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Abstract

An important premise of epidemiology is that individuals with the same disease share similar 

underlying etiologies and clinical outcomes. In the past few decades, our knowledge of disease 

pathogenesis has improved, and disease classification systems have evolved to the point where no 

complex disease processes are considered homogenous. As a result, pathology and epidemiology 

have been integrated into the single, unified field of molecular pathological epidemiology (MPE). 

Advancing integrative molecular and population-level health sciences and addressing the unique 

research challenges specific to the field of MPE necessitates assembling experts in diverse fields, 

including epidemiology, pathology, biostatistics, computational biology, bioinformatics, genomics, 

immunology, and nutritional and environmental sciences. Integrating these seemingly divergent 

fields can lead to a greater understanding of pathogenic processes. The International MPE Meeting 

Series fosters discussion that addresses the specific research questions and challenges in this 

emerging field. The purpose of the meeting series is to: discuss novel methods to integrate 

pathology and epidemiology; discuss studies that provide pathogenic insights into population 

impact; and, educate next-generation scientists. Herein, we share the proceedings of the Fourth 

International MPE Meeting, held in Boston, MA, USA on May 30th to June 1st, 2018. Major 

themes of this meeting included ‘integrated genetic and molecular pathologic epidemiology’, 

‘immunology-MPE’, and ‘novel disease phenotyping’. The key priority areas for future research 

identified by meeting attendees included integration of tumor immunology and cancer disparities 

into epidemiologic studies, further collaboration between computational and population-level 

scientists to gain new insight on exposure-disease associations, and future pooling projects of 

studies with comparable data.

Introduction

A central objective of epidemiology is to investigate why some diseases (or related-health 

events) occur in certain groups of people but not in others, with the view to applying that 

knowledge to prevent or control those outcomes in the future. Traditionally in this effort, 

diseases or health-events are treated as binary outcomes; for example, a group of people 

either have or do not have cancer at a given organ site and, if etiology is of interest, rates of 

that outcome can be compared across levels of a potential exposure. While this approach has 

identified major causes of morbidity and mortality in human populations that have 

subsequently supported important public health policy changes, the over-simplified ‘yes vs 

no’ nosology misses the essential concept of pathogenic heterogeneity. Most human 

diseases, and essentially all cancers, are biologically different from one patient to the next. 

Indeed, many human diseases are complex processes that occur for reasons that are, in a 

precise sense, unique to that individual, the result of that person’s specific host 
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characteristics (e.g., genome) and a multitude of distinct external factors (e.g., diet, lifestyle, 

environmental, microbiome). Molecular pathological epidemiology (MPE) is an integrative 

scientific discipline that examines the interplay of these unique disease, host, and external 

factors.

One of the main aims of MPE is to investigate potential etiologic/survival factors across 

strata of molecular characteristics for the disease-of-interest. The underlying premise with 

an etiologic study in MPE is that diseases that share certain molecular alterations are more 

likely to share common causes; similarly, for prognosis studies, the general hypothesis is 

that some external or endogenous factors may influence disease outcomes according to 

molecular attributes because those factors likely interact with the diseased cells in the local 

tissue microenvironment. Historically, these molecular classifications were often drawn from 

the clinic, such as microsatellite instability (MSI) for colorectal cancer and statuses of ESR1 

(estrogen receptor 1, ER), PGR (progesterone receptor, PR), and ERBB2 (HER-2) for breast 

cancer (1–6). With the recent growth of high-throughput biologic data in large epidemiology 

studies, disease phenotyping has become more sophisticated, and includes tumor 

sequencing, gene expression, proteomics, and epigenomics.

The International MPE Meeting Series began in April 2013 as a small, local meeting of 10 

investigators at the Harvard School of Public Health. Subsequent meetings became larger, 

with over 150 scientists from more than 16 countries attending each of the Second 

(December 2014) (7) and Third (May 2016) (8) International MPE meetings. Because MPE 

is inherently transdisciplinary and it is a relatively new scientific discipline, these meetings 

gave attendees a rare opportunity to share ideas, methods, successes and challenges; further, 

they were an opportunity to help train the next generation of MPE scientists. Herein, we 

share the proceedings of the Fourth International Molecular Pathological Epidemiology 

(MPE) Meeting, held in May/June 2018 at Dana-Farber Cancer Institute in Boston, MA, 

USA. A list of the speaker names, lecture titles, and key references appears in Table 1.

30 May 2018

For the first time in the history of the International MPE Meeting Series, a pre-meeting 

interactive workshop was held for current and future leaders in MPE. Dr Reiko Nishihara 

chaired the session which included panelists from a wide range of career stages and 

institutions (Drs Christine Ambrosone, Peter Campbell, Montserrat Garcia-Closas, Marios 

Giannakis, John Quackenbush, and Molin Wang). The workshop consisted of questions from 

the session chair and audience members with responses from panelists concerning grant 

writing for transdisciplinary science, transdisciplinary team building, and training 

opportunities. We discussed common mistakes in grant applications, development of 

research questions for grants and manuscripts, career development of transdisciplinary 

expertise, areas of training that are fundamentally important for trainees to pursue MPE 

research, and tips for successful collaborations across disciplines.

31 May 2018

Session 1 – Integrated genetic, epidemiologic, and tumor analyses #1 
(Session Chair: Dr Peter Campbell)—The first speaker of the meeting was Dr Lorelei 
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Mucci who presented an overview of her group’s work on integrating tissue biomarkers into 

prostate cancer epidemiology studies. She focused on two common molecular subtypes: the 

androgen-regulated gene fusion TMPRSS2:ERG and loss of the tumor suppressor PTEN. 

This work leverages prostate tissue biorepositories nested within the Physicians’ Health 

Study (PHS) and Health Professionals Follow-up Study (HPFS). The first set of studies 

focused on the high heritability of prostate cancer. Inherited variation within the androgen 

receptor (AR), which regulates AR expression, was associated with ERG-positive cancer but 

not ERG-negative disease (9). Of 39 inherited prostate cancer risk loci, 10 were 

differentially associated with risk when stratified by ERG status (10). ERG-positive cancers 

show higher expression of the insulin and IGF1 receptors (11). In unpublished data, 

vigorous physical activity was associated with a significantly lower risk of ERG-positive 

disease, whereas there was no association with ERG-negative disease. Finally, use of the 

cholesterol lowering drug, statins, was associated with a substantially lower risk of tumors 

showing PTEN loss. These data highlight the etiologic heterogeneity of prostate cancer, and 

the opportunities to elucidate discoveries based on integrating tissue biomarkers.

Dr Nilanjan Chatterjee lectured on the development and utility of a broad mixed-effect two-

stage logistic regression model for discovering new breast cancer germline genetic risk loci 

in the context of tumor heterogeneity (12, 13). Breast cancers are highly heterogeneous, and 

it may become quickly inefficient to evaluate each potential risk locus with each different 

disease sub-type. With genome-wide association study (GWAS) data from the Breast Cancer 

Association Consortium (BCAC) that includes nearly 100,000 controls and a little over 

100,000 cases, approximately 180 SNPs were discovered for breast cancer risk overall. 

When extending this work to subtype-specific analyses, a two-stage logistic regression 

approach was preferred over standard analyses to account for the large number of 

comparisons, correlations between markers, missing marker data, and other reasons. Case-

control and case-case odds ratios were calculated using the mixed-effect two-stage approach 

and 11 novel SNPs for subtype-specific breast cancers were identified. One of the more 

interesting findings from this work was the discovery that a TP53 SNP was associated with 

increased risk of luminal breast cancer and with decreased risk for triple negative tumors, 

probably reflecting the different pathologic mechanisms that drive these different tumor sub-

types and potentially underscoring the broad utility of this statistical approach.

In the last lecture of the first session, Dr Melissa Bondy spoke about GWAS results for 

gliomas, overall and when stratified by histological and molecular subtypes (14). Brain 

tumors, which comprise a highly heterogenous group of cancers, account for 1–2% of all 

cancers overall. To better understand germline genetic risk factors for glioma, Dr Bondy and 

collaborators pooled data from eight independent glioma GWAS datasets. Their combined 

meta-analysis identified 13 novel glioma risk loci (five for glioblastoma multiforme (GBM) 

and eight for non-GBM). Curiously, all but one locus showed significant allele frequency 

differences between GBM and non-GBM tumors. The only locus consistently associated 

with glioma risk was at 17p13.1 (TP53). Overall, genetic heritability is estimated to account 

for approximately 1/3 of the population variability in glioma. Further work showed a high 

degree of concordance, according to germline genetics, between familial and sporadic 

gliomas, suggesting genetic predisposition is largely the same for both types of disease. 

Many of the risk SNPs were in DNA-repair or telomere maintenance related pathways. 
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Future work in this area will include additional, detailed work within core pathways, 

sequencing efforts, and gene-environment interaction.

Session 2 - Integrated genetic, epidemiologic, and tumor analyses #2 
(Session Chair: Dr Kana Wu)—The second morning session continued with the earlier 

theme of integrated studies in cancer epidemiology. Dr Montserrat ‘Montse’ Garcia-Closas’s 

lecture gave an overview of recent developments in risk factor identification for breast 

cancer according to clinical subtype and the implications for those results on personal risk 

prediction. Breast cancer is a heterogenous disease with different survival outcomes. The 

most aggressive tumors are hormone receptor negative tumors, including triple negative 

tumors that are also negative for ERBB2 (HER2) amplification. These phenotypes represent 

approximately 13% of tumors and are more common in younger women and women of 

African descent. GWAS have identified nearly 180 germline loci for breast cancer risk 

overall. More recent work has identified clusters of SNPs associated with specific tumor 

features, including ESR-1 status and grade. Dr. Garcia-Closas and colleagues have 

developed Polygenic Risk Scores (PRS) for ESR-1+ and ESR-1-negative specific disease 

and are integrating them into risk models to identify women at different risks of breast 

cancer overall, and by subtypes; however, more work on implementation is needed before 

translating these tools into clinical practice (12, 13, 15–17).

Dr Rulla Tamimi described the role of early life risk factors on markers in non-tumor tissues. 

Many risk factors for breast cancer in adults occur early in life. More specifically, there are 

windows of susceptibility that may be relevant to specific tissue markers of disease 

processes. Her group has conducted work on early life body size in the Nurses’ Health 

Studies (NHS) that asked women about their body size at ages 5, 10, and 20. They found 

that larger body size in early life was inversely associated with proliferative benign breast 

disease and breast cancer risk (18–20). In a study of normal breast tissue adjacent to benign 

breast disease lesions, they found women who reported as being heavier early in life (ages 

5–10) had a reduction of MKI67 (Ki67) expression (21). In additional work, her group has 

examined breast tissue gene expression in the Nurses’ Health Studies using a transcriptome 

array. In preliminary work, they have seen differences in gene expression patterns related to 

exposures when considering tumor and adjacent normal tissue. Dr Tamimi echoed a theme 

that was common during this year’s meeting: the need for more consortia work for 

validation, replication, and new discovery.

Dr Christine Ambrosone discussed her research focused on understanding the etiology of 

more aggressive breast cancers in African American women, particularly tumors that do not 

express ESR1 (estrogen receptor, ER) that are associated with poorer prognosis (22). She 

described results from a study of DNA methylation in tumors from African-American and 

European-American women that found that methylation of a gene important to guiding the 

luminal phenotype, FOXA1, was greatest in ESR1 (ER)-negative breast cancers (23). 

Methylation was more common in women who had children and did not breastfeed, 

suggesting a mechanism for the increased risk of ESR1 (ER)-negative breast cancer with 

parity, and not breastfeeding (24).
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Session 3 - Integrated genetic, epidemiologic, and tumor analyses #3 
(Session Chair: Dr Song Yao)—After a 2-hour pause in podium presentations for 

attendees to interact and to view poster presentations, the afternoon sessions began with the 

third installment of the integrated epidemiology theme.

The first lecture of the afternoon session was presented by Dr Matty Weijenberg who 

discussed the role of MPE in supporting lifestyle guidelines for cancer prevention. She 

illustrated how MPE could contribute to the research directions provided by the third expert 

report from the World Cancer Research Fund (WCRF)/ American Institute for Cancer 

Research (AICR) on diet, nutrition, physical activity and cancer. First, she showed examples 

of how mutational spectra of tumors can provide clues to mechanisms, for example how 

heme iron intake is associated with specific G to A mutations in KRAS genes in colorectal 

tumors, pointing to the role of alkylating agents (25). More recent studies suggest that tumor 

signatures of mutational processes are associated with exogenous mutational processes (26). 

Second, she showed how exposure to the Dutch Hunger Winter was associated with a 

reduced risk of colorectal cancer only in tumors with a CpG-island methylator phenotype 

(CIMP) (27) and tumors with increasing number of IGFBP genes methylated (28). Third, 

she showed how investigating subtypes of tumors can reveal previously unknown etiologies. 

For example, results from a meta-analysis revealed how adherence to a Mediterranean diet is 

associated specifically with a reduced risk of ESR1 (ER)-negative and PGR (PR)-negative 

postmenopausal breast cancer (29).

In the final lecture of the ‘integrated epidemiology’ sessions, Dr Timothy Rebbeck discussed 

the role of germline genetics in explaining some disparities for prostate cancer (30, 31). 

Prostate cancer has higher incidence and mortality rates in African American men compared 

to all other race/ethnic groups. Many prostate cancer susceptibility loci have been identified 

via GWAS for prostate cancer overall. But the contribution of these loci to prostate cancer 

disparities is unclear. To address this issue, Dr Rebbeck’s group evaluated the population 

structure of 68 previously identified prostate cancer susceptibility loci by calculating: 1) 

genetic disparity contribution statistics to quantify the contribution of each SNP to 

differences in prostate cancer risk across populations, and 2) genetic risk scores that 

integrate GWAS results with allele frequency data from 45 African and 19 non-African 

populations. They found that predicted prostate cancer risks were highest for men of West 

African descent and lowest for men of East Asian descent. These population-level 

differences were further explained by the out-of-Africa bottleneck and natural selection. 

Only a few loci seemed to drive the excess prostate cancer risk observed in African 

American men. Although most prostate cancer susceptibility loci are evolving neutrally 

across different race/ethnic groups, there are several instances where alleles have hitchhiked 

at higher frequencies with adaptive alleles, including alleles for skin pigmentation (at 2q37).

Session 4 – Immunology, immunotherapy and prevention #1 (Session Chair: 
Dr Amanda Phipps)—The first lecture in the ‘immunology-MPE’ session was given by 

Dr Shuji Ogino who spoke about the broad importance of incorporating immune system data 

into MPE studies. Despite remarkable advances of cancer immunology in recent years, 

investigations on the influences of the exposome on tumor-immune interactions lags. To 

address a substantial gap between cancer immunology and epidemiology, the integrative 
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field of immunology-MPE can investigate influences of the exposome (dietary, lifestyle, 

environmental, microbial, pharmacological, and other exposures) on tumor-immune 

interactions (32, 33). Using epidemiological studies and colorectal cancer cases with data on 

immune response, tumor molecular pathology, and tissue microorganisms, proof-of-

principle immunology-MPE studies provide evidence supporting hypotheses that several 

exposures influence carcinogenic processes through their influences on tumor-immune 

interactions (34–38). For instance, marine omega-3 polyunsaturated fatty acid intake has 

been associated with a lower risk of colorectal carcinoma containing abundant FOXP3+ cells 

(mostly regulatory T cells) (34) and a prudent dietary pattern has been associated with a 

lower risk of colorectal carcinoma containing abundant Fusobacterium nucleatum (38). 

These new insights from immunology-MPE research can provide a possible path for 

precision immunoprevention and immunotherapy.

Dr X. Shirley Liu introduced her work in mining and integrating large-scale tumor 

molecular profiles to inform cancer immunology and immunotherapy. Dr Liu discussed 

three algorithms that her laboratory developed to extract useful insights from treatment-

naïve RNA-seq samples in The Cancer Genome Atlas (TCGA). First, ‘TIMER’ can estimate 

immune cell components in tumors (39), and a webserver was created for users to explore 

immune infiltration across TCGA tumors and to draw inferences on user-provided samples 

(40). Second, ‘TRUST’ can assemble T cell receptor (TCR) and B cell receptor (BCR) 

complementarity-determining regions (CDR3s) from bulk tumor RNA-seq data (41). When 

applied to over 10,000 samples in the TCGA, TRUST assembled 3M TCR CDR3 sequences 

from tumor RNA-seq samples and revealed associations between tumor infiltrating TCR 

clonotype diversity and tumor mutational load (42). TRUST also identified 30M BCR 

sequences from TCGA tumor RNA-seq and revealed widespread B cell clonal expansions 

among other events (43)Third, ‘TIDE’ software derived gene expression signatures from 

pretreated tumor specimens to predict patient response to anti-PDCD1 (PD-1) and anti-

CTLA4 treatment (44). TIDE analyses of published immune checkpoint inhibitor trials 

suggested some tumors are unlikely to respond to anti-PDCD1 (PD-1) or anti-CTLA4 alone. 

This work indicates that tumor RNA-seq, even on treatment naïve tumors, is cost effective to 

inform tumor microenvironment and immunity. Dr Robert ‘Rocky’ Schoen described his 

group’s experiences in developing a vaccine for colorectal cancer. Immunotherapy targeting 

of antigens that are aberrantly expressed on colon cancers and polyps offers the potential for 

relatively non-invasive, non-toxic, and prolonged preventive strategies. Whereas vaccines in 

advanced cancers have had little success, likely because of immunosuppressive tumor 

microenvironments, vaccines administered in pre-malignant stages when the immune system 

is still powerful should be more effective. Dr Schoen and colleagues are testing this 

hypothesis using the adenomatous polyp-to-colon-cancer pathway. Their target is MUC1, a 

tumor-associated antigen that is abnormally expressed on polyps and colon cancers. In a 

pilot study of 39 patients with a history of advanced adenomas, after a series of 3 injections, 

almost half of the patients showed a 2-fold ratio increase in anti-MUC1 IgG at week 12 

compared to pre-vaccination levels. A booster injection at week 52 resulted in a large 

increase in IgG, demonstrating a persistent T-cell memory response (45). There was minimal 

evidence of toxicity. A double-blind randomized trial of 110 patients using a similar 
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vaccination protocol is due to report in late 2019. That trial will also evaluate a clinical 

endpoint, via assessment of adenoma recurrence.

Session 5 – Immunology, immunotherapy and prevention #2 (Session Chair: 
Dr Xuehong Zhang)—In the final session of the day, Dr Catherine Wu lectured on her 

work in identifying tumor antigens. Multiple lines of evidence demonstrate that tumor 

neoantigens are an important class of immunogenic antigens. Neoantigens arise from amino 

acid changes encoded by somatic mutations in the tumor cell. This work has advanced in 

recent years due to the availability of next-generation sequencing approaches and the 

maturation of predictive algorithms (46). One of the central questions of Dr Wu’s work is: 

can a personalized cancer vaccine stimulate anti-tumor immunity in humans? Her group 

conducted a trial in high-risk melanoma patients. They dosed 6 melanoma patients with up 

to 20 neoantigens to test for safety, feasibility and immune response. Across the 6 patients, 

they observed ~20% CD8 and >60% CD4 T cell responses against the neoantigens (47), all 

of which were new responses following vaccination. In another trial, Dr Wu and colleagues 

tested Neovax in patients with glioblastoma multiforme, a tumor with a lower somatic 

mutation rate (48). Again, they saw circulating neoantigen-specific responses. Her 

presentation ended with a series of questions that need to be addressed to implement better 

personalized immunotherapies, including the identification of methods to reduce time from 

diagnosis to vaccine administration (49).

In the final presentation of the day, Dr Marios Giannakis presented work on investigating the 

genomic mechanisms of immune evasion in colorectal cancer. Immune checkpoint blockade 

has shown activity in approximately 50% of microsatellite-instability high colorectal cancers 

while it is ineffective in microsatellite stable tumors (50, 51). To better understand the 

genetic drivers of immune evasion in colorectal cancer, Dr. Giannakis and colleagues 

integrated next generation sequencing data from over 1200 tumors with transcriptional and 

immunohistochemical measures of immune infiltration. The tumor samples for their studies 

were from TCGA, the NHS, and the HPFS (52). They demonstrated that WNT-signaling and 

immune-related genes were significantly mutated in colorectal cancer. They also found 

frequent inactivating antigen-presentation machinery mutations in MSI-high tumors, and an 

inverse association between WNT-signaling activity and T-cell infiltration in all subtypes of 

colorectal cancer. Tumors with biallelic disruptive mutations in APC or with AXIN2 super-

enhancer hypomethylation had a significantly decreased T-cell transcriptional signature (53). 

In summary, this work found evidence of immuno-editing through disruptive mutations in 

antigen-presentation machinery, and of exclusion of an effective immune response through 

an active WNT-signaling pathway in colorectal cancer. These results shed light to the 

underlying molecular mechanisms of immune evasion in this disease.

1 June 2018

The second day of the meeting began with award announcements to trainees and early career 

investigators.

Session 6 – Novel disease phenotyping in future medicine and population 
science #1 (Session Chair: Dr Jonathan Nowak)—The first lecture of the day was 
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given by Dr Jeffrey Golden who first shared a few clinical case reports whereby modern 

tools in molecular pathology aided in more precise diagnoses and superior treatments for 

patients and almost certainly improved their prognoses. Dr Golden summarized the 

importance of computational pathology (54, 55) into five central components: (1) mutation 

specific treatment stratification, including clinical trial eligibility; (2) better precision 

diagnostics; (3) superior prognostication; (4) better targeted therapies, which may be more 

effective, less toxic and more cost effective; and (5) new biomarker discovery. One of the 

central challenges for a practicing clinician is in translating the abundance of computational 

data generated by omics platforms (e.g., Oncopanel) into tractable information and, 

ultimately, into knowledge of what those mutations mean for the benefit of the patient. Dr 

Golden’s institution has converted these sorts of information into knowledge—that is, what 

mutations in those genes mean to the patient and clinician (56). He used Google maps’ 

system of layered geospatial databases as an analogy for creating relational databases for 

patients, based on a multitude of patient (e.g., clinical, omic, pharmacy) and external (e.g., 

electronic medical records, published literature) inputs, that are ultimately led back to 

actionable decisions for clinicians and their patients.

Dr Lynette Sholl’s lecture focused on recent advancements in liquid biopsy techniques for 

solid tumors. She started with a clinical case report that highlighted some of the advantages 

of liquid biopsies over tumor/solid tissues, including: tumor tissues often have limited mass 

and/or normal cell contamination; there is often a need to repeat a solid tissue biopsy upon 

relapse; and some tumors are anatomically inaccessible. Liquid biopsies can look for 

circulating tumor DNA (ctDNA) although their rarity in peripheral blood makes the 

approach challenging. Current and emerging technologies include commercial allele specific 

PCR platforms, droplet digital PCR (ddPCR), NGS, and electric field-based measurements 

(57). Investigators at her institute decided to invest in ddPCR for ctDNA testing in cancer 

patients. Using ddPCR for EGFR and KRAS hotspots, they found sensitivity was a direct 

correlate of the number of metastatic sites, owing to the amount of DNA shed into 

circulation. Patients with only 1 metastatic site saw sensitivity levels of approximately 60% 

whereas patients with four or more metastatic sites had nearly 100% sensitivity with ddPCR 

(58). Ultimately, liquid biopsy may be used in detection of early relapse after definitive 

therapy, minimal residual disease testing, or even cancer screening.

Dr Yujing (Jan) Heng’s talk highlighted the importance of gene expression pre-processing 

methods to obtain reliable and reproducible breast cancer molecular subtype classification 

by PAM50. Her work compared two established pre-processing methods (i.e., modified 

median gene centering (59) and subgroup-specific gene centering (60)) to compute 

molecular subtypes using PAM50 in tumor and tumor-adjacent tissues from participants in 

the NHS. She reported that although molecular subtypes were highly comparable using 

either method, the subgroup-specific method tends to classify more cases into more 

aggressive subtypes. The distribution of molecular subtypes within the NHS/NHS-II was 

comparable to other population-based studies and, as expected, there were more cancer 

recurrences in women with Basal-like subtype compared to Luminal A subtype. Lastly, she 

showed that the correlation of molecular subtypes classified using PAM50 and 

immunohistochemical (IHC) surrogates remain poor and more research is needed to refine 

the IHC definitions to more closely approximate PAM50 subtypes (61).
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Session 7 – Novel disease phenotyping in future medicine and population 
science #2 (Session Chair: Dr Reiko Nishihara)—After a short break, the second 

session of the day continued with the ‘novel disease phenotyping’ theme. The first lecture of 

the session was given by Dr John Quackenbush who described his group’s efforts to infer 

biological networks from GWAS and gene expression data. To do this, they developed 

several systems biology algorithms (62)(63). Dr Quackenbush’s lecture described how these 

algorithms were used to better understand networks of GWAS-identified SNPs and gene 

expression data with outcomes, and how patterns of gene networks differ between 

phenotypes. Central to this work are the hypotheses that biological systems are driven by 

complex networks; the structure of the network captures the biology of the system; and, that 

network structure is conditional, depending on tissue, biological state, and individual. One of 

the main findings from their work is that biological networks are organized into tight 

communities such that, in most instances, it is not a single gene controlling a single trait, but 

a family of genetic variants that influence a process. They also find disease-associated (i.e., 

GWAS) SNPs map to communities whose genes share functions that are related to the 

disease, and that most GWAS SNPs are not global hubs in the network, but local hubs in the 

network. Overall, their work demonstrates how network analysis can take us beyond simple 

differential expression in understanding disease (64, 65).

Dr Hugo Aerts described his work at the intersection of radiology, bioinformatics, and data 

science. He discussed recent work of building Artificial Intelligence (AI) image analysis 

systems to extract a rich radiomics set and used these features to build biomarkers (66). He 

illustrated how technological advances in AI and deep learning are moving imaging 

modalities into the heart of patient care as imaging can address a critical barrier in precision 

medicine because solid tumors can be spatially and temporally heterogeneous, and the 

standard approach to tumor sampling, often invasive needle biopsy, is unable to fully capture 

the spatial state of the tumor (67, 68). The main objectives of the talk were to learn about the 

motivation and methodology of AI technologies in radiology, to learn about the existing and 

future potential role of radiologic AI with other omics data for precision medicine, and to 

learn about open-source informatics developments (69).

Session 8 – Discussion topic special lectures (Session Chair: Dr John 
Quackenbush)—In the final session for podium presentations, the organizing committee 

selected five submitted abstracts whose topics were thought to provide the broadest interest 

and potential to generate discussion for the attendees.

Dr N Sertac Kip lectured on her work in developing a liquid biopsy for tumor detection. Dr 

Kip spoke of the limitations to standard tumor profiling (e.g., biopsy/resection), including 

invasiveness, pain, cost, and lack of sensitivity to mutations unique to the non-biopsied 

tissue (70). Further, targeted therapies place tumor cells under selective pressure, thereby 

triggering clonal progression, which can then be captured (71). Liquid biopsy is ideal for 

comparing pre- and post-treatment variants and to optimize sequence of therapy (72). Lung 

cancer appears to be an ideal tumor site for this application. Liquid biopsy measures 

biomarkers that are predictive and prognostic for lung cancer (73). Coming back to the title 

of her talk, “How solid is liquid biopsy?”, only two of 34 cases had discordance between 

solid tumor and liquid biopsy measures, indicating that the liquid biopsy is quite solid (74). 
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There are some people with mutations in tissue that are not detected in liquid biopsy. 

Sensitivity also varies by tumor type and stage (75). Research is rapidly evolving in this 

area, but the techniques are not yet suitable for wide clinical application and guidelines are 

currently lacking for standardization of the liquid biopsy results.

Dr Camila Lopes-Ramos spoke about her work in identifying biological explanations for the 

higher incidence and mortality rates for men than women from colon cancer. Lifestyle and 

serological (i.e., sex steroid hormone) differences are often postulated to explain some, but 

not all, of these observed sex differences. The potential molecular features that drive sex 

differences are understudied. Her work used both transcript-based and gene regulatory 

network methods to analyze RNA-seq data from TCGA for colon cancer. They found no 

meaningful differences between tumors from men and women for gene expression. Next, 

they examined patient-specific gene regulatory networks and found considerable sex 

differences in drug and xenobiotic metabolism via cytochrome P450 pathways which were 

considerably more pronounced in women. This finding was replicated in several independent 

study samples. This drug metabolism pathway was not associated with survival in men; 

however, women treated with chemotherapy that had increased targeting (compared to less 

targeting) of this pathway had considerably better 10-year overall survival (76). This 

network-based approach can be applied to explore other etiologic and demographic 

differences for cancer and other complex diseases.

Dr Molin Wang lectured on the problem of sample selection bias due to tissue availability, 

and solutions to this problem. Missing data is a common problem for tumor subtype data. 

This poses severe statistical challenges for MPE research because the outcome is missing. 

She reported the percentages of colorectal, breast and ovarian cancer cases with missing 

tumor marker data in representative national and international cohort studies and consortia. 

She introduced the definitions and assumptions of possible missingness patterns of the 

tumor marker data in the MPE context and used the NHS breast and colorectal cancer data to 

illustrate the problem of sample selection bias in MPE research. She then described the 

statistical methods available to explore these issues, such as the complete case analysis 

method, the missing indicator method, inverse probability weighting (77), and the multiple 

imputation method. They found that the former two methods could lead to biased estimates 

and the latter two methods were usually most helpful in dealing with the potential selection 

bias problem. She used a colorectal cancer molecular subtype to illustrate these methods. 

She described the possible scenarios when the missingness is not at random, and the 

statistical challenges in these scenarios.

Dr Song Yao presented recent data from his group on population differences between 

women of African American descent and European American descent in the breast tumor 

immune microenvironment. Convincing evidence demonstrates marked differences in 

systemic immune response between African American and European American populations 

(78–80), which is also supported in a recent study on circulating cytokine levels (81). 

However, data are scarce on population differences in tumor immune microenvironment. 

With data from the Women’s Circle of Health Study (WCHS), they showed that breast 

tumors from African American women had a significantly stronger presence of tumor-

infiltrating lymphocytes than breast tumors from European American women, independent 
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of tumor histopathological features. Using NanoString immune profiling, they confirmed the 

overall stronger immune infiltration in breast tumors from African American women than 

those from European American women, and further showed stronger exhausted T cell 

signatures in tumors from African American women. Their data revealed marked population 

differences in tumor immune response, which may contribute to some of the observed racial 

disparities in breast cancer survival.

Dr Kun-Hsing Yu lectured about his work on integrating lung cancer multi-omics and 

histopathology images (82). Lung cancer is the most prevalent cancer worldwide, and 

histopathological assessment is indispensable for its diagnosis (83). However, how 

histopathology findings relate to molecular abnormalities remains largely unknown, and 

human evaluation of pathology slides do not accurately predict prognosis. To address this 

gap, his group obtained over 2,100 hematoxylin and eosin stained histopathology whole-

slide images, RNA sequencing, and proteomics data of lung adenocarcinoma and squamous 

cell carcinoma patients from TCGA, and nearly 300 additional images from the Stanford 

Tissue Microarray (TMA) Database (84). They extracted nearly 10,000 quantitative image 

features and used regularized machine-learning methods to select the top features and to 

distinguish shorter-term survivors from longer-term survivors with stage I adenocarcinoma 

or squamous cell carcinoma in the TCGA data set (85). They successfully validated the 

survival prediction framework with the TMA cohort (85), identified the cell-cycle regulation 

and nucleotide binding pathways underpinning tumor cell dedifferentiation (86), and built an 

integrative histopathology-transcriptomics model to generate better prognostic predictions 

for stage I adenocarcinoma patients compared with gene expression or histopathology 

studies alone (86). These results suggest that automatically derived image features can 

predict the prognosis of lung cancer patients and thereby contribute to precision oncology.

Conclusions

The Fourth International MPE Meeting assembled over 170 trainees and experts working in 

the various, diverse scientific disciplines that comprise MPE. As even more sophisticated 

means of molecular characterization of disease processes enter epidemiologic studies and 

clinical medicine, the utility and preponderance of MPE principles and methods should 

continue to expand. As actively discussed in the Fourth International MPE Meeting, new 

ideas of flexibly shaping and integrating multiple disciplines are further expanding 

opportunities in biomedical and population sciences (87). In terms of key recommendations 

and next steps, integration of tumor immunology into epidemiologic studies and further 

exploration of disparity research were concluded as high priorities for the field. Additionally, 

further collaborations between computational and population-level scientists were noted as 

high priority as were general pooling projects between studies with similar data. We look 

forward to meeting again at the Fifth International MPE Meeting, tentatively planned for 

June 2020 in Boston, MA, USA.

Acknowledgments

Grant support:

NIH R35 CA197735 (to S.O.)

Campbell et al. Page 12

Cancer Causes Control. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P30 CA006516 (Dana-Farber Harvard Cancer Center Support Grant; to L.H. Glimcher).

1R35 CA220523 (to J.Q.)1R01 HL111759 (to J.Q.)

Abbreviations:

AI artificial intelligence

AICR American Institute for Cancer Research

BCAC breast cancer association consortium

BCR B cell receptor

CDR complementarity determining region

CIMP CpG island methylator phenotype

cfDNA cell free DNA

ctDNA circulating tumor DNA

ddPCR droplet digital PCR

eQTL expression quantitative trait loci

FFPE formalin-fixed paraffin-embedded

GBM glioblastoma multiforme

GWAS genome-wide association study

HPFS Health Professionals Follow-up Study

IHC immunohistochemistry

MPE molecular pathological epidemiology

MSI microsatellite instability

NHS Nurses’ Health Study

PCR polymerase chain reaction

PRS polygenic risk score

RTK receptor tyrosine kinase

SNP single nucleotide polymorphism

TCGA The Cancer Genome Atlas

TCR T cell receptor

TMA tissue microarray

WCHS Women’s Circle of Health Study

Campbell et al. Page 13

Cancer Causes Control. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WCRF World Cancer Research Fund

WES whole exome sequencing

References

1. Campbell PT, Curtin K, Ulrich C, et al. (2008) Mismatch repair polymorphisms and risk of colon 
cancer, tumor microsatellite instability, and interactions with lifestyle factors. Gut 58: 661–7. 
[PubMed: 18523027] 

2. Campbell PT, Jacobs ET, Ulrich CM, et al. (2010) Case-Control Study of Overweight, Obesity, and 
Colorectal Cancer Risk, Overall and by Tumor Microsatellite Instability Status. J Natl Cancer Inst 
102: 391–400. [PubMed: 20208017] 

3. Campbell PT, Newton CC, Newcomb PA, et al. (2015) Association between body mass index and 
mortality for colorectal cancer survivors: overall and by tumor molecular phenotype. Cancer 
Epidemiol Biomarkers Prev 24: 1229–38. [PubMed: 26038390] 

4. Yang XR, Chang-Claude J, Goode EL, et al. (2011) Associations of breast cancer risk factors with 
tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl 
Cancer Inst 103: 250–63. [PubMed: 21191117] 

5. Schmidt ME, Steindorf K, Mutschelknauss E, et al. (2008) Physical activity and postmenopausal 
breast cancer: effect modification by breast cancer subtypes and effective periods in life. Cancer 
Epidemiol Biomarkers Prev 17: 3402–10. [PubMed: 19029400] 

6. Suzuki R, Ye W, Rylander-Rudqvist T, Saji S, Colditz GA, Wolk A. (2005) Alcohol and 
postmenopausal breast cancer risk defined by estrogen and progesterone receptor status: a 
prospective cohort study. J Natl Cancer Inst 97: 1601–8. [PubMed: 16264180] 

7. Ogino S, Campbell PT, Nishihara R, et al. (2015) Proceedings of the second international molecular 
pathological epidemiology (MPE) meeting. Cancer Causes Control 26: 959–72. [PubMed: 
25956270] 

8. Campbell PT, Rebbeck TR, Nishihara R, et al. (2017) Proceedings of the third international 
molecular pathological epidemiology (MPE) meeting. Cancer Causes Control 28: 167–76. 
[PubMed: 28097472] 

9. Penney KL, Pettersson A, Shui IM, et al. (2016) Association of Prostate Cancer Risk Variants with 
TMPRSS2:ERG Status: Evidence for Distinct Molecular Subtypes. Cancer Epidemiol Biomarkers 
Prev 25: 745–9. [PubMed: 26941365] 

10. Yoo S, Pettersson A, Jordahl KM, et al. (2014) Androgen receptor CAG repeat polymorphism and 
risk of TMPRSS2:ERG-positive prostate cancer. Cancer Epidemiol Biomarkers Prev 23: 2027–31. 
[PubMed: 24925673] 

11. Pettersson A, Lis RT, Meisner A, et al. (2013) Modification of the association between obesity and 
lethal prostate cancer by TMPRSS2:ERG. J Natl Cancer Inst 105: 1881–90. [PubMed: 24292212] 

12. Michailidou K, Lindstrom S, Dennis J, et al. (2017) Association analysis identifies 65 new breast 
cancer risk loci. Nature 551: 92–4. [PubMed: 29059683] 

13. Milne RL, Kuchenbaecker KB, Michailidou K, et al. (2017) Identification of ten variants 
associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 49: 1767–78. [PubMed: 
29058716] 

14. Jacobs DI, Fukumura K, Bainbridge MN, et al. (2018) Elucidating the molecular pathogenesis of 
glioma: integrated germline and somatic profiling of a familial glioma case series. Neuro Oncol 
20: 1625–33. [PubMed: 30165405] 

15. Garcia-Closas M, Gunsoy NB, Chatterjee N. (2014) Combined associations of genetic and 
environmental risk factors: implications for prevention of breast cancer. J Natl Cancer Inst 106.

16. Maas P, Barrdahl M, Joshi AD, et al. (2016) Breast Cancer Risk From Modifiable and 
Nonmodifiable Risk Factors Among White Women in the United States. JAMA Oncol 2: 1295–
302. [PubMed: 27228256] 

17. Mavaddat N, Pharoah PD, Michailidou K, et al. (2015) Prediction of breast cancer risk based on 
profiling with common genetic variants. J Natl Cancer Inst 107.

Campbell et al. Page 14

Cancer Causes Control. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Berkey CS, Rosner B, Tamimi RM, et al. (2017) Body size from birth through adolescence in 
relation to risk of benign breast disease in young women. Breast Cancer Res Treat 162: 139–49. 
[PubMed: 28062981] 

19. Baer HJ, Schnitt SJ, Connolly JL, et al. (2005) Early life factors and incidence of proliferative 
benign breast disease. Cancer Epidemiol Biomarkers Prev 14: 2889–97. [PubMed: 16365006] 

20. Warner ET, Hu R, Collins LC, et al. (2016) Height and Body Size in Childhood, Adolescence, and 
Young Adulthood and Breast Cancer Risk According to Molecular Subtype in the Nurses’ Health 
Studies. Cancer Prev Res (Phila) 9: 732–8. [PubMed: 27590596] 

21. Oh H, Eliassen AH, Beck AH, et al. (2017) Breast cancer risk factors in relation to estrogen 
receptor, progesterone receptor, insulin-like growth factor-1 receptor, and Ki67 expression in 
normal breast tissue. NPJ Breast Cancer 3: 39. [PubMed: 28979927] 

22. Palmer JR, Ambrosone CB, Olshan AF. (2014) A collaborative study of the etiology of breast 
cancer subtypes in African American women: the AMBER consortium. Cancer Causes Control 25: 
309–19. [PubMed: 24343304] 

23. Espinal AC, Buas MF, Wang D, et al. (2017) FOXA1 hypermethylation: link between parity and 
ER-negative breast cancer in African American women? Breast Cancer Res Treat 166: 559–68. 
[PubMed: 28756535] 

24. Palmer JR, Viscidi E, Troester MA, et al. (2014) Parity, lactation, and breast cancer subtypes in 
African American women: results from the AMBER Consortium. J Natl Cancer Inst 106.

25. Gilsing AM, Fransen F, de Kok TM, et al. (2013) Dietary heme iron and the risk of colorectal 
cancer with specific mutations in KRAS and APC. Carcinogenesis 34: 2757–66. [PubMed: 
23983135] 

26. Petljak M, Alexandrov LB. (2016) Understanding mutagenesis through delineation of mutational 
signatures in human cancer. Carcinogenesis 37: 531–40. [PubMed: 27207657] 

27. Hughes LA, van den Brandt PA, de Bruine AP, et al. (2009) Early life exposure to famine and 
colorectal cancer risk: a role for epigenetic mechanisms. PLoS One 4: e7951. [PubMed: 
19956740] 

28. Simons CC, van den Brandt PA, Stehouwer CD, van Engeland M, Weijenberg MP. (2014) Body 
size, physical activity, early-life energy restriction, and associations with methylated insulin-like 
growth factor-binding protein genes in colorectal cancer. Cancer Epidemiol Biomarkers Prev 23: 
1852–62. [PubMed: 24972776] 

29. van den Brandt PA, Schulpen M. (2017) Mediterranean diet adherence and risk of postmenopausal 
breast cancer: results of a cohort study and meta-analysis. Int J Cancer 140: 2220–31. [PubMed: 
28260236] 

30. Rebbeck TR, Sankar P. (2005) Ethnicity, ancestry, and race in molecular epidemiologic research. 
Cancer Epidemiol Biomarkers Prev 14: 2467–71. [PubMed: 16284364] 

31. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR. (2018) Genetic 
Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of 
African Descent. Cancer Res 78: 2432–43. [PubMed: 29438991] 

32. Ogino S, Nowak JA, Hamada T, et al. (2018) Integrative analysis of exogenous, endogenous, 
tumour and immune factors for precision medicine. Gut 67: 1168–80. [PubMed: 29437869] 

33. Ogino S, Giannakis M. (2018) Immunoscore for (colorectal) cancer precision medicine. Lancet 
391: 2084–6. [PubMed: 29754776] 

34. Song M, Nishihara R, Cao Y, et al. (2016) Marine omega-3 Polyunsaturated Fatty Acid Intake and 
Risk of Colorectal Cancer Characterized by Tumor-Infiltrating T Cells. JAMA Oncol 2: 1197–206. 
[PubMed: 27148825] 

35. Cao Y, Nishihara R, Qian ZR, et al. (2016) Regular Aspirin Use Associates with Lower Risk of 
Colorectal Cancers With Low Numbers of Tumor-infiltrating Lymphocytes. Gastroenterology 151: 
879–92 [PubMed: 27475305] 

36. Liu L, Nishihara R, Qian ZR, et al. (2017) Association Between Inflammatory Diet Pattern and 
Risk of Colorectal Carcinoma Subtypes Classified by Immune Responses to Tumor. 
Gastroenterology 153: 1517–30 e14. [PubMed: 28865736] 

Campbell et al. Page 15

Cancer Causes Control. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Khalili H, Gong J, Brenner H, et al. (2015) Identification of a common variant with potential 
pleiotropic effect on risk of inflammatory bowel disease and colorectal cancer. Carcinogenesis 36: 
999–1007. [PubMed: 26071399] 

38. Mehta RS, Nishihara R, Cao Y, et al. (2017) Association of Dietary Patterns With Risk of 
Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. JAMA 
Oncol 3: 921–7. [PubMed: 28125762] 

39. Li B, Severson E, Pignon JC, et al. (2016) Comprehensive analyses of tumor immunity: 
implications for cancer immunotherapy. Genome Biol 17: 174. [PubMed: 27549193] 

40. Li T, Fan J, Wang B, et al. (2017) TIMER: A Web Server for Comprehensive Analysis of Tumor-
Infiltrating Immune Cells. Cancer Res 77: e108–e10. [PubMed: 29092952] 

41. Li B, Li T, Wang B, et al. (2017) Ultrasensitive detection of TCR hypervariable-region sequences 
in solid-tissue RNA-seq data. Nat Genet 49: 482–3. [PubMed: 28358132] 

42. Li B, Li T, Pignon JC, et al. (2016) Landscape of tumor-infiltrating T cell repertoire of human 
cancers. Nat Genet 48: 725–32. [PubMed: 27240091] 

43. Hu X, Zhang J, Wang J, et al. (2019) Landscape of B cell immunity and related immune evasion in 
human cancers. Nat Genet 51: 560–7. [PubMed: 30742113] 

44. Jiang P, Gu S, Pan D, et al. (2018) Signatures of T cell dysfunction and exclusion predict cancer 
immunotherapy response. Nat Med 24: 1550–58. [PubMed: 30127393] 

45. Kimura T, McKolanis JR, Dzubinski LA, et al. (2013) MUC1 vaccine for individuals with 
advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res 
(Phila) 6: 18–26. [PubMed: 23248097] 

46. Abelin JG, Keskin DB, Sarkizova S, et al. (2017) Mass Spectrometry Profiling of HLA-Associated 
Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity 46: 315–
26. [PubMed: 28228285] 

47. Ott PA, Hu Z, Keskin DB, et al. (2017) An immunogenic personal neoantigen vaccine for patients 
with melanoma. Nature 547: 217–21. [PubMed: 28678778] 

48. Keskin DB, Anandappa AJ, Sun J, et al. (2019) Neoantigen vaccine generates intratumoral T cell 
responses in phase Ib glioblastoma trial. Nature 565: 234–9. [PubMed: 30568305] 

49. Hu Z, Ott PA, Wu CJ. (2018) Towards personalized, tumour-specific, therapeutic vaccines for 
cancer. Nat Rev Immunol 18: 168–82. [PubMed: 29226910] 

50. Le DT, Uram JN, Wang H, et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair 
Deficiency. N Engl J Med 372: 2509–20. [PubMed: 26028255] 

51. Le DT, Durham JN, Smith KN, et al. (2017) Mismatch repair deficiency predicts response of solid 
tumors to PD-1 blockade. Science 357: 409–13. [PubMed: 28596308] 

52. Giannakis M, Mu XJ, Shukla SA, et al. (2016) Genomic Correlates of Immune-Cell Infiltrates in 
Colorectal Carcinoma. Cell Rep 15: 857–65. [PubMed: 27149842] 

53. Grasso CS, Giannakis M, Wells DK, et al. (2018) Genetic Mechanisms of Immune Evasion in 
Colorectal Cancer. Cancer Discov 8: 730–49. [PubMed: 29510987] 

54. Louis DN, Feldman M, Carter AB, et al. (2016) Computational Pathology: A Path Ahead. Arch 
Pathol Lab Med 140: 41–50. [PubMed: 26098131] 

55. Louis DN, Gerber GK, Baron JM, et al. (2014) Computational pathology: an emerging definition. 
Arch Pathol Lab Med 138: 1133–8. [PubMed: 25171694] 

56. Lennerz JK, McLaughlin HM, Baron JM, et al. (2016) Health Care Infrastructure for Financially 
Sustainable Clinical Genomics. J Mol Diagn 18: 697–706. [PubMed: 27471182] 

57. Sacher AG, Paweletz C, Dahlberg SE, et al. (2016) Prospective Validation of Rapid Plasma 
Genotyping for the Detection of EGFR and KRAS Mutations in Advanced Lung Cancer. JAMA 
Oncol 2: 1014–22. [PubMed: 27055085] 

58. Adalsteinsson VA, Ha G, Freeman SS, et al. (2017) Scalable whole-exome sequencing of cell-free 
DNA reveals high concordance with metastatic tumors. Nat Commun 8: 1324. [PubMed: 
29109393] 

59. Heng YJ, Lester SC, Tse GM, et al. (2017) The molecular basis of breast cancer pathological 
phenotypes. J Pathol 241: 375–91. [PubMed: 27861902] 

Campbell et al. Page 16

Cancer Causes Control. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



60. Zhao X, Rodland EA, Tibshirani R, Plevritis S. (2015) Molecular subtyping for clinically defined 
breast cancer subgroups. Breast Cancer Res 17: 29. [PubMed: 25849221] 

61. Kensler KH, Sankar VN, Wang J, et al. (2019) PAM50 Molecular Intrinsic Subtypes in the Nurses’ 
Health Study Cohorts. Cancer Epidemiol Biomarkers Prev 28: 798–806. [PubMed: 30591591] 

62. Glass K, Huttenhower C, Quackenbush J, Yuan GC. (2013) Passing messages between biological 
networks to refine predicted interactions. PLoS One 8: e64832. [PubMed: 23741402] 

63. Platig J, Castaldi PJ, DeMeo D, Quackenbush J. (2016) Bipartite Community Structure of eQTLs. 
PLoS Comput Biol 12: e1005033. [PubMed: 27618581] 

64. Sonawane AR, Platig J, Fagny M, et al. (2017) Understanding Tissue-Specific Gene Regulation. 
Cell Rep 21: 1077–88. [PubMed: 29069589] 

65. Fagny M, Paulson JN, Kuijjer ML, et al. (2017) Exploring regulation in tissues with eQTL 
networks. Proc Natl Acad Sci U S A 114: E7841–E50. [PubMed: 28851834] 

66. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. (2018) Artificial intelligence in 
radiology. Nat Rev Cancer 18: 500–10. [PubMed: 29777175] 

67. Aerts H (2018) Data Science in Radiology: A Path Forward. Clin Cancer Res 24: 532–4. [PubMed: 
29097379] 

68. Grossmann P, Stringfield O, El-Hachem N, et al. (2017) Defining the biological basis of radiomic 
phenotypes in lung cancer. Elife 6.

69. Aerts HJ. (2016) The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. 
JAMA Oncol 2: 1636–42. [PubMed: 27541161] 

70. Kumar M, Choudhury Y, Ghosh SK, Mondal R. (2018) Application and optimization of minimally 
invasive cell-free DNA techniques in oncogenomics. Tumour Biol 40: 1010428318760342. 
[PubMed: 29484962] 

71. Liang W, Zhao Y, Huang W, Liang H, Zeng H, He J. (2018) Liquid biopsy for early stage lung 
cancer. J Thorac Dis 10: S876–S81. [PubMed: 29780634] 

72. Tie J, Gibbs P. (2016) Sequencing Circulating Cell-Free DNA: The Potential to Refine Precision 
Cancer Medicine. Clin Chem 62: 796–8. [PubMed: 27117467] 

73. Liu C, Yang Y, Wu Y. (2018) Recent Advances in Exosomal Protein Detection Via Liquid Biopsy 
Biosensors for Cancer Screening, Diagnosis, and Prognosis. AAPS J 20: 41. [PubMed: 29520676] 

74. Jung A, Kirchner T. (2018) Liquid Biopsy in Tumor Genetic Diagnosis. Dtsch Arztebl Int 115: 
169–74. [PubMed: 29587961] 

75. Chae YK, Davis AA, Jain S, et al. (2017) Concordance of Genomic Alterations by Next-
Generation Sequencing in Tumor Tissue versus Circulating Tumor DNA in Breast Cancer. Mol 
Cancer Ther 16: 1412–20. [PubMed: 28446639] 

76. Lopes-Ramos CM, Kuijjer ML, Ogino S, et al. (2018) Gene Regulatory Network Analysis 
Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism. Cancer Res 78: 5538–47. 
[PubMed: 30275053] 

77. Liu L, Nevo D, Nishihara R, et al. (2018) Utility of inverse probability weighting in molecular 
pathological epidemiology. Eur J Epidemiol 33: 381–92. [PubMed: 29264788] 

78. Ye CJ, Feng T, Kwon HK, et al. (2014) Intersection of population variation and autoimmunity 
genetics in human T cell activation. Science 345: 1254665. [PubMed: 25214635] 

79. Nedelec Y, Sanz J, Baharian G, et al. (2016) Genetic Ancestry and Natural Selection Drive 
Population Differences in Immune Responses to Pathogens. Cell 167: 657–69 e21. [PubMed: 
27768889] 

80. Quach H, Rotival M, Pothlichet J, et al. (2016) Genetic Adaptation and Neandertal Admixture 
Shaped the Immune System of Human Populations. Cell 167: 643–56 e17. [PubMed: 27768888] 

81. Yao S, Hong CC, Ruiz-Narvaez EA, et al. (2018) Genetic ancestry and population differences in 
levels of inflammatory cytokines in women: Role for evolutionary selection and environmental 
factors. PLoS Genet 14: e1007368. [PubMed: 29879116] 

82. Yu KH WF, Berry GJ, Re C, Altman RB, Snyder M, Kohane IS. (2019) Classifying Non-Small 
Cell Lung Cancer Histopathology Types and Transcriptomic Subtypes using Convolutional Neural 
Networks. bioRxiv 1:530360.

Campbell et al. Page 17

Cancer Causes Control. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



83. Travis WD, Brambilla E, Noguchi M, et al. (2011) International association for the study of lung 
cancer/american thoracic society/european respiratory society international multidisciplinary 
classification of lung adenocarcinoma. J Thorac Oncol 6: 244–85. [PubMed: 21252716] 

84. Marinelli RJ, Montgomery K, Liu CL, et al. (2008) The Stanford Tissue Microarray Database. 
Nucleic Acids Res 36: D871–7. [PubMed: 17989087] 

85. Yu KH, Zhang C, Berry GJ, et al. (2016) Predicting non-small cell lung cancer prognosis by fully 
automated microscopic pathology image features. Nat Commun 7: 12474. [PubMed: 27527408] 

86. Yu KH, Berry GJ, Rubin DL, Re C, Altman RB, Snyder M. (2017) Association of Omics Features 
with Histopathology Patterns in Lung Adenocarcinoma. Cell Syst 5: 620–7 e3. [PubMed: 
29153840] 

87. Ogino S, Nowak JA, Hamada T, Milner DA Jr., Nishihara R (2019) Insights into Pathogenic 
Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and 
Epidemiology. Annu Rev Pathol 14: 83–103. [PubMed: 30125150] 

Campbell et al. Page 18

Cancer Causes Control. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Campbell et al. Page 19

Table 1 –

Summary of podium presentations at the 4th International Molecular Pathological Epidemiology (MPE) 

Meeting in Boston, MA on May 31 and June 1, 2018

Session and speaker name Topic Key references

Integrated genetic, epidemiologic, and tumor 
analyses, part 1

Lorelei Mucci Integrating tissue biomarkers into prostate cancer epidemiology studies 9–11

Nilanjan Chatterjee Genetic association testing in the presence of tumor heterogeneity. 12, 13

Melissa Bondy Glioma: Insights from molecular epidemiology 14

Integrated genetic, epidemiologic, and tumor 
analyses, part 2

Montserrat Garcia-Closas Genetic susceptibility to breast cancer subtypes: implications for 
screening/prevention

12, 13, 15–17

Rulla Tamimi Leveraging non-tumor tissue sources to understand breast cancer 
etiology

18–21

Christine Ambrosone Molecular alterations in breast tumor tissues from African American 
women: relationships with risk factors

22–24

Integrated genetic, epidemiologic, and tumor 
analyses, part 3

Matty Weijenberg Importance of molecular pathological epidemiology for examining 
lifestyle and cancer

25–29

Timothy Rebbeck Molecular signatures of
prostate cancer disparities 

30, 31

Immunology and immunotherapy/prevention, 
part 1

Shuji Ogino Need for integrative analyses of exposome (including microbiome)-
tumor-immune interactions

32–38

X. Shirley Liu Signatures of T-cell dysfunction and exclusion predict cancer 
immunotherapy response.

39–44

Robert ‘Rocky’ Schoen Prevention of colorectal adenoma with MUC1 vaccine 45

Immunology and immunotherapy/prevention, 
part 2

Catherine Wu Identifying and therapeutically targeting tumor neoantigens 46–49

Marios Giannakis Genomic mechanisms of immune evasion in colorectal cancer 50–53

Novel disease phenotyping in future medicine 
and population science, part 1

Jeffrey Golden Computational pathology to precision medicine: A working model 54–56

Lynette Sholl Liquid biopsy for solid tumors: current realities and future possibilities 57, 58

Jan Heng Comparison of pre-processing methods to compute PAM50 intrinsic 
subtype in breast cancer and normal tumor-adjacent regions

59–61

Novel disease phenotyping in future medicine 
and population science, part 2

John Quackenbush Using networks to understand the genotype-phenotype connection. 62–65

Hugo Aerts Artificial intelligence in medical imaging 66–69

Special topic lectures

N. Sertac Kip How solid is a liquid biopsy? 70–75

Camila Lopes-Ramos Regulatory networks identify sex differences in colon cancer 76
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Session and speaker name Topic Key references

Molin Wang Addressing sample selection bias due to tissue availability 77

Song Yao Population differences in breast tumor immune microenvironment 
between women of African ancestry and European ancestry

78–81

Kun-Hsing Yu Integrating lung cancer omics and histopathology profiles for precision 
medicine

82–86
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