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Abstract

RMEL3 is a recently identified lncRNA associated with BRAFV600E mutation and melanoma 

cell survival. Here, we demonstrate strong and moderate RMEL3 upregulation in BRAF and 

NRAS mutant melanoma cells, respectively, compared to melanocytes. High expression is also 

more frequent in cutaneous than in acral/mucosal melanomas, and analysis of an ICGC melanoma 

dataset showed that mutations in RMEL3 locus are preponderantly C > T substitutions at 

dipyrimidine sites including CC > TT, typical of UV signature. RMEL3 mutation does not 

correlate with RMEL3 levels, but does with poor patient survival, in TCGA melanoma dataset. 

Accordingly, RMEL3 lncRNA levels were significantly reduced in BRAFV600E melanoma cells 

upon treatment with BRAF or MEK inhibitors, supporting the notion that BRAFMEK- ERK 

pathway plays a role to activate RMEL3 gene transcription. RMEL3 overexpression, in 

immortalized fibroblasts and melanoma cells, increased proliferation and survival under serum 

starvation, clonogenic ability, and xenografted melanoma tumor growth. Although future studies 

will be needed to elucidate the mechanistic activities of RMEL3, our data demonstrate that its 

overexpression bypasses the need of mitogen activation to sustain proliferation/survival of non-

transformed cells and suggest an oncogenic role for RMEL3.
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Introduction

Melanoma is a highly mutated and aggressive type of cancer originated from the malignant 

transformation of melanocytes. Most commonly, melanoma arises from skin melanocytes 

(acral and non-acral cutaneous melanoma), but it can occasionally originate from 

melanocytes present in other parts of the body, such as meninges, cochlea, the mucosae 

(mucosal melanoma), and the uvea of the eye (uveal melanoma). Acral melanoma, a 

relatively rare subtype, arises from non-hair-bearing skin locations, such as the palms of the 

hands, the soles of the feet, or the nail bed (subungual areas). The non-acral cutaneous 

melanoma comprises three major subtypes, superficial spreading melanoma, which is the 

most prevalent form and usually occurs in the trunk; nodular melanoma, the second most 

prevalent and highly invasive form; and lentigo maligna melanoma, associated with long-

term sun-exposed skin (Scolyer, Long, & Thompson, 2011). Most non-acral cutaneous 

melanoma are considered sporadic in nature, and recente genomewide mutational studies 

show that they are associated with the ultraviolet light (UV) signature, implicating sunlight 

exposure as a causal factor (Hayward et al., 2017).

Whole exome sequencing (The Cancer Genome Atlas Network, 2015) led to the genomic 

classification of cutaneous melanoma into four subclasses according to cancer driver 

mutations: mutante BRAF (~52%), mutant RAS (~30%); mutant NF-1 (~14%); and triple 

wild-type, those with no mutations in any of the three genes. All three genes encode 

components of the classical mitogen-activated protein kinase (MAPK/ERK) cascade, 

encompassing RASRAF-MEK-ERK, the major pathway that transmits extracellular mitogen 

signals downstream from activated tyrosine kinase receptors to elicit diverse cellular 

responses, such as growth, motility, and survival. While BRAF and RAS are oncogenes, 

NF-1 is a tumor suppressor gene that codes for a RAS-GAP, responsible for the inactivation 

of RAS. Therefore, mutations in BRAF, RAS, and NF-1 genes seem to lead to equivalent 

constitutive activation of the MAPK/ERK pathway, and for this reason, or perhaps due to 

deleterious effects of coexisting mutations, they almost always are found to be mutually 

exclusive. Activating mutations of genes implicated in the PI3K pathway are also highly 

frequent in melanoma, and activation of PI3K-AKT mTOR signaling pathway cooperates 

with the MAPK pathway to set the scenario of sustained growth and death resistance in 

melanoma. Driver mutations coexist with activating mutations in the TERT gene promoter or 

in other genes implicated in telomere maintenance required for replicative immortality 

(Hayward et al., 2017).

Inhibitors of the mutated BRAF kinase (vemurafenib and dabrafenib), as well as a 

combination of BRAF inhibitor with MEK inhibitor (trametinib) and, more recently, 

immunotherapy are in clinical use to treat melanoma with unprecedented success (for 

review, Luke, Flaherty, Ribas, & Long, 2017; Melino et al., 2016). However, therapeutic 

resistance and side effects remain major challenge, and not all patients can benefit from 

these treatments.

The discovery of new genes with tissue-specific expression and associated with genetic 

events of BRAF-activating mutations may provide new insights into the field and 
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opportunities for novel therapeutic approaches. Long non-coding RNAs (lncRNAs) have 

recently emerged as numerous and diversified functional RNAs with tissue, developmental 

stage and disease-restricted expression. Genomewide association studies have recently 

mapped a large proportion of disease- or trait-associated single nucleotide polymorphisms 

outside the protein coding regions of the genome, often in or near genes transcribed into 

lncRNAs (Bartonicek et al., 2017; Gong, Liu, Zhang, Miao, & Guo, 2015). There are bona 

fide examples of lncRNA linked to one or multiple hallmarks of cancer in a variety of 

cancers, including melanoma, in which many emerge as regulators of the MAPK and PI3K 

pathways (for review, Huang et al., 2018; Leucci, Coe, Marine, & Vance, 2016; Schmitt & 

Chang, 2016; Tasharrofi & Ghafouri-Fard, 2018).

RMEL3 lncRNA was first identified in a previous study of our group as a melanoma-

restricted gene in a data mining analysis of ESTs exclusively originated from melanoma 

sources (Sousa et al., 2010). RMEL3 is not expressed in melanocytes, but it is widely 

expressed in nevi, primary, and metastatic melanoma. It was subsequently linked to 

BRAFV600E mutation, based on expression analysis in a large set of melanoma cell lines 

and the TCGA melanoma dataset (The Cancer Genome Atlas Network, 2015) then available 

(Goedert et al., 2016). The later work also demonstrates that RMEL3 knockdown leads to 

alterations in the expression levels of mRNA and proteins of many components of the 

MAPK and PI3K pathways. This result was consistent with the observed loss of clonogenic 

ability and increased arrest in the G1 phase of the cell cycle in a set of RMEL3-knockdown 

cells, with stronger effects in cells carrying BRAFV600E instead of wildtype BRAF. Here, 

we extended the previous studies by analyzing RMEL3 expression in a new panel of 

melanoma cell lines, melanocytes, and melanoma tissues, as well as examining the effects of 

BRAF and MEK inhibition on RMEL3 expression. We further demonstrated that enforced 

expression of RMEL3 in melanoma cells (Skmel-103, VM10), as well as in the 

immortalized murine NIH3T3 fibroblasts, promotes proliferation, clonogenic growth, cell 

survival, and tumor growth. Taken together, our data reinforce previous connections of 

RMEL3 to the MAPK pathway and demonstrate that this lncRNA plays active roles in 

sustaining cell survival and tumor growth.

Materials and Methods

Cell culture

Human melanoma cell lines WM278 and WM1617 were kindly provided by Dr. Meenhard 

Herlyn (Wistar Institute, Philadelphia, PA), and we did an HLA typing for the cells that we 

carry in our laboratory and confirmed that they constitute a pair of cell lines originated from 

the same patient, as originally described. The cells were maintained in TU medium with 2% 

(v/v) fetal bovine serum (FBS). All the following cell lines were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% FBS, 50 U/mL penicillin, and 

50 mg/ml streptomycin. The melanoma cell lines (WM1366, Skmel-147, Skmel-103, 

Skmel-19, Skmel-28, and UACC-62) were kindly provided by Dr. Silvya Stuchi Maria- 

Engler (University of São Paulo) and Dr. Marisol Soengas (CNIO, Madrid, Spain). The 

A375 melanoma cell line was provided by Dr. Wilson Araujo da Silva Jr. (University of São 

Paulo), and NIH3T3 cell line was provided by Dr. Gregg G. Gundersen (Columbia 
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University, New York). The melanoma cell lines VM10, WM2029, MeWo, Mel-Juso, 

LB373, WM451LU, IPC298, COLO792, Skmel-90, 501mel, Sk-mel-119, Sk-mel-2, 

MDAMB435S, WM1716, COLO829, A101D, C32, G361, MALME3M, Sk-mel-5, 

Skmel-28 and M14, Sk-mel30, LOX-IMVI, WM115, WM88, UACC62 e UACC257 were 

provided by Dr. David E Fisher’s laboratory (MGH, Harvard Medical School). 501mel cells 

were the generous gift of Dr. Ruth Halaban (Yale University). Primary melanocytes were 

cultured in TIVA medium (F-10 with 10% FBS, 50 ng/ml TPA, 225 μM IBMX, 1 μM 

Na3VO4, and 1 mM dbcAMP; all from Sigma-Aldrich, St. Louis, MO). All cultures were 

kept at 37°C under a 5% CO2 humidified atmosphere.

Human melanoma tissue samples

Melanoma samples were obtained from 38 patients at the Barretos Cancer Hospital. Tumor 

samples were frozen in liquid nitrogen and kept in −80°C freezer until RNA extraction. 

Tissues samples are stored in the Barretos Cancer Hospital Biobank, which is approved by 

the Brazilian National Committee on Ethics in Research— CONEP. This study and the 

research protocols were approved by the Ethics Committee of the Barretos Cancer Hospital 

(HCB#548/2011).

RNA isolation

Total RNA was extracted using TRIzol® (Invitrogen, Carlsbad, CA). It was then treated with 

DNase I (DNA-free kit, Ambion, Austin, TX) and converted into cDNA using the High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). All 

protocols were performed according to manufacturer’s instructions.

Expression analysis by RT-qPCR

For the reverse transcription reaction, 1 μg of DNase-treated total RNA was diluted to 16μL 

of DEPC-treated H2O and added with 4μL do Master Mix (of the High-Capacity RNA-to-

cDNA Master Mix kit from Applied Biosystems). The reaction was incubated at 25°C for 5 

min, 42°C for 30 min, and the reverse transcriptase was inactivated by heating at 85°C for 5 

min. Equal amounts of each cDNA were assayed by qPCR, with specific primers, whose 

sequences are specified below, using the SYBR Green® PCR Power Mix 2x (Applied 

Biosystems, Foster City, CA), in an ABI PRISM 7,500 Sequence Detection System (Applied 

Biosystems, Foster City, CA).

RMEL3 (f) 5’-ATGTGCTCCAAGAAAACCAGAG-3’ and (r), 5’-

CTTTGTCACAGGAATACCCAAC-3’;

FOXD3 (f) 5’-TTGACGAAGCAGTCGTTGAG-3’ and (r) 5’-

TCTGCGAGTTCATCAGCAAC-3’;

TBP (f) 5’- AGCTGTGATGTGAAGTTTCC-3’ and (r) 5’ 

TCTGGGTTTGATCATTCTGTAG-3’.

Cycle threshold (Ct) was converted to relative expression according to the 2-ΔΔCT method, 

using TBP (TATA-box binding protein) as endogenous control.
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Pharmacological treatment and viability assay

PLX4032/vemurafenib (Sigma-Aldrich, St. Louis, MO) and PD98059 (Sigma-Aldrich, St. 

Louis, MO) were dissolved in DMSO to 10 mM stock solution and stored in aliquots at 

−20°C. Melanoma cell lines harboring BRAFV600E mutation and BRAF wild-type cell 

lines were seeded in 24-well plate at a density of 3×104 cells/well and treated with 1 or 10 

μM PLX4032, 25 μM PD98059, or DMSO as vehicle control. Treatment with vemurafenib 

was carried for 6 or 48 hr and with PD98059 for 48 hr at 37°C under a 5% CO2 atmosphere. 

For viability assays, both adherent and floating cells were harvested, washed with PBS, and 

resuspended in PBS containing 10 μg/mL of propidium iodide. These cells were counted in a 

flow cytometer (Guava® easyCyte™ 8HT Flow Cytometry System—Millipore).

Western blot analysis

Cells were homogenized in a sample buffer containing 0.1% SDS and subjected to SDS-

PAGE. Proteins were blotted onto a nitrocellulose membrane (Hybon-ECL; Amersham 

Biosciences, Arlington, IL). Membranes were incubated with diluted primary antibody in 

TBS-Tween-20 0.05% + BSA 2% overnight at 4°C. Subsequently, the membrane was 

incubated with corresponding secondary antibody coupled with horseradish peroxidase 

(Nichirei Co, Tokyo, Japan). Peroxidase reaction products were visualized using the ECL 

Plus detection system (Amersham Biosciences). Antibodies were used according to the 

manufacturer-recommended dilution. Primary antibodies anti-phosphorylated ERK1/2 and 

anti-total ERK1/2 were purchased from Cell Signaling Technology, Beverly, MA, USA.

RMEL3 cDNA cloning, transduction, and expression

Total RNA from WM278 melanoma cells was extracted using TRIzol (Invitrogen, Carlsbad, 

CA) and reverse transcribed using High-Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, Foster City, CA). Then, 1 μg cDNA was used as template for PCR amplification 

of RMEL3 cDNA using a forward primer, 5’- GGATCCTGAAGGAAGCAACTGGGGA-3’, 

carrying a BamHI site in the 5’-end, and a reverse primer, 5’-

GAATTCCCCGAGTGTGGGATCA-3’, carrying an EcoRI site in the 5’-end. Primers were 

designed based on the EST sequence (BQ420825) deposited in the GenBank database. PCRs 

were done using Elongase Enzyme Mix (Invitrogen, Carlsbad, CA), and the protocol was 

performed according to manufacturer’s instruction (PCR cycling conditions: 1: 94°C-3 min, 

2: 94°C-45 seg, 3: 56°C-45 seg, 4: 72°C-1 min, 72°C-7 min, steps 2–4 40 cycles). The PCR 

produced a DNA fragment of expected size (777 bp), which was purified and cloned into the 

TOPO plasmid and sequenced. After confirmation of the full-length sequence (Figure S3), 

RMEL3 insert released with BamHI and EcoRI was subcloned into the same restriction sites 

of pLVX-Tight PURO plasmid, downstream of the human cytomegalovirus immediate early 

promoter—CMV IE promoter and a Tet-On regulatory region (Clontech Laboratories, Inc). 

Purified plasmidial DNA was transfected into HEK293T cells with the lentiviral expression 

packaging system (Lenti-X Tet-on Advanced Inducible Expression—Clontech) according to 

the manufacturer’s instruction. Lentiviral particles collected from HEK293T culture media 

were used to transduce Skmel103 melanoma cells and NIH3T3 murine fibroblast. To 

generate stably transduced cells expressing RMEL3 transgene, transduced cells were 

selected with 1 μg/mL puromycin for 3 days. All control (non-transduced cells died under 
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this concentration of Puromycin during this period). RMEL3 expression was induced with 1 

μg/mL doxycycline supplemented in the culture media. For cloning into pLJM1 lentiviral 

vector (Addgene-19319 plasmid), under constitutive control of the CMV promoter, RMEL3 

sequence was amplified from pLVX-RMEL3 as template using a pair of primers with 

sequences identical to the ones described above, but with different restriction sites (NheI and 

EcoRI). The PCR product was digested, purified, and cloned into the NheI and EcoRI 

restriction sites in the pLJM1 vector. Lentiviral particles were obtained by transfecting 

packaging cells (HEK293T) with the packaging plasmids (pMD2.G and pSPAX2) using PEI 

MAX (Polysciences, Inc.) method. Lentiviral particles collected from HEK293T culture 

media were used to transduce VM10 melanoma cell line. Infected cells were selected with 1 

μg/mL puromycin for 3 days.

Proliferation assay

Cells were seeded in 96-well culture dishes at a density of 5.000 cells/well, for Skmel103 

and VM10, and 500 cells/well for NIH3T3. The melanoma cell lines Skmel103 and VM10 

were cultured in FBSfree DMEM and DMEM Complete Medium, respectively, whereas 

NIH3T3 cells were cultured in 0.5% FBS DMEM. Culture medium was removed, and cells 

were fixed with 70% ethanol, at room temperature for 10 min. Ethanol was removed, and 

crystal violet (0.5% in water) was added and incubated for 30 min at room temperature. The 

fixed cells were washed five times with water, followed by addition of 10% acetic acid, and 

incubated for 30 min at room temperature. Absorbance at 540 nm was measured using an 

ELISA microplate reader.

Clonogenic assay

Cells overexpressing RMEL3 and paired controls were plated in 60-mm tissue culture dishes 

(600 cells/dish) in DMEM supplemented with 10% FBS. Cells were incubated at 37°C, in 

5% CO2 humidified atmosphere, for 9 days (NIH3T3) and 14 days (Skmel103). After the 

specified period, cells were fixed with 4% paraformaldehyde and stained with 0.5% crystal 

violet for visualization of colonies. The plates were photographed, and the colonies were 

quantified to determine the clonogenic ability.

Apoptosis assay

NIH3T3 cells were seeded in 24-well plates at 2 × 104 cells/well in DMEM supplemented 

with 10% FBS. After 24 hr, the medium was changed to FBS-free medium for 48 hr and 

then to 0.5% FBS medium for additional 48 hr. For detection of apoptotic and unviable

cells, we used the annexin-V, Alexa Fluor® 488 conjugate (Life Technologies), and 

Propidium Iodide (Life Technologies). This protocol was performed according to 

manufacturer’s instructions.

Tumor xenograft assay

SKMEL103 melanoma cells stably transduced with pLVX-TP (control) or pLVX-RMEL3 

were cultured in complete media supplemented with 1 μg/ml doxycycline to confluence. Ten 

8-week-old male nude mice were injected, subcutaneously, in the right lateral flank, with 

106 pLVXTP- or pLVX-RMEL3-transduced cells. Mice were maintained with diet ad 
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libitum and drinking water was supplemented with 1 mg/ml of doxycycline and changed 

every 2 days. Animals were monitored daily. Tumor size was measured on days 8, 11, 14, 

17, 21, and 24 after injections, and following this period the animals were euthanized. 

Tumor volumes were calculated using the formula V=LxW2×0.5, where W and L are, 

respectively, tumor width and length. All animal protocols and experiments were performed 

in accordance with the National Board for the Control of Animal Experimentation in Brazil 

(CONCEA) and were approved by the Committee for Ethics in the Use of Animals—

CEUAFMRP- USP, approval ID 177/2016.

Somatic mutation analyses

Analysis of somatic mutation in the RMEL3 locus was performed using two data sources: 

(1) The Cancer Genome Atlas (TCGA) data portal and (2) The International Cancer Genome 

Consortium (ICGC) data portal. We analyzed the RMEL3 locus for the presence of mutation 

in 450 melanomas of the TCGA dataset and 129 of the ICGC.

Statistical analyses—All statistical analyses were performed using GraphPad Prism 5. 

All numerical data were expressed as the mean ±standard deviation.

RMEL3 high levels are associated with BRAF and NRAS mutations in melanoma cell lines 
and to cutaneous melanoma as opposed to acral and mucosal

To assess the endogenous RMEL3 expression, we analyzed a panel of 36 human melanoma 

cell lines and 2 independent cultures of primary human melanocytes, by RT-qPCR (Figure 

1a). RMEL3 showed low expression levels in two melanocyte cultures and in 9/36 (25%) of 

melanoma cell lines. Median levels were observed in 8/36 (22%) and high (above 40-fold 

higher than melanocytes) in 19/36 (53%) of cell lines. Among the lines with high expression 

15/19 (~79%) harbor BRAFV600E and 4/19 (~21%) NRASQ61L. Of the lines harboring 

BRAFV600E 15/24 (62,5%) showed high and 9/24 (37,5%) median/low RMEL3 

expression. Low levels were also observed in triple wild-type cells (Sk-mel147 and Mewo) 

and in one NF1 mutant (COLO792). These results extend previous studies by Sousa et al. 

(2010), and Goedert et al. (2016) and are in agreement with them. Analysis of RMEL3 

expression across melanoma specimens from 38 patients, who were attended in the Barretos 

Cancer Hospital (Brazil), showed a significant association of high expression of RMEL3 to 

extensive superficial or nodular cutaneous (16 of 31) in contrast to acral and mucosal (0 of 

7) melanomas (Figure 1b; p = 0.014—Fisher exact test). In order to clarify whether the 

RMEL3 locus (CTD-2023N9.1) could comprise a mutation hotspot associated with its 

upregulation in non-acral cutaneous melanoma, we searched for mutations in a region 

encompassing 20-kb upstream (including enhancer/ promoter regions) of the mapped start 

site of RMEL3, the entire body of the gene, and 20-kb downstream of the gene, both in a 

TCGA dataset of 450 melanomas (SKCM) and in an ICGC dataset of 129 melanomas 

(MELA-AU). We found that 108 of 450 melanomas from TCGA presented mutation in the 

body of the gene, including ACTBL2 which maps within the intron 1 of RMEL3 gene, with 

32 mutated melanomas (Table S1). In the ICGC dataset, we found at least one mutation in 

129 out of 129 melanomas, totaling 595 mutations, of which 28 mutations mapped upstream 

and 18 mutations downstream of the gene and the remaining majority of them were in the 

intronic regions, including ACTBL2 with 50 mutations (Table S2). Except for 16 insertions 
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or deletions in ICGC and 4 in TCGA, all the others were base substitutions. A summary of 

the number of different types of mutations detected in the TCGA and ICGC databanks is 

presented in Table S3. We understand that the reduced number of mutations observed in the 

TCGA dataset compared to ICGC can be explained due to methodological differences, since 

TCGA was based on whole exome sequencing (WES) while ICGC on whole genome 

sequencing (WGS). This difference also explains the fact that we did not find mutations 

upstream nor downstream of the gene in the TCGA samples. Quantification of the base 

substitution mutations in the ICGC data showed high frequency (>70%) of C > T 

substitutions with occurrence of ~3% CC > TT double substitution, suggesting that the 

majority of all base substitutions in RMEL3 gene are characteristic of the UV signature 

mutations (Figure 1c). Analysis of the genomic context to define the neighbor nucleotides 

and graphical representation (as in Alexandrov et al., 2013) generated the approximate 

pattern of the UV mutational signature, as in COSMIC signature 7 (FigureS1). Nevertheless, 

none of the mutations upstream nor downstream the gene were recurrent and only three of 

the intronic mutations occurred twice; thus, they do not appear to characterize a hotspot. 

Then, we correlated the RMEL3 mutations (excluding the ACTBL2 mutations) found in 

TCGA samples with the RMEL3 expression levels from RNAseq data available in the 

TCGA, and as shown in Figure 1d, there was no statistically significant correlation between 

mutation and expression. Therefore, the occurrence of these mutations does not explain the 

differential expression observed in Figure 1a,b. Finally, using the TCGA dataset, we found 

that RMEL3 mutations are associated with poor patient survival rates (Figure 1e) (p < 0.05).

Acute and prolonged MAPK inhibition decreases RMEL3 RNA levels in melanoma cells

We used specific drugs against oncogenic BRAF (vemurafenib/PLX4032) and MEK1 

(PD98059) in order to inhibit the MAPK pathway in a panel of five melanoma cell lines: 4 

harboring BRAFV600E mutation (WM1617, A375, Skmel19, and UACC-62) and one 

BRAF-wt/NRAS-mutant (WM1366). As shown in Figure 2 (A–E), vemurafenib treatments 

were done in two conditions: low drug concentration (1.0 μM) for short exposure time (6 

hr); high drug concentration (10 μM) for prolonged exposure (48 hr). RMEL3 RNA levels 

were reduced by approximately 50% in A375 and WM1617 BRAFV600E mutant cells after 

short-term, low-concentration treatment (Figure 2a) and 90% in Skmel19 and UACC62 after 

prolonged drug exposure (Figure 2b). Paradoxically, the NRAS mutant WM1366 cells 

showed an increase in RMEL3 expression following short-term treatment (Figure 2a). 

FOXD3 (Forkhead Box D3), which was previously shown to be upregulated after mutant 

BRAF inhibition (Abel & Aplin, 2010), was used here as positive control and confirmed to 

exhibit the expected expression pattern (Figure 2c,d). Analysis of total ERK and 

phosphorylated ERK (Figure 2e) demonstrates that both drug treatments effectively 

decreased pERK levels in the BRAFV600E mutant cells, whereas in WM1366, treatment 

with BRAF inhibitor increased pERK levels in the acute treatment, consistent with 

previously described paradoxical activation of ERK. Next, we showed that treatment of 

UACC62 cells with the MEK inhibitor PD98059 (25 μM for 48 hr) reduced RMEL3 RNA 

levels by 77%, a condition in which pERK levels were also efficiently decreased (Figure 2f). 

As expected, treatments for 48 hr led to growth arrest, but did not cause a significant 

alteration in cell death rates (Figure S2).
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RMEL3 expression in the NIH3T3 immortalized murine fibroblasts protects against serum 
withdrawal-induced growth arrest/apoptosis and promotes clonogenic ability

NIH3T3 murine fibroblasts constitute a well-established model in which the MAPK 

pathway is activated by serum stimulation to maintain cell cycle progression and survival 

(Meloche & Pouysségur, 2007). Thus, we used the NIH3T3 cells to investigate the potential 

of RMEL3 to mediate cell proliferation and survival upon serum starvation. In order to 

overexpress exogenous RMEL3, we cloned the human RMEL3 cDNA, as represented in 

Figure 3a, into lentiviral expression vectors. The full insert is 777 bp in length, and the 

sequence (Figure S3) was deposited in the GenBank under the accession number 

MH370349. Alignments of the cloned sequence with the human genomic DNA 

(GRCh38.p12) match four exons in the assembly NC_000005.10 (chr5: 57395100–

57533345) with one gap representing a single A deletion in the position 762 of the insert, 

corresponding to 802 of the transcript (chromosome position 57533328 in the same 

assembly, near the end of exon 4). The fragment lacks 40 bp of the 5’ region of exon 1 and 

79 bp of the 3’ end of exon 4. Primers matching the very end of the sequence were not 

efficient for amplification, what explains the option to clone a partial sequence. The full-

length RMEL3 sequence is represented by CTD-2023N9.1 (LNC-GPBP1-1:1), which 

contains 897 bp. We achieved significant levels of RMEL3 RNA expression, in comparison 

with cells harboring the empty vector (below cycle threshold), upon induction with 1 μg/mL 

doxycycline (Figure 3b). Serum-starved NIH3T3 cells are known to exit the cell cycle and 

become quiescent within 48 hr, and present high death rates if serum deprivation is 

prolonged. However, RMEL3-overexpressing NIH3T3 cells were able to continually 

undergo proliferation upon serum starvation (0.5% FBS), for at least 5 days, while control 

cells stopped proliferation and showed high rates of death after 3 days of starvation (Figure 

3c). We then evaluated the effect of RMEL3 overexpression on cell survival under serum 

starvation. To this end, cells were cultured in serum-free medium for 48 hr, and then, the 

medium was supplemented with 0.5% FBS, for a further 48-hr period, after which the cells 

were assayed for apoptosis (Figure 3d). By the end of this regimen, the majority (~97%) of 

control cells were in early or late stages of apoptotic cell death as opposed to ~65% of 

RMEL3-overexpressing cells (Figure 3d). Also, RMEL3-overexpressing NIH3T3 cells 

gained enhanced capacity of clonogenic growth as compared to control (Figure 3e), 

increasing both colony number and colony size.

Overexpression of RMEL3 enhances proliferation, clonogenic ability, and tumorigenesis of 
melanoma cells

For stable expression of RMEL3 in melanoma cells, we chose VM10 line, one of the 

BRAFV600E mutant cells with the lowest RMEL3 expression levels (Figure 1a). Cells were 

transduced with lentiviral particles carrying either the construct pLJM1-RMEL3 or pLJM1-

EGFP as control. The RT-qPCR data showed a gain of 3.5-fold in RMEL3 expression 

(Figure 4a). Proliferation assays with stably transduced cells showed a modest but 

significant increase in cell proliferation in VM10 pLJM1-RMEL3 cells as compared to 

control (Figure 4b). To further explore RMEL3 effects on melanoma cell growth and 

viability, we used the Tet-On inducible system. We chose SKMel103, which is a BRAF 

wild-type/NRAS mutant cell line with moderate to low expression levels of RMEL3. After 

treatment with 1 μg/mL doxycycline, cells stably transduced with pLVX-RMEL3 showed 
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~250-fold increase in RMEL3 RNA expression relative to pLVX-TP empty vector (Figure 

5a). Variable levels of leaky expression were also observed in non-induced cultures; 

therefore, we chose to perform the functional analysis under doxycycline treatment only. 

Proliferation rates upon serum starvation were measurably higher in pLVX-RMEL3-

transduced cells compared to control (Figure 5b), as well as the colony formation capacity, 

analyzed by clonogenic assays in DMEM Complete Medium (Figure 5c). To investigate the 

effect of RMEL3 overexpression in vivo, we injected nude mice on the right flank with 

pLVX-RMEL3-transduced SKMel103 cells and on the left flank with pLVX-TP-transduced 

control cells. Measurements of tumor volume showed that both RMEL3-overexpressing 

cells and control cells generated tumors that were comparable in size until about two weeks 

after injection. However, after the initial time period, tumors of the RMEL3-overexpressing 

cells grew more rapidly, reaching sizes significantly larger than the controls in day 21 

(Figure 5d).

Discussion

Previous work from our laboratory has shown that RMEL3 lncRNA is highly enriched in 

melanoma, particularly in tumors harboring the oncogenic BRAFV600E (Goedert et al., 

2016; Sousa et al., 2010). These studies have provided first evidence of the functional 

relevance of this lncRNA in melanoma owning to demonstration of its restricted expression 

pattern and the fact that its knockdown causes cell cycle arrest and dramatic decay of 

melanoma cell replicative survival, especially in BRAFV600E mutant cells, while treatment 

with the same siRNA preserves viability of cells that do not express detectable amounts of 

RMEL3. These effects were consistent with many alterations, in the RMEL3-silenced cells, 

of central regulators of the cell cycle and apoptosis, as well as signaling transduction 

components of the MAPK and PI3K pathways (Goedert et al., 2016). Here, we add evidence 

that high RMEL3 expression is more often associated with extensive superficial/nodular 

cutaneous melanoma than mucosal and acral melanoma. Recently, acral and mucosal 

melanomas were shown not to display the UV signature mutational burden observed in 

cutaneous melanoma (Hayward et al, 2017). This and wealth of other evidence associating 

high content of UV signature mutations with cutaneous melanoma raised the possibility that 

the RMEL3 gene could be activated in the process of melanomagenesis due to the 

occurrence of a mutation hotspot, caused by UV exposure, in the promoter region of the 

gene itself. Analysis of TCGA and ICGC melanoma datasets, in fact, revealed a high content 

of UV signature mutations in the RMEL3 gene, however, lacking recurrent mutations that 

would characterize a hotspot. Also, RMEL3 mutation, in TCGA dataset, does not correlate 

with RMEL3 expression levels. Interestingly, however, RMEL3 mutation does correlate with 

poor patient survival raising the possibility that it could play a function as driver of 

tumorigenesis. Since we did not have access to expression data and survival information 

from ICGC, future studies should be pursued to answer whether mutations in the promoter 

region or additional mutations along the length of RMEL3 gene could influence its 

expression/function. We assume that, since mutation recurrence in the gene is rare, it is more 

likely that the association between RMEL3 mutation and poor patient survival rather than 

indicating a role of RMEL3 mutation as causative factor of tumorigenesis could just reflect 

an overall tumor mutational burden.
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The lack of a mutation hotspot and of a correlation between mutation and expression led us 

to conclude that activation of the RMEL3 gene in non-acral cutaneous melanoma is more 

likely to result from the MAPK/ERK activation that underlies the pathogenesis of this 

disease. This is consistent with previous evidence that nearly 90% of cutaneous melanomas 

in contrast to 56% of acral and mucosal melanomas carry mutation in one of the three genes, 

BRAF, NRAS, or NF1 (Hayward et al, 2017). Also, because RMEL3 expression in BRAF 

mutant melanoma cell lines clearly reverses to the levels observed in melanocytes upon 

treatments with BRAF or MEK inhibitors, we favor the hypothesis that an active status of 

the MAPK/ERK pathway is required for RMEL3 activation in the context of 

melanomagenesis. Moreover, the RMEL3 upregulation observed upon vemurafenib-induced 

paradoxical activation of ERK, in NRASQ61R mutant WM1366 cells, reinforces the notion 

that RMEL3 responds to ERK pathway activation and might be involved in the development 

of sporadic tumors or in the relapse of BRAFi-resistant melanoma (Nazarian et al., 2010). 

There is precedent of lncRNAs with therapeutic potential in melanoma (Joung et al., 2017; 

Leucci, Vemdramin, et al., 2016).

The activation of RMEL3 expression observed here in response to the status of the BRAF 

MEK-ERK pathway activity raises the question of how to explain the highly restricted 

expression observed for RMEL3 in contrast to the well-known ubiquitous and canonical 

roles of the MAPK pathway. Our data suggest a dependence of the degree of activation of 

the ERK pathway and RMEL3 expression. We observed that acute exposure to a low 

concentration of vemurafenib decreased RMEL3 levels by about 50%, while more intense/

prolonged inhibition was sufficient to bring RMEL3 levels in BRAFV600E cells to as low as 

the ones detected in melanocytes. Although it is beyond the scope of this work to clarify the 

mechanisms of RMEL3 transcriptional regulation, we discuss some evidence from 

ENCODE (Dunham et al., 2012) that can be explored in future studies. The RMEL3 gene 

extends through a genomic region of 138,365 bp in chromosome 5p11.2 associated with 

remarkable features of enhancer elements. Genomewide studies of transcription factor (TF) 

occupancy and histone modifications show evidence of chromatin accessibility typical of a 

primed enhancer (DNase I sensitivity, histone H3K27Ac, and H3K4me1) in a region 11- to 

13-kb upstream of the presumed transcription start site of the gene (RMEL3/

CTD-2023N9.1) in several cell lines used by ENCODE, such as K562, HUVEC, NT2-D1, 

and others. This region was shown to be occupied by POL2A and an array of ERK-regulated 

TFs, such as ELK, FOS, JUN, ATF, MYC, STATs, GATA, TAL1, TEAD4, NR2F2, and 

CTCF. Also, high score binding was observed for at least two important co-repressors, 

RCOR1 and TCF7L2/TCF4. RCOR1 acts as a co-repressor of REST, whose stability is 

promoted by ERK inhibition (Nesti, Corson, McCleskey, Oyer, & Mandel, 2014). ERK 

pathway was shown to cooperate for activation of Wnt/β-catenin signaling pathway in colon 

cancer, leading to activation of TCF7L2-repressed genes (Lemieux, Cagnol, Beaudry, 

Carrier, & Rivard, 2015). Therefore, one of the above mechanisms could mediate the 

transcriptional regulation of RMEL3 downstream of ERK in melanoma. Notably, among the 

TFs occupying the RMEL3 locus, some are canonical factors for initiation of the serum 

response or involved in the immediate early response. Prompted by the evidence discussed 

above and having previously shown that RMEL3 is required for survival of BRAF mutant 

melanoma cells (Goedert et al., 2016), the major focus of this work was on defining the 

Cardoso et al. Page 11

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2019 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects provoked by ectopic expression of RMEL3 in different cell lines and under a variety 

of culture conditions, especially serum starvation. We reasoned that if RMEL3 plays a role 

in, or downstream of mitogen/survival factor-stimulated signaling circuitries, under 

physiological conditions, its overexpression should bypass the necessity of mitogen 

stimulation for cell proliferation and survival. To test this hypothesis, we overexpressed 

RMEL3 in the immortalized, non-transformed, and widely known NIH3T3 murine 

fibroblasts (Meloche & Pouysségur, 2007; Wang et al., 2017). We were surprised to find 

that, indeed, overexpression of RMEL3 bypassed the requirement of a mitogen/survival 

factor stimulation to support cell proliferation and survival. These experiments also revealed 

that human RMEL3 lncRNA is functional in a murine cell line, and therefore, it must have 

conserved partners in this organism, despite low sequence conservation. Future studies will 

be necessary to define the underlying mechanisms of the protective role of RMEL3 against 

cell death caused by serum starvation.

The results discussed above led us to hypothesize that overexpression of RMEL3 would 

potentially enhance malignant properties of either a BRAF wild-type or a BRAF mutant 

melanoma cell line expressing low RMEL3 levels. Indeed, ectopic expression of RMEL3 

using two different lentiviral vector systems enhanced cell proliferation in both cell lines, 

either cultured in complete media or under serum starvation. Most strikingly, expression 

mediated by a Dox-inducible vector system caused a strong increase in clonogenic ability 

and also promoted tumor growth in nude mice. These data are fully consistent with the 

phenotype shown previously for RMEL3 knockdown (Goedert et al., 2016).

In conclusion, the protective effect of RMEL3 against serum withdrawal-induced cell cycle 

arrest and apoptosis together with other pharmacological and functional data shown here 

allow us to propose that RMEL3 gene is responsive to the ERK pathway and the RMEL3 

lncRNA might play a key role as an activator/effector in the mitogen/survival factor response 

pathways. These capabilities and the highly restricted expression pattern of RMEL3 are 

desirable characteristics of targets for cancer drugs.
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Refer to Web version on PubMed Central for supplementary material.
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Significance

Previous findings link RMEL3 with BRAFV600E and the MAPK/ERK pathway activity. 

Here, we show that BRAFV600E activity is required for RMEL3 upregulation and, most 

importantly, RMEL3 overexpression bypasses the requirement of serum supplementation 

for proliferation/survival of immortalized fibroblasts. Also, overexpression of RMEL3 in 

melanoma cells increases cell proliferation, survival, and in vivo tumor growth. Taken 

together, previous and present data support the hypothesis that RMEL3 lncRNA might 

play a key role as an activator/effector in mitogen-/survival factor-activated pathways. 

These capabilities and the highly restricted expression pattern of RMEL3 are desirable 

characteristics of targets for cancer drugs.
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Figure 1. High RMEL3 expression predominates in BRAFV600E followed by NRAS mutant 
melanoma cell lines, as well as in nodular/ superficial spreading in comparison with acral/
mucosal melanomas.
(A) RT-qPCR analysis of RMEL3 RNA levels in melanocytes and melanoma cell lines of 

indicated genotype regarding major câncer drivers (BRAF, NRAS, and NF1). (B) RT-qPCR 

analysis of RMEL3 expression in melanoma subtypes: acral/mucosal and nodular/superficial 

spreading cutaneous melanoma, for which patient specimens were obtained from the 

Barretos Cancer Hospital, São Paulo state, Brazil. In A and B, relative expression was 

calculated according to 2−ΔΔCT method usingTBP (Tata-box binding protein) as endogenous 

control, and the mean levels of RMEL3 RNA in different foreskin human melanocyte 

primary cultures were used as reference in both A and B, totaling the use of four different 

melanocyte cultures derived from different donors. Error bars represent SEM of 3 
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independent experiments. ***p < 0.005. Asterisks indicate statistically significant 

differences between groups based on Fisher’s exact test. (C) Frequency of base substitution 

mutations in the RMEL3 locus from a total of 579 base substitutions reported by ICGC in a 

set of 129 melanoma samples. (D) RMEL3 expression levels (TPM) grouped according to 

the occurrence (RMEL3 mutant) or not (RMEL3 wt) of somatic mutation in the RMEL3 

gene detected in the TCGA melanoma dataset of 450 samples. (E) Survival curves for 

melanoma patients of the TCGA database carrying (RMEL3 mutant) or not (RMEL3 wt) 

mutations in the RMEL3 gene. Statistical analyses used chi-squared test in D and E
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Figure 2. RMEL3 lncRNA levels decrease in BRAFV600E mutant melanoma cells after 
treatment with BRAF and MEK inhibitors.
(A - D) RT-qPCR expression analyses of (A, B) RMEL3 lncRNA and (C, D) FOXD3 

(positive control) in melanoma cell lines treated with the BRAF inhibitor vemurafenib 

(PLX4032) (1 μM, 6 h or 10 μM, 48 h) and respective controls (vehicle), as indicated. (E) 

Western blot analysis for phosphorylated ERK (pERK) and total ERK (tERK) in total 

protein lysates from melanoma cells treated with BRAF inhibitor (1 μM, 6 h or 10 μM, 48 h) 

or vehicle. (F) RT-qPCR expression analysis of RMEL3 in UACC-62 melanoma cell line 

treated with the MEK inhibitor PD98059 (25 μM) or vehicle for 48 hr, and corresponding 

Western blot analysis for phosphorylated ERK (pERK) and total ERK (tERK) in total 

protein lysates of treated and control melanoma cells. For all RT-qPCR analyses, relative 

expression was calculated according to 2−ΔΔCT method using TBP (Tata-box binding 
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protein) as endogenous control and the normalized Ct of the sample treated with the vehicle 

alone as reference. Error bars represent SEM of 3 independent experiments. *p < 0.05; **p 

< 0.005; ***p < 0.0005; ****p < 0.00005. Asterisks indicate statistically significant 

differences between groups based on unpaired parametric Student’s t test
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Figure 3. Ectopic expression of human RMEL3 protects NIH3T3 murine fibroblasts from serum 
withdrawal-induced growth arrest/ apoptosis.
(A) Schematic representation of RMEL3 locus (above), its transcript (center), and the region 

cloned into expression vectors (below). (B) Efficiency of exogenous RMEL3 induction in 

cells transduced with pLVX-RMEL3 or pLVX-TP (as control) after treatment with 

doxycycline (1 μM, 24 h), analyzed by RT-qPCR. ND (not-detected). Relative expression 

was calculated according to ΔCT using TBP (Tatabox binding protein) as endogenous 

control. (C-E) Functional assays using NIH3T3 cells stably transduced with pLVX-RMEL3 

or pLVX-TP (as control) in the presence of doxycycline (1 μM). (C) Proliferation rates. 

During the time course of the assay, cells were maintained under serum starvation (in 

medium supplemented with 0.5% FBS). After the indicated time points, cells were stained 

with crystal violet and cell density was quantified according to the absorbance in an ELISA 
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microplate reader. ***p < 0.0005 (D) Apoptosis rate. Flow cytometry-based detection of 

annexin-V- and propidium iodide (PI)-stained cells. Dot plot from one assay representative 

of three replicates, and below, a summary graphics of three independent replicates. Cells 

were cultured in FBS-free medium for 48 h, and afterward, culture medium was 

supplemented with 0.5% FBS and cells were cultured for additional 48 h, when they were 

assayed. *p < 0.05; **p < 0.005. (E) Clonogenic ability. Cells were seeded in 60-mm-

diameter plates and allowed to grow for 9 days, when they were fixed with 

paraformaldehyde and stained with crystal violet to reveal the colonies. *p < 0.05; **p < 

0.005. Error bars represent SEM of 3 independent experiments for B-E. Asterisks indicate 

statistically significant differences between groups based on unpaired parametric Student’s t 

test
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Figure 4. Overexpression of RMEL3 increases proliferation of a BRAFV600E mutant, RMEL3-
low expresser, melanoma cell line.
(A) Efficiency of stable expression of RMEL3 RNA in VM10 melanoma cells transduced 

with pLJM1-RMEL3, analyzed by RT-qPCR. Relative expression was calculated according 

to 2−ΔΔCT method using TBP (Tata-box binding protein) as endogenous control and the 

normalized Ct of cells transduced with control vector (pLJM1-EGFP) as reference. (B) 

Proliferation of VM10 cells transduced with pLJM1-RMEL3 or pLJM1-EGFP as control. 

Cells were cultured in medium supplemented with 10% FBS, and after the indicated time 

points, they were stained with crystal violet for quantification of cell density according to 

the absorbance in an ELISA microplate plate reader. Error bars represent SEM of 3 

independent experiments. Asterisks indicate statistically significant differences between 

groups based on unpaired parametric Student’s t test. Day 2 (**p < 0.0034); Day 3 (***p < 

0.0004); Day 4 (**p < 0.0065)
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Figure 5. Overexpression of RMEL3 in an NRAS mutant melanoma cell line increases 
proliferation rates, clonogenic ability, and tumor growth.
(A) Efficiency of RMEL3 transgene expression in SKMEL103 cells stably transduced with 

pLVX-RMEL3 or pLVX-TP (empty vector), not treated or treated with doxycycline (1 

μg/mL, 24 h), as analyzed by RT-qPCR. The relative expression was calculated according to 

2−ΔΔCT method using TBP (Tata-box binding protein) as endogenous control and the 

normalized Ct of the pLVX-TP-transduced cells as reference. (B) Proliferation of 

SKMEL103 cells transduced with pLVX-RMEL3 or pLVX-TP (as control), cultured in FBS-

free medium in the presence of doxycycline (1 μg/mL). After the indicated time points, cells 

were stained with crystal violet and cell density was quantified according to the absorbance 

in an ELISA microplate reader. *p < 0.05; **p < 0.005. (C) Clonogenic ability of 

SKMEL103 cells transduced with pLVX-RMEL3 or pLVX-TP (as control). Cells were 
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seeded in 60-mm-diameter plates with DMEM Complete Medium containing doxycycline (1 

μg/mL). After 14 days, they were fixed with paraformaldehyde and stained with crystal 

violet. **p < 0.0014, ***p < 0.0001. Error bars represent SEM of 3 independent 

experiments for A-C. (D) Tumor growth. Nude mice were injected subcutaneously with 106 

SKMEL103 cells, in the right flank with pLVX-RMEL3-transduced cells and in the left 

flank with pLVX-TP-transduced control cells. After injections, mice were maintained with 

diet ad libitum and drinking water was supplemented with 1 mg/ml doxycycline and 

changed every 2 days. *p < 0.05. This experiment was done once. Asterisks indicate 

statistically significant differences between groups based on unpaired parametric Student’s t 

test
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