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Abstract

According to recent research advance, it is interesting to identify new, potent and selective 

inhibitors of human butyrylcholinesterase (BChE) for therapeutic treatment of both the 

Alzheimer’s disease (AD) and heroin abuse. In this study, we carried out a structure-based virtual 

screening followed by in vitro activity assays, with the goal to identify new inhibitors that are 

selective for BChE over acetylcholinesterase (AChE). As a result, a set of new, selective inhibitors 

of human BChE were identified from natural products with solanaceous alkaloid scaffolds. The 

most active one of the natural products (compound 1) identified has an IC50 of 16.8 nM against 

BChE. It has been demonstrated that the desirable selectivity of these inhibitors for BChE over 

AChE is mainly controlled by three key residues in the active site cavity, i.e. residues Q119, A277, 

and A328 in BChE versus the respective residues Y124, W286, and Y337 in AChE. Based on this 

structural insight, future rational design of new, potent and selective BChE inhibitors may focus on 

these key structural differences in the active site cavity.

Introduction

Cholinesterases, including both acetylcholinesterase (AChE) and butyrylcholinesterase 

(BChE), are among the well-known targets for treatment of Alzheimer’s disease (AD), the 

most serious neurodegenerative disease that has affected about 30 million people [1]. In fact, 

the first four drugs that have ever been approved by the FDA for the AD treatment are 
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cholinesterase inhibitors that either inhibit both AChE and BChE (tacrine, doneperzil, and 

rivastigmine) or selectively inhibit AChE (galantamine). However, studies reported in recent 

years have revealed that BChE might be a better target compared to AChE for the AD 

treatment [2–4]. In other words, a BChE-selective inhibitor might be more promising than an 

AChE inhibitor for the AD treatment [2–14].

In addition, in our recently reported study [15], we proposed and validated a new therapeutic 

strategy for heroin toxicity treatment by using a selective BChE inhibitor to block heroin 

activation. It has been demonstrated that a selective BChE inhibitor can be used to 

significantly attenuate the heroin-induced toxicity and physiological effects [15]. Hence, it is 

interesting to develop potent and selective BChE inhibitors in drug development for 

therapeutic treatment of both the AD and heroin abuse.

In fact, a variety of cholinesterase inhibitors have been reported in literature, with various 

scaffolds. Most of reported cholinesterase inhibitors are either not sufficiently potent for 

BChE [16–27] or almost equally potent for both AChE and BChE [25, 28–41]. For some 

other BChE inhibitors reported, the selectivity is unknown (not tested at all) [42, 43]. Few 

types of cholinesterase inhibitors have promising potency and selectivity for BChE over 

AChE [12, 17, 25, 38, 44–56]. Some BChE inhibitors were also identified through virtual 

screening methods but either their activity was mediocre [57] or their selectivity over AChE 

was not reported [58, 59]. It is highly desired to identify new, potent and selective BChE 

inhibitors as options for further drug development.

Here we report the identification of a set of new, selective BChE inhibitors from natural 

products with solanaceous alkaloid scaffolds through structure-based virtual screening and 

in vitro activity assays.

Materials and methods

Structure-based virtual screening.

Our virtual screening was performed on the Development Therapeutics Program (DTP) 

Release 4 compound library including ~265,000 compounds available at the National 

Cancer Institute (NCI) (https://cactus.nci.nih.gov/download/nci/) by using the X-ray crystal 

structures of human BChE (PDB entry 4BDS) [60] and AChE (PDB entry 4EY5) [61]. 

During the virtual screening, Autodock Vina 1.1.2 software [62] was used to search for the 

optimum binding conformation for each compound in the NCI compound library. To 

minimize the searching area, a 15 Å×15 Å×15 Å box containing the active site of BChE or 

AChE was chosen as the target binding site. The protein was set rigid and all the water 

molecules in the original crystal structure were removed prior to molecular docking. The 

default settings of the Autodock Vina was used and no other parameters were modified. The 

compounds were then ranked by their binding free energies (docking score) with BChE. 

Within the top-ranked compounds, only the compounds predicted to have a positive binding 

free energy with AChE will be selected and ordered from the NIH DTP program. All the 

binding modes were then investigated and visualized using the PyMol [63].
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In vitro activity tests.

The top compounds selected from the virtual screening were first ordered from the NCI DTP 

program and assayed for their inhibitory activity against BChE. The most compromising 

compounds (1 to 3) were also ordered from Sigma-Aldrich (St Louis, MO) for comparison 

and verification. Both wild-type AChE and BChE were expressed and purified based on our 

previous reported protocol [64]. For activity determination, we followed the original 

Ellman’s protocol, as described in detail in our previous report [64]. The concentration of 

substrate butyrylthiocholine for BChE (or acetylthiocholine for AChE) was at 10 μM. The 

tested compounds were first dissolved in DMSO and the final DMSO concentration was at 

1%.

Results and discussion

Based on the structure-based virtual screening, we selected a set of 10 compounds (1 to 10 
depicted in Figure 1) that were predicted to bind with BChE only, without binding with 

AChE. All these compounds are natural products with solanaceous alkaloid scaffolds. The 

binding free energies calculated for AChE binding with compounds 1 to 10 ranged from 

+4.5 kcal/mol to +17 kcal/mol; the positive binding free energy means that the free energy 

of the protein-ligand complex is higher than the total free energy of the separated protein 

and ligand. This is because BChE has a relatively larger active site cavity than AChE such 

that these larger molecules can only fit the BChE active site cavity, whereas the AChE active 

site cavity is not large enough to accommodate these molecules (see below for the detailed 

binding structures).

Next, the computationally selected compounds 1 to 10 (ordered from the NCI DTP) were 

assayed for their inhibitory activity against human BChE. They were assayed first for their 

inhibitory activity at a concentration of 5 μM. As seen in Table 1, these compounds at 5 μM 

inhibited the BChE activity by 8-100%. The top-3 compounds (1 to 3) inhibited BChE by at 

least 95%. The most active compounds (1 to 3) were tested further for the dose-dependent 

inhibition in order to determine their IC50 values (see Figure 2 and Table 1) against BChE. 

As seen in Table 1, we obtained IC50 = 16.8 nM, 346 nM, and 391 nM for compounds 1 to 

3, respectively. Similar results were also obtained from the use of compounds 1 to 3 ordered 

from Sigma-Aldrich (St Louis, MO).

Interestingly, according to our detailed literature search, compounds 1 to 3 were tested for 

their inhibitory activity against AChE by Roddick et al. [65], and they demonstrated that 

none of these compounds (1 to 3) at a high concentration of 100 μM had significant 

inhibition against AChE. According to our own assays in this study, at a concentration of 5 

μM, compounds 1 to 3 from Sigma-Aldrich (St Louis, MO) inhibited the AChE activity by 

only about 10%, 19%, and 2%, respectively (see Table 1). To the best of our knowledge, we 

have not found any report of testing these compounds against BChE. Taking all of these 

experimental data together, we can conclude that compounds 1 to 3 are indeed selective 

inhibitors of BChE, which is consistent with the aforementioned prediction from 

computational screening.
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Depicted in Figure 3 are the docked binding structures of BChE with the most active 

compounds (1 to 3) identified. According to the docked binding structures with BChE, the 

inhibitor (compound 1 or 2 or 3) stays in a mainly hydrophobic environment, but having a 

favorable hydrogen bond (HB) between the hydroxyl group of the inhibitor and the 

backbone oxygen of amino-acid residue H438. The HB with compound 1 is the strongest 

(with the shortest O…H distance of 1.956 Å), explaining why compound 1 is the most potent 

inhibitor of BChE with IC50 = 16.8 nM within these three inhibitors. With these three 

inhibitors, their order of the HB strengths (see Figure 2) is consistent with their order of the 

IC50 values.

Panels B, D, and F of Figure 3 also show why the AChE active site cavity cannot 

accommodate any of these compounds. Specifically, panels A, C, and E show the docked 

favorable binding structures of BChE with compounds 1, 2, and 3, respectively. The 

corresponding unfavorable interactions of the compounds with AChE (after BChE is 

replaced with AChE) are depicted in panels B, D, and F, respectively. For the major 

differences between BChE and AChE in the protein-ligand interactions, residues Q119, 

A277, and A328 in BChE are replaced with Y124, W286, and Y337, respectively, in AChE. 

In the X-ray crystal structures of AChE-inhibitor complexes [66, 67], these residues (Y124, 

W286, and Y337) also played important roles in AChE binding with the inhibitors through 

hydrophobic interactions. Possible clash with any of these residues is expected to greatly 

impair the binding of the compound with AChE. According to our molecular modeling 

studies (see Figure 3), the compound (1 or 2 or 3) has clash with the side chains of Y124, 

W286, and Y337 in AChE, explaining why these compounds are selective for BChE over 

AChE for their inhibitory activities.

Conclusion

Through combined structure-based virtual screening and in vitro activity assays, we have 

successfully identified a set of new, selective inhibitors of human BChE from natural 

products with solanaceous alkaloid scaffolds. The most potent BChE inhibitor (compound 1) 

identified has an IC50 of 16.8 nM against BChE. These interesting outcomes suggest that 

natural products may be used as a promising resource in our future search of potent and 

selective inhibitors of BChE for BChE-based drug discovery.

Notably, the selectivity of these compounds for BChE over AChE is mainly controlled by 

three key residues in the active site cavity, i.e. residues Q119, A277, and A328 in BChE 

versus the respective residues Y124, W286, and Y337 in AChE (all with relatively larger 

side chains). In light of this structural insight, it is interesting to focus on these key structural 

differences in future rational design of new, potent and selective BChE inhibitors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• Virtual screening using 3D structures of both BChE and AChE is effective.

• Highly selective BChE inhibitors have been identified from natural products.

• The compounds with a solanaceous alkaloid scaffold can bind with BChE 

only.

• Three key residues are mainly responsible for the extremely high selectivity.
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Figure 1. 
Molecular structures of the 10 compounds with solanaceous alkaloid scaffolds selected 

through virtual screening
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Figure 2. 
Dose-dependent inhibition of human BChE by compounds 1 (A), 2 (B), and 3 (C).
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Figure 3. 
Modeled interactions of BChE and AChE with compounds 1 to 3. (A) Favorable binding 

structure of compound 1 with BChE. (B) Unfavorable interaction of compound 1 with AChE 

after BChE in panel A is replaced with AChE. (C) Favorable binding structure of compound 

2 with BChE. (D) Unfavorable interaction of compound 2 with AChE after BChE in panel C 

is replaced with AChE. (E) Favorable binding structure of compound 3 with BChE. (F) 
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Unfavorable interaction of compound 3 with AChE after BChE in panel E is replaced with 

AChE.
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Table 1.

Inhibitory activity of computationally selected solanaceous alkaloids (compounds 1 to 3) against human BChE

Compound ID NCI ID Conventional Name Inhibition (%) of BChE at 5 μM Inhibition (%) of AChE 
at 5 μM

IC50 against BChE 
(nM)

1 76025 Solanidine 100 10 16.8

2 27592 Tomatidine 95 19 346

3 35543 Solasodine 98 2 391

4 734950 44

5 76026 39

6 152144 24

7 23898 22

8 7520 18

9 117607 14

10 117612 8.3
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