrize the mechanistic model (Fig

1D) for each individual patient using the NLME method. That is, the NLME algorithm was

used to identify optimal model parameter values for each patient (e.g., describing the function

of OATP1 and MRP2) such that the model predictions of the MRI data in the liver and the

spleen matched the measured MRI data. Fig 2A and 2B shows the observed values and the

model predictions for two typical patients, one without fibrosis (F0) and one with cirrhosis

(F4). Goodness-of-fit for was assessed each patient. In all but one of the 91 patients, the model

predicted the observed MRI data without being rejected by the goodness-of-fit test. This indi-

cated that the same mechanisms were at play in all stages and etiologies of CLD, and that only

the quantitative details were different.

Measurements of gadoxetate concentrations in blood and biopsy samples

validates the model

Fig 2C–2F shows a comparison between the gadolinium concentrations (the paramagnetic

nucleus responsible for the contrast enhancement in gadoxetate) measured in the blood sam-

ples and biopsies and the gadolinium concentrations predicted by the mathematical model. At

a group level, there were no differences between the gadolinium concentrations predicted by

the mathematical model and the concentrations measured using inductively coupled plasma

sector field mass spectrometry (ICP-SFMS) (Fig 2C and 2E). At an individual level, there was a

moderate Lin’s concordance correlation between the predicted and measured gadoxetate con-

centrations in blood samples (rc = 0.62; Fig 2D). However, there was only a low correlation in

liver biopsy samples (rc = 0.31; Fig 2F).

NLME enables short-duration gadoxetate MRI examinations

To assess whether the NLME-model parameterization method outperforms the standard two-

stage approach (STS), and whether it is possible to reduce the examination time to 10 min

from gadoxetate injection, the dataset for each patient was divided into two parts: all data

points from within 10 min after gadoxetate injection were used as estimation data, and the val-

idation data included the remaining later time points. Both the NLME and STS parametriza-

tion methods were used to parametrize the model with the estimation data. The resulting

model predictions were compared to the estimation data and validation data, and goodness-

of-fit was assessed for each patient individually.

The NLME parameterization was implemented using a ’leave-one-out’ design, meaning

that one data set at a time was truncated while all other data sets were complete. This design

was to demonstrate how NLME could be used in a clinical situation where the distributions of

the parameters have already been determined in clinical studies. Four patients had insufficient

data for this analysis (there was no available data after 10 min), so the test included data from

87 patients.

Both the NLME and STS methods produced model predictions that passed the statistical

test for goodness-of-fit for the estimation data in all 87 patients. The NLME method predicted

the data in the validation dataset in 81 patients (93%) without being rejected, compared with

37 patients (43%) with the STS method. Fig 3A and 3B shows an example of a patient for

whom the NLME method could predict the validation data, while the STS method failed, par-

ticularly when predicting the liver signal.

Significant Lin’s concordance correlation was observed between predicted and measured

blood plasma gadoxetate concentrations when using the NLME parametrization to data from

the first 10 min (rc = 0.60). Notably, there was no significant difference between the predicted

Model-Inferred Mechanisms of Liver Function
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Fig 2. The mechanistic model framework predicts observed gadoxetate levels in chronic liver disease. (A, B) Observations and model-based predictions of

gadoxetate levels, indicated by the changes in R1 relaxation rate (ΔR1, which is directly proportional to the gadoxetate concentration) in two patients, one with

no fibrosis (F0) and one with histologically proven cirrhosis (F4). (C, E) The model is validated by predicting the gadoxetate concentration in blood and

biopsy samples, which was acquired after the MRI examination. (D, F) Correlation between the measured and model-predicted gadolinium concentrations.

The solid line is a linear regression and the dotted lines are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1007157.g002
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and measured blood plasma concentrations with prediction based on parametrization to data

from the first 10 min. Correlation between predicted and measured blood plasma gadoxetate

concentrations based on the STS parametrization was not as strong as with the NLME parame-

trization (rc = 0.24).

The array of model parameters for each patient, estimated by the NLME parametrization

method using data from the first 10 min, were compared with the same parameters estimated

by the NLME parametrization method using the full dataset (Fig 3C–3H). The OATP function,

i.e. hepatocyte uptake rate (kph; Fig 3C), was unaffected by the sparse (�10 min) estimation

Fig 3. The non-linear mixed effects (NLME) model parametrization enables shorter gadoxetate MRI examinations. The models were parametrized with data

up to 10 min after gadoxetate injection and were validated against the remaining data. (A) shows an example of simulation after NMLE parameterization, (B)

shows a simulation of the same patient after STS parameterization. The natural logarithms of the model parameter values hepatocyte uptake rate (kph; C-D),

hepatocyte elimination rate (khb; E-F), and hepatocyte to plasma flux (khp; G-H), estimated with the NLME method using the full data set, were compared with

the parametrization using data up to 10 minutes. Significant differences were observed for khp. The solid line is a linear regression and the dotted lines are 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1007157.g003
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with a highly significant correlation between sparse and full estimations (Fig 3D). At a group

level, the MRP2 function, i.e. hepatocyte elimination rate (khb; Fig 3E), was unaffected by the

sparse estimation data. However, the individual values for each patient were affected and

hence the correlation was poor (Fig 3F). The hepatocyte to plasma flux (khp; Fig 3G) was signif-

icantly affected by the sparse estimation data, with a non-significant correlation (Fig 3H).

Hepatic accumulation of gadoxetate is significantly affected in patients

with fibrosis

In the liver, ΔR1 is lower in patients with increased fibrosis stage (Fig 4A). In the spleen, ΔR1

appears to be unaffected (Fig 4B). Furthermore, the hepatocyte uptake rate of gadoxetate by

OATP1, differentiated between fibrosis stages, is shown in Fig 4C. The figure shows that the

uptake is decreased in patients with advanced fibrosis and cirrhosis. Furthermore, the hepato-

cyte excretion rates were differentiated between cirrhosis and both advanced fibrosis and mild

fibrosis (Fig 4D). Finally, Table 2 shows a confusion matrix of the ability of kph to identify

patients with advanced fibrosis, i.e.�F3, when using a cut-off of 0.00198 s-1.

Discussion

A new next-generation framework to measure liver function using MRI was developed. This

framework was successfully applied and validated with liver biopsy and blood samples in a

clinical setting in a diverse cohort. More specifically, the model could describe data from all

patients and it was able to adequately predict gadoxetate levels in both blood plasma and biop-

sies. Furthermore, the introduced NLME method for parameter estimation is more robust on

shorter protocols, compared to the previously used STS method; this allows for shorter exami-

nations. Finally, the validated model allowed for the examination of how the biomedical mech-

anisms for clearance-based liver function vary across different stages of CLD.

The new framework is validated in several different ways. First, the model was validated by

the fact that it could be used to extrapolate data points not used for parameter estimation

(example in Fig 3A and 3B). Second, the model could also be fitted to data from patients with a

wide variety of different chronic liver diseases (Table 1). Third, the concentrations of gadoxe-

tate in both liver biopsy and blood samples were measured by ICP-SFMS (Fig 2C–2F). On a

group level, there was no significant difference between the predicted and measured gadoxe-

tate concentrations. On an individual level, there was a moderate correlation in the blood,

while there was a low individual correlation in the biopsy. This lower correlation may be due

to contamination of the biopsy samples from gadoxetate in the bile ducts. These correlations

do not necessarily mean that our modeling framework should be used for individual predic-

tions of gadoxetate concentrations. However, the results do show that our modeling frame-

work produces realistic parameter values. Last, the framework was also validated by the fact

that the model parameters corresponding to OATP1 and MRP2 functions varied as expected

in the patient population (Fig 4).

The variation of the parameters across the patient population requires some additional

remarks. First, the population covered a wide spectrum of both etiologies (Table 1) and sever-

ity and we used liver fibrosis to indicate severity. Second, hepatic uptake via OATP1 transport-

ers (kph) decreased significantly with increasing levels of fibrosis. Similar results were

previously obtained in studies with perfusion-style model frameworks [28, 29]. Possible rea-

sons for reduction of OATP1 function include restricted access of gadoxetate to the hepato-

cytes, reduction in the number of functional hepatocytes, and competitive inhibition. Third,

with respect to hepatic excretion via MRP2 (khb), a significantly higher excretion rate was esti-

mated in patients with cirrhosis, compared to patients with lower levels of fibrosis. Other
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studies have reported mixed results. Previously, a small study using a perfusion model indi-

cated the opposite, that gadoxetate excretion decrease in cirrhotic humans [30]. Therefore, it is

interesting to look at studies of gene expression. Some studies on cirrhotic rats have shown an

upregulation of MRP2 [31–33], which is consistent with our findings. In contrast, one study

found a lower expression of MRP2 in rats with fibrosis [34]. In humans, the picture is also

mixed and CLD has been found to be associated with either no difference [35], a slight increase

[36], or in some CLD etiologies, a decrease [37] in MRP2 expression.

By using the NLME parameterization scheme, the time needed for MRI-examinations

could be reduced, while still being able to estimate reliable parameters, as well as predicting

Fig 4. Effects of fibrosis on hepatic function. Liver (A) and spleen (B) time series showing average induced change in R1 relaxation rate (ΔR1) in patients

with different levels of fibrosis. Error bars indicate the standard error of the mean. In (C, D), liver function parameters are shown for each level of fibrosis.

Horizontal lines indicate significant differences (ANOVA, Tukey’s post-test: � <0.05; �� <0.01; ��� <0.001).

https://doi.org/10.1371/journal.pcbi.1007157.g004

Table 2. Confusion matrix for the ability of kph to identify patients with advanced fibrosis.

Predicted No

Advanced Fibrosis

Predicted

Advanced Fibrosis

True No

Advanced Fibrosis

53 17

True

Advanced Fibrosis

5 16

https://doi.org/10.1371/journal.pcbi.1007157.t002
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both the liver and spleen signals (Fig 3). This reduction was accomplished because NLME

allows for information to be shared among the parameter estimations of all patients, thus

requiring fewer new datapoints per patient. This reduction in the examination time is benefi-

cial, since it reduces cost and patient discomfort, and requiring only a few images also allows

for our method to be included for liver function evaluation in short abbreviated MRI-proto-

cols. Such protocols, (sometimes called AMRI) are gaining popularity, e.g. when screening cir-

rhotic patients for hepatocellular carcinoma [38, 39].

It can be noted that while the STS scheme failed to predict the liver signal, STS was still able

to predict the spleen signal. The reason for this is that almost all dynamic information of the

spleen signal is contained within the first ten minutes. Removing all later time points should

therefore not affect the ability to predict the spleen signal. Furthermore, it can also be noted

that while the χ2-test was used to evaluate the goodness-of-fit of the model, the NLME frame-

work offers other methods for assessing model performance, such as visual predictive check

and normal predictive distribution errors. However, since NLME was only used to increase

the robustness of the predictions of the individual patients, the χ2-test should be enough. Com-

paring different methods would be interesting, but was unfortunately beyond the scope of this

work.

Another strength of this work is that data are presented from a new clinical study, where

100 patients were recruited. The patients were selected to represent the actual flow of patients

being referred to a hepatology department, with a normal variation in both disease etiology

and severity. This gives a more realistic picture of the clinical situation, as most other studies

have either been small or not prospective. Additionally, the study included dual biopsies, as

well as blood samples, from the patients, in conjunction with the MR examination. These rare

measurements allowed for extensively validate the model. Lastly, the study was conducted over

a span of around six years. Such a long time could be seen as a limitation, as changes occur to

an MR-system over time, such as software upgrades. On the other hand, this could also be seen

as a strength of the method, since it was found that all data could easily be analysed in the

same framework.

Although this methodology is still in the research phase, the methodology is better suited

for clinical implementation, compared to other similar methods, for a variety of reasons. First,

the modeling framework uses the same type of clinical images, already collected in routine

examinations. Therefore, the liver function estimation can easily be included in clinical work-

flows or studies that already use gadoxetate MRI, by simply adding a few more breath holds.

Second, the model is based on simulations of ordinary differential equations, which has addi-

tional advantages. For instance, the model, unlike previous non-simulation-based models [19,

21, 22], can easily be combined with other models describing detailed processes in the liver,

and thus can possibly characterize other aspects of liver function, such as metabolic aspects

[40]. Third, the simulation-driven model can also be combined with more zoomed out whole-

body models. The result of such combinations is multi-level models which can simultaneously

describe multiple organs and processes in the body [41–43]. For all these reasons, the frame-

work could be further extended and reused in a variety of different contexts, both regarding

clinical implementation and research.

In conclusion, this study presented a new integrative MRI-based framework for estimating

liver function. The extendable framework has been validated in a variety of ways and has

allowed for a new and deeper look into the variation of mechanistic parameters across a clini-

cally relevant cohort.
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Methods

Study design and population

Between 2007 and 2014, 100 patients were recruited on referral to the Linköping University

Hospital, Linköping, Sweden for evaluation of chronic (> 6 months) elevation of levels of one

or more of ALT (>1.10 μkat/L for men and>0.75 μkat /L for women), aspartate aminotrans-

ferase (AST; >0.75 μkat /L for men and>0.60 μkat /L for women), and serum alkaline phos-

phatase (ALP; >1.80 μkat /L regardless of gender). All patients who, on clinical indication or

as part of a clinical study, needed a liver biopsy for histopathological evaluation were asked to

participate in the study. Exclusion criteria included contraindications for MRI (presence of

pacemaker devices, implants with ferromagnetic properties, pregnancy, and claustrophobia)

and liver biopsy (presence of primary or secondary coagulative disorder, prothrombin

time > 1.5 times the international normalized ratio, platelet count<50×109 /L, hepatic malig-

nancy, and clinical signs of decompensated cirrhosis).

A diagnostic work-up was performed prior to MRI, including a physical examination, labo-

ratory investigations, and ultrasonography. The pathologist was blinded to the results of the

diagnostic work-up, and the radiologists were blinded to the diagnosis and the pathology

findings.

Ethics statement

This study was approved by the regional ethics committee (Reference No. M72-07 T5-08). All

patients gave informed consent to participate before the inclusion.

Gadoxetate-enhanced magnetic resonance imaging

MRI was performed within two months of the diagnostic work-up with a Philips Achieva 1.5 T

MR scanner (Philips Healthcare, Best, Netherlands) and a phased-array body coil. Single-

breath-hold symmetrically sampled T1-weighted gradient-echo two-point Dixon 3D images

[44] were acquired using sensitivity encoding [45].

All patients received a bolus injection of gadoxetate (gadolinium ethoxybenzyl diethylene-

triamine pentaacetic acid, or Gd-EOB-DTPA, marketed as Primovist in Europe and Eovist in

the USA by Bayer Schering Pharma, Berlin, Germany), at a dose of 0.1 ml/kg, administered

intravenously at a rate of 1 mL/s by a power injector (Medrad Spectris Solaris, Pittsburgh, PA,

USA), followed by a 30 mL saline flush. Image time series were acquired prior to (non-

enhanced) and directly following gadoxetate injection (Fig 5). The post-injection time series

corresponded to the arterial and portal-venous phases, as well as 3 min, 10 min, 20 min, and

30 min following injection. Additional acquisitions between 3 min and 30 min were added

from 2012 and onwards.

The field of view (FOV) and acquisition matrix were adjusted to accommodate patients of

different sizes. Higher temporal resolution was used during the initial contrast agent wash-in

phase, the arterial phase. The non-enhanced and post-injection images were acquired using

the following sequence parameters: repetition time = 6.5 ms, echo time = 2.3 ms and 4.6 ms,

flip angle = 13˚, typical acquisition matrix = 168×168, typical FOV = 261 mm by 200 mm by

342 mm, slice thickness = 4 mm. We used interpolation, with zero padding in the z-direction,

and up-interpolated from 4 to 2 mm.

Image post-processing

The acquired in-phase and opposite-phase images were reconstructed into separate water and

fat images by our previously developed inverse-gradient method [26]. The signal intensity of
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MR-images is not absolute. Hence, if images are acquired in a time series, the signal intensity

in the images can vary, even though all images are acquired using the same parameters. We

corrected for this variation by using voxels of pure adipose tissue as an internal reference

throughout the time series. [25] This was an important step in the quantification process.

To extract signal intensities (SIs) for the quantitative analysis, two clinical radiologists (BN,

ND; with more than ten years of experience in abdominal radiology) placed ROIs in the recon-

structed water-image time series, in the liver (N = 7), and spleen (N = 3). Liver ROIs were

placed in both the left and right liver lobes to avoid any large vessels or focal lesions, but not

strictly following the Couinaud segmental division. The sizes of ROIs were arbitrarily chosen

by the radiologists. However, the ROIs were adjusted to be equal in size and approximate posi-

tion throughout the time series. Landmarks in the images were used to correct for movement

of the liver between the acquisitions. Fig 5 shows an example of ROI placement.

Mean SIs in the ROIs were normalized and the relaxation rate (R1) was calculated as

described previously [46]. The induced change in the relaxation rate (ΔR1) was directly pro-

portional to gadoxetate concentrations [27].

For quality assurance, the image data were inspected visually for quality issues and potential

data exclusion. As the two radiologists independently placed ROIs in the images, they took

particular notice of cases of poor image quality (such as artifacts resulting from breathing or

Fig 5. Gadoxetate MRI time series of the liver. (A-G) Representative placement of seven regions of interest (yellow

polygons) within the liver, of which four (A-D) were placed in the right liver lobe and three (E-G) were placed in the left

liver lobe. This set shows an entire time series in a single patient, from before gadoxetate injection (A) to 30 min after

gadoxetate injection (G). The arterial phase (B) typically occurs 30 s after gadoxetate injection, and the portal-venous

phase (C) typically occurs 1 min after gadoxetate injection.

https://doi.org/10.1371/journal.pcbi.1007157.g005
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post-processing failure). Then, both radiologists reviewed these cases of potential poor quality

and reached a consensus about whether to exclude the images, to return the images for manual

image reconstruction, or to accept the images. After the radiologists were satisfied, the data

analyst continued to search for any significant outliers in the extracted time series. The radiol-

ogists were then instructed to review these latter outliers, but they were not told why each case

was to be reviewed. If they were still satisfied with the placement of ROIs and with the image

quality, nothing was corrected.

Estimation of the lower limit of data uncertainty

The lower limit of uncertainty in the extracted gadoxetate time series was estimated by calcu-

lating the average standard deviation in the normalized signal intensities (Eq 1, where S = SI

(t)/SI(t = 0)).

sS ¼ jSj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sSIðtÞ
SIðtÞ

� �2

þ
sSIðt ¼ 0Þ

SIðt ¼ 0Þ

� �2
s

ð1Þ

The uncertainty was then averaged over the entire study population; for this averaging,

each entry was in turn the mean of each patient’s liver and spleen ROIs. Fig 6 shows a histo-

gram of the estimate of the lower limit of uncertainty, and the fitted normal distribution had a

mean of 0.18. Unless the standard error of the mean across the spleen or liver ROIs exceeded

0.18, this lower limit value was used as the standard deviation in the following statistical test

for the mechanistic model goodness-of-fit.

Mathematical model and model parametrization

The whole-body model devised by Forsgren and co-workers [23] was used here to quantify the

liver function. Fig 1C shows a schematic diagram of the model, which has two parts: a dynamic

model and a signal model. Briefly, the dynamic model describes five separate fluxes of gadoxe-

tate: between the blood plasma and the extracellular extravascular space (EES; kdiff); elimina-

tion via the kidneys to urine (CLr); uptake into the hepatocytes (through the OATP1 family

transport proteins; kph); back-flux from the hepatocytes into the blood plasma (through the

transport protein MRP3; khp); and excretion from the hepatocytes into the bile (through the

transport protein MRP2; khb):

dChep

dt
¼ kphCPAlb � khpChep � khbChep; ð2Þ

dCp

dt
¼
ðkhpChep � kphCPAlbÞVlvh � CLrCPAlbþ ðkdiff Cees � kdiff CPAlbÞVees þ u

Vp
; ð3Þ

dCees

dt
¼ kdiff CPAlb � kdiff Cees; ð4Þ

where Chep, Cp, and Cees is the gadoxetate concentration in the hepatocytes, blood plasma, and

EES respectively. Vl, Vees, and Vp are the volumes of the liver, EES, and blood plasma respec-

tively (assumed to be 1.43, 14.77 and 2.57 L). Alb is the fraction of Gadoxetate not bound to

serum albumin (assumed to be 0.9), vh is the volume fraction of hepatocytes in the liver

(assumed to be 0.68), and u is the injection of gadoxetate. CLr is assumed to be 118 mL/min.

The signal model was used to predict ΔR1 in the gadoxetate MRI time series as a function of

the gadoxetate concentrations in the compartments. The model takes into account the
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parenchyma volume fractions as well as the in situ tissue-specific relaxivity properties of

gadoxetate [23]:

DR1;l ¼ xðChepvhr1;hep þ Cpvp;lr1;p þ Ceesvees;lr1;eesÞ; ð5Þ

DR1;s ¼ xðCpvp;sr1;p þ Ceesvees;sr1;eesÞ; ð6Þ

where ΔR1,l and ΔR1,s are the ΔR1 in the liver and spleen respectively, vp,l and vees,l are the vol-

ume fractions of plasma and EES in the liver (assumed to be 0.12 and 0.20), and vp,s and vees,s

are the fractions of plasma and EES (assumed to be 0.35 and 0.20) in the spleen. ξ is an arbi-

trary scaling parameter and r1,hep, r1,p, and r1,ees are the tissue-specific relaxivities in the hepa-

tocytes, blood plasma, and EES respectively (assumed to be 10.7, 7.3, and 6.9 mmol-1s-1).

The model was parametrized separately using the STS method and the NLME method,

described in Fig 1A and 1B. The STS parametrization was performed by minimizing the fol-

lowing costfunction, which follows a χ2-distribution:

V p̂ð Þ ¼
P ðŷiðp̂; tÞ � yiðtÞÞ

2

s2
iðtÞ

2 w2ðdf Þ; ð7Þ

where y and σ are the measurements and standard deviation of the measurements respectively,

ŷ is the predicted data as a function of time and the estimated model parameters (p̂), and the

index i indicates liver or spleen.

When using NLME, all the optimized parameters have two parts, a fixed effect and a ran-

dom effect. The fixed effect is the same across all patients and represents the typical parameter

value. The random effect describes how each individual deviate from the typical value and is

thus allowed to vary across the population, but is still constrained to a normal distribution:

pj ¼ yp þ Z
j
p ð8Þ

pj ¼ ype
Z
j
p ð9Þ

Fig 6. Estimation of the lower limit of data uncertainty. Histogram of the average uncertainty of the normalized

signal intensity in the liver and spleen regions of interest, with one entry per patient. The blue bell curve shows the

fitted normal distribution, which indicates a lower limit of uncertainty of 0.18.

https://doi.org/10.1371/journal.pcbi.1007157.g006
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where pj is a generic parameter for patient j, θp is the fixed effect for parameter p, and ηj
p is the

random effect for parameter p for patient j. If p is postulated to be normally distributed, Eq 8 is

used, while Eq 9 is used if p is lognormally distributed. More details of the STS parametrization

are described in [23] and the details of NLME in [24, 47].

Population distributions in the NLME model parametrization were defined as a normal dis-

tribution for the scale parameter (ξ) and lognormal distributions for the four rate parameters

(kdiff, kph, khp, and khb). The distributions were a priori parametrized from the results of param-

etrizing the model to healthy human patients, which has been described previously (Table 3 in

[23]), where the expectation values were ξ = 1.6, kdiff = 1.7 ms-1, kph = 4.7 ms-1, khp = 28 ms-1,

and khb = 38 ms-1. The a priori standard deviations were chosen such that the optimization

algorithm would not be unnecessarily limited (ξ = 1, kdiff = 0.1 ms-1, kph = 0.1 ms-1, khp = 0.01

ms-1, and khb = 0.01 ms-1).

The mechanistic model framework assumes that the compartments are well mixed contain-

ers (a fundamental property of ordinary differential equation models). In addition, there are

interfering effects from the bolus injection during the arterial and portal-venous phases.

Therefore, only data at the 3 min point and later after contrast injection were included in the

model parameterization.

Blood sampling and elemental analysis

Immediately following the MR examination, 3 mL venous blood (collected in a 3 mL BD

Vacutainer sterile hematology tube with K2-EDTA) was drawn from each patient for elemental

analysis of gadolinium content. Samples were transferred to 4 mL sterile low-temperature

freezer vials (VWR, Sweden) for freezing and storage at -80˚C. The frozen samples were sent

to an external laboratory (ALS Scandinavia AB, Luleå, Sweden) for elemental analysis by

ICP-SFMS: 0.20 mL from each thawed blood sample was mixed with 1.00 mL ‘super pure’

HNO3 (pure with respect to traces of metal) and digested in a 600 W microwave oven operat-

ing at 75% power for 30 min. Each of these mixtures was then diluted up to 10.00 mL with

MilliQ ultrapure water for ICP-SFMS analysis, which had a detection limit for gadolinium of

0.05 μg/L.

Liver biopsy and histopathology

Immediately after completion of the MR examination and blood sampling, two ultrasonogra-

phically guided liver biopsy procedures were performed, on an outpatient basis. The biopsy

samples were obtained percutaneously with a 1.6 mm BioPince needle (BioPince Full Core

Biopsy Instrument, Argon Medical Devices, Plano, TX, USA) in either the left or right liver

lobe depending on which location offered the best combination of a successful biopsy and

maximum patient safety. A histopathologist graded and classified one of the biopsy samples

according to the Batts and Ludwig system [48], through which fibrosis was staged as no fibrosis

(F0), portal and/or perisinusoidal fibrosis (F1), periportal and perisinusoidal fibrosis (F2),

bridging fibrosis (F3), and probable or obvious cirrhosis (F4). The biopsies were also graded

for inflammation. All biopsy samples were graded by the same histopathologist.

The second biopsy sample of each pair was weighed and directly frozen at -80˚C. The fro-

zen samples were later freeze dried, and the dry weight was measured prior to submission to

our external analysis partner (ALS Scandinavia AB) for elemental analysis. The dried samples

were digested by adding 2.50 mL ‘super pure’ HNO3 and 0.25 mL H2O2 followed by a 30 min

treatment at 170˚C in a microwave oven. The samples were then diluted to 5.00 mL with

MilliQ ultrapure water, for ICP-SFMS analysis.
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Statistical analysis

The goodness-of-fit of the model to the data was investigated on a subject basis using a χ2 test

(Eq 7; α = 0.05) with degrees of freedom equal to the number of observations in the gadoxe-

tate-enhanced MRI time series. Group differences were investigated using an unpaired two-

tailed Mann–Whitney U-test (α = 0.05). A paired two-tailed Mann–Whitney U-test was used

when comparing two model parametrization method estimates of model parameters (α =

0.05). Linear regression and Lin’s concordance correlation were used to investigate correlation

between variables that measure or describe similar entities. For correlation between non-simi-

lar variables, a Pearson correlation coefficient was calculated. An ANOVA with Tukey’s post-

test was used to investigate sources of variation and biomarker performance between fibrosis

stages.

Supporting information

S1 File. Matlab data. The file contains the time series for each patient together with the fibro-

sis stage, saved in .mat format.
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