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Abstract
The blood–brain barrier (BBB) is a highly complex 
and dynamic structure, mainly composed of brain 
microvascular endothelial cells, pericytes, astrocytes and 
the basement membrane (BM). The vast majority of BBB 
research focuses on its cellular constituents. Its non-
cellular component, the BM, on the other hand, is largely 
understudied due to its intrinsic complexity and the lack 
of research tools. In this review, we focus on the role 
of the BM in BBB integrity. We first briefly introduce the 
biochemical composition and structure of the BM. Next, the 
biological functions of major components of the BM in BBB 
formation and maintenance are discussed. Our goal is to 
provide a concise overview on how the BM contributes to 
BBB integrity.

Introduction
The blood–brain barrier (BBB) is a highly 
complex and dynamic structure, mainly 
composed of brain microvascular endothe-
lial cells (BMECs), pericytes, astrocytes and 
a non-cellular component—the basement 
membrane (BM).1–3 By tightly regulating 
what enters the brain, the BBB functions 
to maintain the homeostasis of the central 
nervous system.4–6 Consistent with this impor-
tant role, BBB disruption has been found in a 
variety of neurological disorders.2 7 8 The vast 
majority of BBB research, however, focuses 
on its cellular constituents, including BMECs, 
pericytes and astrocytes. It has been shown 
that BMECs contribute to BBB’s barrier prop-
erty via forming tight junctions at the intercel-
lular space9 and limiting transcellular trans-
port (transcytosis).10 11 Pericytes, mural cells 
that cover capillaries in the vasculature, play 
important roles in the formation, maturation 
and maintenance of the BBB.12 Astrocytes, by 
interacting with pericytes and BMECs through 
their endfeet,13 participate in BBB main-
tenance and ion/water transport.14 15 The 
readers are referred to the following refer-
ences for more information on the functions 
of these cells in BBB integrity.16–21 

Unlike the cellular constituents of the BBB, 
the BM is largely understudied probably due 
to its intrinsic complexity. Recent studies 
suggest that the BM also contributes substan-
tially to vascular barrier function.22–25 In this 
review, we summarise recent findings on the 

function of the BM in BBB integrity. First, we 
briefly introduce the biochemical composi-
tion and structure of the BM. Next, we discuss 
the function of each major component of the 
BM in BBB formation and maintenance.

Basement membrane
The BM is a unique form of the extracellular 
matrix (ECM) found predominantly under-
neath endothelial and epithelial cells. It 
exerts many important functions, including 
structural support, cell anchoring and signal-
ling transduction.26–28 In the brain, two types 
of BM are found: an endothelial BM and a 
parenchymal BM (figure 1), which are sepa-
rated by pericytes.29–31 Under physiological 
conditions, the two BM layers are indistin-
guishable and look like one in areas without 
pericytes (figure 1). Structurally, the BM is a 
highly organised protein sheet with a thick-
ness of 50–100 nm.32–34 Biochemically, the 
BM consists of four major ECM proteins: 
collagen IV, laminin, nidogen and perlecan. 
These ECM proteins are synthesised predom-
inantly by BMECs, pericytes and astrocytes at 
the BBB. The functional significance of each 
BM component in BBB integrity is discussed 
below.

Collagen IV
Collagen IV, the most abundant component 
of the BM, is a trimeric protein containing 
three α-chains. Currently, six collagen IV 
α-chains (COL4A1–6) have been identi-
fied.35–37 Unlike COL4A3–6, which are more 
spatially and temporally restricted, COL4A1 
and COL4A2 are present in almost all BMs 
and are highly conserved across species.38 It 
has been shown that ablation of COL4A1/2 
results in abnormal BM structure and embry-
onic lethality at E10.5–E11.5, although BM 
formation during early development is 
unaffected,39 suggesting that collagen IV is 
required for the maintenance but not forma-
tion of the BM. In addition, mice with splice 
mutation lacking exon 41 of COL4A1 in both 
alleles die during embryogenesis, whereas 
those with such mutation in one allele show 
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Figure 1  Schematic illustration of the blood–brain barrier. 
BM, basement membrane.

cerebrovascular defects, including porencephaly and 
intracerebral haemorrhage.40–42 To examine the rela-
tive contribution of each cell type at the BBB, exon 41 
of COL4A1 was ablated in BMECs, pericytes and astro-
cytes, respectively. Although loss of exon 41 of COL4A1 in 
astrocytes caused very mild intracerebral haemorrhage, 
such mutation in BMECs or pericytes resulted in fully 
penetrant intracerebral haemorrhage and incompletely 
penetrant porencephaly.42 These results suggest that 
loss of exon 41 of COL4A1 in both BMECs and pericytes 
contributes to cerebrovascular defects. Consistent with 
these reports, various missense mutations in COL4A1/2 
lead to brain malformation and intracerebral haemor-
rhage with different severity.43–45 Together, these results 
suggest a crucial role of collagen IV in vascular integrity. 
The major findings in these studies have been summa-
rised in table 1.

Laminin
Laminin is a T-shaped or cruciform-shaped trimeric 
protein composed of α, β and γ chains. So far, five α, four 
β and three γ chains have been identified.46 47 Various 
combinations of these subunits generate a large number 
of laminin isoforms. Although BMECs, pericytes and 
astrocytes all make laminin at the BBB, they synthesise 
different laminin isoforms. For example, BMECs generate 
laminin-α4β1γ1 (-411) and laminin-511,29 48 astrocytes 
predominately make laminin-211,29 49 whereas pericytes 
mainly synthesise laminins containing α4, α5 and γ1.50 51 
Due to this cell-specific expression pattern, laminin shows 
differential distribution between endothelial and paren-
chymal BMs.30 Specifically, astrocyte-derived laminin-211 
is predominantly found in parenchymal BM, whereas 
endothelial cell–derived laminin-411 and laminin-511 are 
mainly located in endothelial BM.

To investigate laminin’s function in BBB integrity, a 
variety of laminin loss-of-function mutants have been 
generated. Global knockout of most laminin subunits, 

including α5,52–54 β155 or γ1,55–57 leads to embryonic 
lethality, preventing investigation of their functions in 
BBB integrity. To overcome this limitation and enable 
investigation of laminin’s function in a cell-specific 
manner, we generated a series of conditional knockout 
lines targeting the laminin γ1 chain, a common subunit 
found in almost all laminin isoforms at the BBB. In a 
previous study, we showed that loss of astrocyte-derived 
laminin (laminin-211) led to age-dependent BBB break-
down and intracerebral haemorrhage.1 Consistent with 
our finding, laminin α2 null mutants displayed postnatal 
BBB disruption.58 These results suggest an indispensable 
role of astrocytic laminin in BBB maintenance.

In addition, we also generated transgenic mice with 
laminin deficiency in vascular smooth muscle cells 
(vSMCs, termed SKO hereafter)51 59 and mural cells 
(vSMCs and pericytes, termed PKO hereafter).51 60 In a 
mixed genetic background, the PKO mice demonstrated 
BBB breakdown and hydrocephalus, and usually died 
within 4 months.51 None of these deficits were observed 
in SKO mice,51 suggesting that it is the loss of pericyte-de-
rived rather than vSMC-derived laminin that causes these 
changes. Given that hydrocephalus itself can cause BBB 
compromise, it remains unclear whether BBB disruption 
in PKO mice is due to loss of pericytic laminin or secondary 
to hydrocephalus. Based on that hydrocephalus is highly 
genetic background dependent,61–67 we hypothesise that 
we can eliminate or reduce hydrocephalus by crossing the 
PKO mice into different backgrounds. We are currently 
testing this hypothesis in our laboratory.

Unlike laminin α5 global knockout mice, laminin 
α4 null mutants are viable.68 They show compromised 
vascular integrity and haemorrhage at perinatal stage but 
not in adulthood.68 Since laminin α5 expression in the 
vasculature starts after birth,48 69 it is believed that loss of 
laminin α4 is compensated by laminin α5, which rescues 
the haemorrhagic phenotype in adulthood. Recently, 
mice with laminin α5 deficiency in endothelial cells 
were generated.70 71 These mutants fail to display any 
obvious defects under homeostatic conditions,70 71 again 
suggesting potential compensation between laminin 
α4 and α5. Due to this mutual compensation, the role 
of endothelial laminin in BBB integrity remains largely 
unknown. These loss-of-function studies are summarised 
in table 1.

Nidogen
Nidogen, also known as entactin, functions to stabilise 
the collagen IV and laminin networks. Two nidogen 
isoforms (nidogen-1 and nidogen-2) have been identified 
in mammals.72 Interestingly, mice deficient for nidogen-1 
or nidogen-2 are grossly normal, except that a mild alter-
ation in brain capillary BM is observed in nidogen-1 
mutants.72–74 In addition, although nidogen-1 expression 
is unchanged in nidogen-2 null mice,75 redistribution 
and upregulation of nidogen-2 have been observed in 
nidogen-1 null mice.76 These results indicate the existence 
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Table 1  Loss-of-function studies on major BM components

Genes Knockout/mutation Cre promoter Knockout phenotype References

Collagen IV

 � Collagen 4A1/2 Global knockout – BM structural deficiencies and 
embryonic lethality (E10.5–E11.5)

39

 � Collagen 4A1 Lacking exon 41 in both alleles – Embryonic lethality 45

 � Collagen 4A1 Lacking exon 41 in one allele – Intracerebral haemorrhage and 
porencephaly

40 41

 � Collagen 4A1 Conditional knockout Rosa26-CreER, 
Tie2-Cre, Pdgfrb-
Cre, Gfap-Cre

Intracerebral haemorrhage and 
porencephaly with different severity

42

 � Collagen 4A1/2 Missense mutations – Vascular defects and brain 
malformations

43 44

 � Collagen 4A2 Missense mutations – Intracerebral haemorrhage 45

Laminin

 � Laminin α2 Global knockout – BBB disruption 58

 � Laminin α4 Global knockout – Haemorrhage during embryonic/
neonatal stage

68

 � Laminin α5 Global knockout – Embryonic lethality (~E17) and 
defects in neural tube closure and 
neural crest cell migration

52–54

Conditional knockout Tie2-Cre
(endothelium)

No gross CNS abnormalities under 
homeostatic conditions

70 71

 � Laminin β1 Global knockout – Embryonic lethality (E5.5–E6.5) 55

 � Laminin γ1 Global knockout – Embryonic lethality (E5.5–E6.5) 55–57

Conditional knockout Nestin-Cre (neural 
progenitors)

BBB breakdown and intracerebral 
haemorrhage

1 87

Conditional knockout Pdgrfb-Cre (mural 
cells)

Hydrocephalus and BBB breakdown 51

Nidogen

 � Nidogen-1 Global knockout – Mild BM alteration in brain capillaries 72–74

 � Nidogen-2 Global knockout – No effect on BM formation 75

 � Nidogen-1 and 
nidogen-2

Global knockout – BM defect and perinatal lethality 77–79

Perlecan

 � Perlecan Global knockout – Embryonic lethality (E10–E12) 84–86

BBB, blood–brain barrier; BM, basement membrane; CNS, central nervous system. 

of compensatory mechanism between nidogen-1 and 
nidogen-2. Consistent with this speculation, deletion of 
both nidogen-1 and nidogen-2 leads to severe BM defects 
and perinatal lethality.77–79 It remains unclear how nido-
gens contribute to BBB integrity.

Perlecan
Perlecan, also known as heparan sulfate proteoglycan 2 
(HSPG2), is an extremely large protein present in most 
BMs.80 It has various domains (I–V) and motifs, which 
enable them to interact with a large number of mole-
cules,81–83 such as ECM proteins and heparin-binding 
growth factors. Loss-of-function studies demonstrated 
that perlecan-deficient mice died at E10–E12. In addition, 

many complex phenotypes in multiple tissues/organs 
were found in these mutants, although BM formation 
was not affected.84–86 These results suggest that perlecan 
is dispensable for BM formation but required for embry-
ogenesis. Due to this early embryonic lethality, the func-
tion of perlecan in BBB integrity remains unknown.

Concluding remarks
The BBB plays essential roles in brain homeostasis 
under physiological conditions and disease pathogen-
esis/progression under pathological conditions. Recent 
studies strongly suggest that the BM also actively partic-
ipates in BBB regulation. However, how exactly the BM 
regulates BBB integrity at the molecular and cellular 
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levels is largely unknown due to its intrinsic complexity 
and the lack of research tools. With the advancement in 
genetics and biochemistry, we are starting to answer this 
important question. This knowledge will widen/deepen 
our understanding of BBB regulation and promote the 
development of innovative therapies for neurological 
disorders with BBB disruption.
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