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Abstract

Cyclic guanosine monophosphate (cGMP) influences intrarenal hemodynamics in animal models, 

but the relationship between cGMP and renal function in adults with type 1 diabetes (T1D) 

remains unclear. In this study, plasma cGMP correlated with efferent arteriolar resistance, effective 

renal plasma flow, renal vascular resistance in adults with T1D.
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nitric oxide; cyclic guanosine monophosphate; efferent arteriolar tone; longstanding type 1 
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Introduction:

Longstanding type 1 diabetes is associated with increased afferent (RA) and efferent 

arteriolar (RE) tone with decreased glomerular filtration rate (GFR) and effective renal 

plasma flow (ERPF), which relate to exaggerated renin-angiotensin-aldosterone system 

(RAAS) activation (1). Cyclic guanosine monophosphate (cGMP) is also thought to play a 

role in regulating intrarenal hemodynamic function (2). In response to natriuretic peptide 

(NP) and nitric oxide (NO) activation, cGMP is synthesized by particulate (pGC) and 

soluble (sGC) guanylyl cyclases, respectively (3). While both sGC and pGC activation 

increase intracellular concentrations of cGMP, pGC activation accounts for the majority of 

the circulating cGMP (3, 4). In the NP/pGC/cGMP pathway, NP receptor A (NPR-A) and B 

(NRP-B) are activated by all three NPs with resultant increased circulating cGMP. Animal 

data suggest that activation of NPR-A results in increased cGMP, triggering RA vasodilation 

and RE vasoconstriction (5). It is, however, unclear whether cGMP contributes to the 

intrarenal hemodynamic dysfunction of longstanding type 1 diabetes in humans. 

Accordingly, our aim was to define the relationship between plasma cGMP, intrarenal 

hemodynamic function and plasma markers of tubular injury in longstanding type 1 

diabetes.

Methods:

This study represents a secondary analysis of the Canadian Study of Longevity in Type 1 
Diabetes. The demographics and composition of this cross-sectional study have been 

previously described (1). In the subset undergoing in-hospital phenotyping procedures, 

adults with type 1 diabetes of duration ≥ 50 years (n=66) and age- and sex-matched 

comparators without diabetes (n=73) had GFR by plasma inulin clearance, ERPF by plasma 

p-aminohippurate (PAH) clearance, plasma NO, cGMP, NGAL and β2M measured by 

methods as previously described (1, 6). Per study design, participants with type 1 diabetes 

were categorized as diabetic kidney disease (DKD) resistors if they had eGFRMDRD ≥ 60 
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ml/min/1.73m2 and 24-hour urine albumin excretion < 30 mg/day, otherwise they were 

assigned to the DKD group.

Statistical analyses were performed using SAS version 9.4 for Windows (SAS Institute, 

Cary, NC). Continuous variables were assessed for normality (Shapiro-Wilk test and 

inspection of histograms). Comparisons of clinical characteristics between controls, DKD 

resistors, and DKD subgroups were made using ANOVA, the Kruskal-Wallis test, or the χ2-

test, depending on variable distribution. Comparisons between adults with and without type 

1 diabetes were made with student t-test and Mann–Whitney U test as appropriate. The 

relationships were examined by Pearson correlation and multivariable linear regression 

models, adjusted for age, sex, SBP and HbA1c. Positively skewed variables were natural log 

transformed for inclusion in the linear regression models. We also evaluated whether type 1 

diabetes and DKD resistor status were effect modifiers on the relationships between plasma 

NO, cGMP and parameters of intrarenal hemodynamic function. Analyses were considered 

exploratory and hypothesis generating and adjustments for multiple comparisons were not 

employed. An α-level of 0.05 (two-sided) was used to test for statistical significance.

Results:

Adults with type 1 diabetes had greater plasma cGMP than their normoglycemic peers 

(geometric means [95% CI]: 5.4 [3.8, 6.6] vs. 4.2 [3.1–5.8] pmol/mL, p=0.004), whereas 

plasma NO was not significantly different (p=0.15). Plasma cGMP was also higher in adults 

with diabetic kidney disease (DKD) compared to those without DKD (Table 1). No 

difference in plasma NO was observed between participants with and without DKD (Table 

1). Plasma cGMP strongly correlated with RE (Table 2) in adults with type 1 diabetes (Table 

2). There was a significant interaction between cGMP and RE by type 1 diabetes status 

(p<0.0001). cGMP also positively correlated with NGAL and β2M in adults with type 1 

diabetes (Table 2). In contrast, these relationships were not evident in adults without type 1 

diabetes (Table 2).

Discussion:

Based on our analysis, elevated RE observed in longstanding type 1 diabetes is related to 

greater plasma cGMP concentrations compared to normoglycemic peers. We speculate that 

the greater plasma cGMP concentration observed in adults with type 1 diabetes may relate to 

ANP activation in response to renal hypoxia. In rat models, hypoxia increases urinary cGMP 

without changing GFR, possibly due to an attempt to sustain filtration via RA vasodilation 

and RE vasoconstriction (7). Atrial natriuretic peptide (ANP) is recognized to be regulated in 

response to renal hypoxia, and also exert cytoprotective effects (8). While we did not 

observe a relationship between plasma cGMP and RA in our study, this may relate to the 

RAAS-mediated predominant RA vasoconstriction in longstanding type 1 diabetes (1). A 

substantial amount of urinary cGMP is derived from plasma via tubular secretion. 

Accordingly, elevated plasma cGMP in longevity study participants may be in part due to 

tubular injury and impaired secretion, thus explaining the relationship between plasma 

cGMP and NGAL and β2M. It is also important to note that there are data suggesting 

decreased urinary and plasma cGMP in diabetes models, and in particular impairment of the 
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NO/cGMP pathway (9). While the reasons for these inconsistencies remain unclear, it may 

at least be partially explained by the type of biological fluid used to measure cGMP, i.e. 

urine vs. blood since the NP/pGC/cGMP pathway is a stronger contributor of circulating 

cGMP.

This is to our knowledge the first study examining the relationships between NO, cGMP, 

GFR, ERPF and calculated parameters of intrarenal hemodynamic function in participants 

with longstanding type 1 diabetes. The gold standard techniques to quantify GFR and ERPF 

by inulin and PAH clearance methods are significant strengths of our study. This study is 

subject to survivorship bias, since inclusion required participants to have lived with type 1 

diabetes for 50 years or more. Therefore, potential participants with progressive or advanced 

DKD may not have been captured in this longevity study because of related mortality, which 

limits the overall generalizability of these findings. Further research is needed to define the 

role of the NP/pGC/cGMP pathway in the pathogenesis of DKD in type 1 diabetes, and 

whether better understanding of this pathway can be leveraged to develop novel therapies to 

combat DKD.
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• The relationship between cyclic guanosine monophosphate (cGMP) and 

intrarenal hemodynamic function is poorly understood in type 1 diabetes 

(T1D).

• In this study, plasma cGMP strongly correlated with efferent arteriolar 

resistance, effective renal plasma flow and renal vascular resistance in adult 

with longstanding T1D.
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