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Abstract

Mitochondria play crucial roles in regulating metabolism and longevity. A body of recent 

evidences reveals that the gut microbiome can also exert significant effects on these activities in 

the host. Here, by summarizing the currently known mechanisms underlying these regulations, and 

by comparing mitochondrial fission-fusion dynamics with bacterial interactions such as quorum 

sensing, we hypothesize that the microbiome impacts the host by communicating with their 

intracellular relatives, mitochondria. We highlight recent discoveries supporting this model, and 

these new findings reveal that metabolite molecules derived from bacteria can fine-tune 

mitochondrial dynamics in intestinal cells and hence influence host metabolic fitness and 

longevity. This perspective mode of chemical communication between bacteria and mitochondria 

may help us understand complex and dynamic environment-microbiome-host interactions 

regarding their vital impacts on health and diseases.

Graphical Abstract

*Correspondence: Meng C. Wang, Postal: One Baylor Plaza MS: BCM230, Houston, TX 77030, USA, Phone: 713-798-1566, Fax: 
713-798-4161, wmeng@bcm.edu. 

HHS Public Access
Author manuscript
FEBS J. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
FEBS J. 2019 February ; 286(4): 630–641. doi:10.1111/febs.14692.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gut microbiome orchestrates biological processes in the host by communicating with 

mitochondria, intracellular organelles that originated from bacteria. Reciprocating to 

environmental challenges, bacteria produce metabolites that can modulate mitochondrial dynamics 

to adjust intracellular activities. Together, the interplay between microbiome and mitochondria 

provides new insights into the regulation of host metabolic health and longevity.
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Introduction:

As described by the predominant endosymbiotic theory, the origin of intracellular 

organelles, mitochondria, can be traced back to bacterial cells that accidentally form a 

symbiotic relationship with some methanogenic archaea billions of years ago [1–3]. While 

relying on carbon organics provided by the host cells, the proto-mitochondria also conducted 

respiration to pay back with considerably more energy, leading to an enormous evolutionary 

advantage and eventually gave rise to nowadays thriving kingdom of eukaryotes. Numerous 

comparative molecular studies have demonstrated that mitochondria evolved from 

Rickettsiales bacteria [4–9] (Figure 1). In addition to this obligate endosymbiosis, 

eukaryotes possess their “external symbionts” - hundreds of bacterial species that colonize 

body surfaces and cavities [10]. The gut microbiome inhabiting the digestive tract is a good 

reprehensive of these symbionts, which shows stable composition over time in healthy adults 

[11] and exerts a substantial impact on the host physiology and pathology [12].

In particular, mitochondria and the gut microbiome both play crucial roles in regulating host 

metabolism and longevity. Mitochondria and bacteria also share commonalities in terms of 

inter-communications. Our recent findings further reveal chemical communications between 

bacteria and host mitochondria, and the specific involvement of these communications in the 
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control of metabolic and aging processes. Inspired by these findings, we tentatively propose 

the hypothesis that mitochondria still possess the remnant abilities of communicating with 

extracellular bacteria, and the impacts of symbiotic bacteria on the host act largely through 

modulating mitochondrial activities. We also describe the merits of using the nematode 

Caenorhabditis elegans as a model system in deciphering this microbiome-mitochondria 

communication.

Mitochondria with bacterial origin signal to the nucleus

The endosymbiotic relationship between mitochondria and eukaryotic cells have been 

continuously strengthened by evolutionary pressure, resulting in an extensive gene transfer 

between the two genomes [13,14]. Now in eukaryotic cells, a vast majority of mitochondrial 

proteins are encoded in the nucleus and transported into mitochondria for maturation 

following cytoplasmic translation. Mitochondria coordinate many vital metabolic functions 

such as fatty acid oxidation and oxidative phosphorylation, and serve as the powerhouse to 

carry out ATP production. Interestingly, these metabolic functions are also associated with 

the signaling role of mitochondria in the control of nuclear activities. Retrograde signals 

from mitochondria act through various transcriptional and epigenetic factors to actively 

modulate gene expression in the nucleus, such as alpha-ketoglutarate metabolites, reactive 

oxygen species (ROS), and mitochondrial unfolded protein responses (UPRmt) [15] (Figure 

2). In particular, UPRmt senses the perturbation of the protein-folding environment in 

mitochondria, and directs the translocation of transcription factors into the nucleus to 

activate expressions of specific chaperones and proteases [16–18]. This UPRmt signaling 

process helps restore organelle functionality of mitochondria under different stress 

conditions [19,20], and consequently plays crucial roles in the regulation of organismal 

longevity [21,22].

Mitochondrial dynamics regulates metabolism and longevity

Mitochondria are highly dynamic organelles. Although generally depicted as discrete 

organelles, multiple mitochondria frequently interconnect with each other, forming a large 

intracellular reticulum and mixing their membrane, matrix, and nucleoid contents [23–25]. 

At the same time, mitochondria divide constantly to facilitate organelle degradation and 

recycling [26,27]. A number of GTPases mediate mitochondrial dynamics: Mitofusin (Mfn1 

and Mfn2) dimeric complexes and OPA1 mediate the connection between adjacent 

mitochondria to facilitate fusion [28,29]; while DRP1 forms ring-like structures to constrict 

mitochondria where the fission of organelles occurs [30,31]. The matter and information 

exchange resulting from mitochondrial fusion helps alleviate negative influences from 

impaired individual organelles [32,33]. On the other hand, selective degradation of damaged 

mitochondria through mitophagy requires mitochondrial fission [34–37]. Overall, these 

fusion and fission events keep mitochondria in a dynamic balance and ensure their quality 

and quantity controls, which are crucial for maintaining a healthy functional mitochondrial 

network.

Mitochondrial fission-fusion dynamics is tightly linked to mitochondrial bioenergetic 

functions and metabolic health of cells and organisms [38]. Generally, mitochondrial fusion 
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can greatly increase efficiency of ATP synthesis [39]. In cultured cells, nutrient withdrawal 

has been found to promote mitochondrial elongation through inhibiting mitochondrial 

fission by PKA-mediated DRP1 phosphorylation [39,40] or through facilitating 

mitochondrial fusion by MFN1 deacetylation [41]. This starvation-induced mitochondrial 

elongation increases ATP synthesis capacity and efficiency, which sustains the energy 

demand required under nutrient limited environments [39]. In contrast, excess nutrients can 

lead to mitochondrial fragmentation. For example, glucose overload promotes mitochondrial 

fragmentation in a DRP1 dependent manner [42], and animals feeding on a high fat diet 

display reduced levels of MFN2 and enhanced mitochondrial fragmentation [43–46]. Thus, 

mitochondrial dynamics can be actively influenced by environmental signals and coupled 

with cellular metabolic status [44,47].

Mitochondrial dynamics is also closely associated with the aging process [48–50]. With 

senescence, mitochondrial dynamics tends to shift toward fission more than fusion in most 

of the tissues [50–52], which is likely resulted from cumulated damages in mitochondria. 

The fragmentation of mitochondrial network facilitates mitophagy as a protective 

mechanism [53,54]. However, with advancing age, mitochondrial biogenesis becomes less 

effective [55], and the ability to maintain the plasticity of fission-fusion dynamics declines. 

As a result, superfused and swollen mitochondrial morphology is often detected [56–60], 

which is proposed to compensate for both quality and quantity decreases [48].

Interestingly, manipulation of mitochondrial dynamics is sufficient to modulate both glucose 

and lipid metabolic homeostasis systemically, and also influences organism longevity. For 

example, mitochondrial fragmentation driven by MFN2 deletion in muscle and hepatic cells 

disturbs glucose homeostasis and leads to obesity in aged animals [61]. In contrast, 

impairment of mitochondrial fission by DRP1 deletion in liver protects animals from high-

fat-diet-induced obesity and metabolic disorders [62]. On the other hand, alterations in 

mitochondrial electron transport chain (ETC) activities modulate lifespan and healthspan in 

a variety of organisms, through interplaying with diverse longevity regulatory mechanisms 

such as insulin and mTOR signaling, dietary restriction, and autophagy [63–67]. In 

Caenorhabditis elegans, dietary restriction-AMPK-mediated longevity is associated with 

alterations in mitochondrial fission-fusion dynamics and consequent changes in peroxisome 

activities [52,68]. It is also shown that mitochondrial fusion is essential for the lifespan 

extension conferred by reduced insulin/IGF-1 signaling [69]. More recently, studies in C. 
elegans and Drosophila melanogaster further discover that a mild induction of mitochondrial 

fission specifically in intestinal cells is sufficient to promote organism longevity 

systemically [70,71]. Therefore, mitochondria communicate through their fission-fusion 

dynamics, which safeguards the homeostasis of these essential cellular organelles and plays 

a pivotal role in the control of metabolic health and longevity [72].

Bacteria live in a community

The community of bacteria is highly dynamic and interactive. Although conventionally 

considered unicellular and isolated, bacteria do communicate and cooperate with each other, 

resembling those cells in multicellular organisms. One typical example in point is 

myxobacteria. To survive harsh environments, multiple myxobacterial cells can aggregate to 
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form ‘swarms’ by contact-mediated signaling, for the sake of better moving, feeding and 

reproducing [73]. In fact, the interactions between bacterial cells are not limited to a single 

taxonomical group, as evidenced by formation of biofilms ubiquitously found on our planet, 

either on abiotic surfaces or in the animal gut. A great variety of bacteria secret a matrix of 

extracellular polymeric substances that helps adhesion and links cells together to form a 

colonial group [74], a process typically triggered by unfavorable environmental factors such 

as antibiotics [75]. Once embedded in this complex biofilm structure, bacterial cells undergo 

a lot of behavioral changes, differentially regulate many genes, and frequently exchange 

their genetic materials [76,77]. As a result, biofilms provide not only protection, but also 

opportunities of communication among otherwise isolated bacterial cells.

Moreover, virtually all bacterial species constitutively produce diffusible chemical signals to 

alter gene expression of others, referred to as quorum sensing. These signal molecules 

include certain oligopeptides, N-acyl homoserine lactones (AHLs), and autoinducer-2 (AI-2, 

furanosyl borate diester) that stimulate synthesis and release of themselves among different 

cells [78,79]. Quorum sensing implies a response to population density, allowing multiple 

bacterial cells to adjust their growth and activities accordingly. Moreover, this 

communication is required for multiple bacteria to synchronize their gene expression so that 

macroscopic effects can be achieved by these tiny organisms. For instance, quorum sensing 

plays a central role in the production of bioluminescence and in the biofilm formation 

[80,81]. Although quorum sensing takes place mostly among members of the same species, 

it is intriguing to note the existence of interspecies communications via quorum sensing. For 

example, Escherichia coli encodes proteins of the LuxR family for detection of AHLs, a 

quorum-sensing signal released only by other microbes [82]. Moreover, AI-2 is a universal 

signal mediating interspecies quorum sensing because it is secreted and perceived by a great 

variety of bacteria [79]. Thus, a bacterial community is highly dynamic and communicative, 

not only comprising diverse species but also adjusting their activities, sending and receiving 

signals constantly.

Microbiome influences host metabolism and longevity

Gut microbiome, consisting mainly of bacteria, inhabits the digestive track of the host. An 

ever-growing body of evidences suggests that the composition and metabolism of the gut 

microbiome influence metabolic health and aging. First of all, gut bacteria generate 

metabolic products that directly act on the host. They are responsible for the synthesis of 

various vitamins to maintain metabolic health of the host [83]. Gut bacteria can also break 

down many carbohydrates that are otherwise non-digestible, and ferment them into short-

chain fatty acids as nutrients to the host, which regulate fatty acid, cholesterol and glucose 

metabolism [84,85]. Without them, germ-free mice are significantly leaner than normal mice 

[86–88]. In addition, primary bile acids are processed by gut bacteria into secondary bile 

acids that feed back to the liver and influence lipogenesis, gluconeogenesis and insulin 

sensitivity in the host [89–92]. Moreover, changes in the host’s diet, lifestyle, and 

medication with antibiotics and other drugs dramatically influence transcriptomic, proteomic 

and biochemical profiles of gut bacteria [93–96]. These bacterial changes in turn modulate 

the susceptibility of the host to environmental insults, dietary intervention and diseases.
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Human gut microbiome is dominated by two major bacterial phyla, Firmicutes and 

Bacteroidetes [97]. It is intriguing that both diet- and genetic-induced obesity are associated 

with a reduction in Bacteroidetes and a proportional increase of Firmicutes [98–101]. These 

obese animals also display less diverse microbiome [102,103]. Conversely, the phylogenetic 

composition of gut bacteria can determine the onset and progression of obesity, through 

modulating the efficiency of energy uptake [100,104] and inflammatory responses in the 

host [105–111]. On the other hand, dietary inputs not only reshape the phylogenetic 

structure of gut microbiome, but also reprogram gene expression and metabolite production 

in these bacteria [96,112]. The regulatory loop among the environment, gut microbiome and 

the host is dynamic and complex, which can be mediated by different signaling mechanisms 

[113,114].

Similarly, changes in gut microbiome are also associated with the aging process in the host 

[115]. The reduction of bacterial number and diversity especially that of Bifidobacterium 
spp. and Bacteroides spp. in the elderly has been reported [116–118]. Furthermore, the 

microbiome composition is significantly correlated with increased frailty and age-related 

chronic conditions among old individuals, and diet-driven microbiome alterations have been 

shown to improve health in elderly people [119]. Studies in model systems show that the 

growth, proliferation and diversity of gut bacteria are good predictors of longevity 

[120,121]. Moreover, transplantation of gut microbiome from young to middle-aged killifish 

prolongs lifespan and healthspan [122]. Not only different bacterial species, but also 

individual bacterial genes are correlated with the longevity regulation in the host. Specific 

bacterial mutants have been shown to play a causative role in prolonging host lifespan and 

healthspan [123–126]. Interestingly, some of these beneficial effects are directly linked to 

specific bacterial metabolites [123–126]. Therefore, an active chemical communication 

between gut bacteria and the host is essential for organism fitness during aging.

Evidences emerge for a communication between microbiome and 

mitochondria

Because of their critical roles in determining metabolic health and longevity, both 

mitochondria and gut bacteria become hot targets in biological and medical investigations. 

However, studying them with the cellular resolution at the organism level is highly 

challenging, especially in mammalian models. First, fixation of mammalian tissues for 

microscopic observations undoubtedly interferes with the regulation of mitochondrial 

dynamics, and may give limited or misleading results. Secondly, mammalian microbiome is 

complex, composed of 300 to 1000 bacterial species with a total number even exceeding that 

of host cells [127–129]. Plus tremendous individual compositional variations [130,131], 

isolating any bacterial components for causative or mechanistic analyses would be extremely 

hard.

The nematode C. elegans has been extensively used as a model organism. These soil-

dwelling worms exhibit many merits for laboratory manipulations, including their short life 

time, low price in rearing, known genome as well as availability of numerous mutants and 

transgenic lines. Most importantly, some innate features of C. elegans make them ideal for 
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studying mitochondrial and bacterial activities that influence host physiology. First of all, 

their bodies are colorless and transparent. After fluorescently labelling of mitochondrial-

targeting sequences, mitochondrial dynamics can be directly viewed in vivo with high 

resolution at the organism level [26]. With a rapid technical progress on lattice light-sheet 

microscopy [132], an even more detailed real-time super-resolution monitoring of 

mitochondrial structure and dynamics becomes feasible using C. elegans [133].

Furthermore, the gut of C. elegans is naturally colonized by a complex community of 

commensal bacteria whose composition is influenced but distant from the environment 

[134,135]. This relationship between the host and microbiome resembles that in humans, 

implicating a valid model. More remarkably, a strain of C. elegans has been tamed in 

laboratories [115]. This strain is reared monoxenically, feeding on and accommodating in 

the gut a single bacterial clone, therefore carries accurately defined microbiome. At the same 

time of enjoying these merits, one should also take necessary cautions to interpret 

conclusions obtained using C. elegans, partly because the typical bacteria used in 

laboratories, E. coli OP50, only colonize aging individuals and this colonization is 

associated with bacterial pathogenesis [120,121,136]. However, with the simple 

manipulation of gut bacteria and some proved conservation [137], C. elegans still represents 

an ideal model for studies of microbiome-host interaction. Evidently, utilizing the system of 

C. elegans and their symbiotic bacteria, a lot of insights on microbe-host interactions have 

been gained [137,138], especially the microbial contributions to metabolism and aging 

[139–142].

Using C. elegans, our recent studies bring light into the interaction between bacteria and 

mitochondrial dynamics in the gut of the host. These communications are mediated by 

chemical signals from intestinal bacteria (Figure 2). In one case, a cluster of bacterial 

metabolites including betaine, methionine and homocysteine initiate a signaling cascade that 

triggers the NR5A nuclear receptor and activates hedgehog signaling to regulate 

mitochondrial fission-fusion balance in intestinal cells. This bacteria-mitochondria 

communication ultimately regulates fat storage homeostasis in the host [112]. In another, a 

slime polysaccharide named colanic acid, a major biofilm component of E. coli, is secreted 

from intestinal bacteria. After entering host cytoplasm via endocytosis, colanic acid 

increases the fragmentation of intestinal mitochondria in a DRP-1 dependent fashion, as well 

as enhances UPRmt mediated by the transcription factor ATFS-1 in response to 

mitochondrial stress. These signaling effects of bacterial colanic acid on mitochondrial 

dynamics and UPRmt consequently lead to lifespan extension and protection against age-

associated pathologies, like germline tumor progression and toxic amyloid-beta 

accumulation, in the host [123]. Together, these results consistently show that mitochondria 

undergo chemical communication with bacteria, a process modulating metabolic and 

senescent states of eukaryotic cells.

This view can also be strengthened by our unbiased search for bacterial factors involved in 

the regulation of host longevity [123]. This genome-wide analysis implicates YceO and 

LsrC, two bacterial proteins important for biofilm formation and AI-2 transport, and several 

proteins controlling the level of colanic acid [123]. AI-2 is a key quorum-sensing molecule 

that has been recorded to interact with eukaryotic cells [143,144], although no mechanisms 
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have been specified. As undergoing exclusive intracellular lives, mitochondria likely 

preserve their capabilities of, and possibly are responsible for perceiving quorum-sensing 

signals. This view gains recent supports from the fact that a signaling molecule secreted by 

Pseudomonas aeruginosa accumulates within mitochondria and regulates cellular functions. 

In this bacteria-mitochondria interaction, P. aeruginosa secrets N-(3-oxo-dodecanoyl)-L-

homoserine lactone (3OC12), which is hydrolyzed by lactonase paraoxonase 2 in 

mitochondria to attenuate its toxicity. The hydrolyzed form, 3OC12 acid then stays in 

mitochondria and mediates calcium release and stress signaling through intracellular 

acidification [145]. Collectively, based on these new discoveries, it is reasonable to 

hypothesize that microbiome may affect the host by directly interacting with mitochondria 

through bacterial metabolites and specific signaling mechanisms.

Future perspectives

With our findings and other sporadic evidences, a model that merges functionalities of 

mitochondria and microbiome is not merely plausible, but also probable. Within the context 

of our model, we propose that mitochondria are the mediators for this cross-domain 

chemical dialogue. This is not to deny the existence of indirect communications from 

bacteria to mitochondria, such as by regulating nuclear gene expression. But following the 

Law of Parsimony, a conserved and wide-spread direct interaction is most likely. A 

systematic search for signaling molecules sent by gut microbiome, transporting mechanisms 

across the plasma membrane, and receptors on mitochondrial outer membrane would be 

essential to confirm this communication.

This model may help us understand many aspects of physiological and pathological 

regulations by host-microbiome interactions. For example, gut microbiome has been 

indicated to play vital roles in a number of neurological disorders [146]. Clearly, these 

bacterial effects on neurons have to occur via cell non-autonomous mechanisms. Other than 

a way of indiscriminately releasing certain molecules into body fluid, we propose that the 

dialogue between bacteria and mitochondria likely is the underlying mode of action. On one 

hand, patients with mutations in several mitochondrial dynamics regulators display 

neurological symptoms [147–150]; likewise, neurodegeneration and many other diseases 

have been linked to dysregulation of mitochondrial dynamics [151]. On the other hand, 

mitochondria within different cells have been shown to communicate with each other, 

resulting in a cell non-autonomous effect [152]. Hence, the proposed crosstalk exhibits high 

explanatory power for the function of microbiome in modulating systemic responses of the 

host, as exampled by metabolism and aging.

There have been quite a few biological phenomena following a ‘non-Darwinian’ pattern 

lacking mechanistic explanations. Interesting to note, mitochondria are inherited maternally, 

and the founding colonies of microbiome in newborns are also from a maternal source [153]. 

It would be intriguing to hypothesize that the microbiome-mitochondria axis also plays a 

role in mediating those maternal effects. By many means, a chemical dialogue across the cell 

membrane, orchestrated by mitochondria and symbiotic bacteria, is promising to broaden 

our views on biological sciences. We anticipate an era in that the mitochondria-microbiome 
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communication is fully characterized, which would shed great light on improving metabolic 

health and healthy aging.
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Figure 1. The cladogram of bacteria showing the origin of mitochondria.
This phylogenetic relationship among representative genera of clinical or ecological 

significance is inferred from previous comparative molecular studies [8–9], with 

mitochondria highlighted in red. Green color shows chloroplasts, result of another 

endosymbiosis event from some cyanobacteria. Side bars label the division between Gram 

negative and positive taxa.
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Figure 2. Molecular communications between bacteria and mitochondria are vital for symbiotic 
bacteria to regulate metabolism and longevity in the eukaryotic host.
Bacteria communicate with each other through biofilm formation and quorum sensing that 

can be mediated by specific metabolites, such as AHLs (acyl-homoserine lactones), AI-2 

(furanosyl borate diester), oligopeptides, and Υ-butyrolactones. On the other hand, 

mitochondria undergo organellar fission and fusion and communicate through these dynamic 

processes. Interestingly, new discoveries reveal that mitochondrial fission-fusion dynamics 

in the eukaryotic host cell can be regulated by chemical signals from symbiotic bacteria in 

the form of colanic acid and methyl metabolites. These metabolite-mediated cross-kingdom 

communications are crucial for host metabolism and longevity.
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