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Background: Dry pleural dissemination (DPD) in non-small cell lung cancer (NSCLC) is defined as 
having solid pleural metastases without malignant pleural effusion. We aim to identify DPD by applying 
radiomics, a novel approach to decode the tumor phenotype.
Methods: Preoperative chest computed tomographic images and basic clinical feature were retrospectively 
evaluated in patients with surgically resected NSCLC between January 1, 2015 and December 31, 2016. 
Propensity score was applied to match the DPD and non-DPD groups. One thousand and eighty radiomics 
features were quantitatively extracted by the 3D slicer software and “pyradiomics” package. Least absolute 
shrinkage and selection operator (LASSO) binary model was applied for feature selection and developing the 
radiomics signature. The discrimination was evaluated using area under the curve (AUC) and Youden index. 
Results: Sixty-four DPD patients and paired 192 non-DPD patients were enrolled. Using the LASSO 
model, this study developed a radiomics signature including 10 radiomic features. The mean ± standard 
deviation values of the radiomics signature with DPD status (−2.129±1.444) was significantly higher 
compared to those with non-DPD disease (0.071±0.829, P<0.001). The ten-feature based signature showed 
good discrimination between DPD and non-DPD, with an AUC of 0.93 (95% confidence-interval, 0.891–
0.958) respectively. The sensitivity and specificity of the radiomics signature was 85.94% and 85.94%, with 
the optimal cut-off value of −0.696 and Youden index of 0.71.
Conclusions: The signature based on radiomics features can provide potential predictive value to identify 
DPD in patients with NSCLC.
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Introduction

Malignant pleural dissemination is generally considered 
as a contraindicative disease stage to surgery (1). In the 
American Joint Committee on Cancer (AJCC) staging 
system of non-small cell lung cancer (NSCLC) based on 
tumor, nodal, and metastatic categories (TNM staging) (2,3), 
M1a stage was classified having poor clinical outcomes, with 

a 3-year overall survival less than 23% and a median survival 
time (MST) of 11.5 months (4).

Patients with M1a disease showed a range of disease 
diversity, varying from multiple pleural nodules or/with 
massive malignant pleural effusion to minimal disease 
with single solid pleural nodule without malignant pleural 
effusion (5,6). Betweenwhiles, thoracic surgeons may 
find unexpected pleural malignant nodules in patients 
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who had clinical stage M0 during operation (7,8). Dry 
pleural dissemination (DPD) in NSCLC is defined 
as solid pleural metastases without pleural malignant 
effusion (9). Those clinical dilemmas, which could not be 
identified preoperatively because of the lack of commonly 
accompanying malignant pleural effusions, can result in 
misdiagnose without identifying the presence of DPD (1).

Computed tomographic (CT) findings of DPD present 
as several small pleural malignant nodules or/with uneven 
pleural thickening on the basis of existing research (9). It 
has been proved that the pleural small nodules or/with 
uneven pleural thickening can generally exhibit scanty 
fluorine 18 fluorodeoxyglucose (FDG) uptake at positron 
emission tomography (PET). The accuracy of diagnosing 
DPD can be improved using CT combining PET/CT. 
While CT images may strongly suggest the presence of 
DPD even when PET images showed little FDG uptake, 
the commonly malignant alerted CT characteristics may 
prove significance to the diagnosis of DPD. However, 
by only manually assessing the CT images, doctors lack 
enough information to detect small pleural nodules or 
define nodule’s pathological nature (10). To get more 
detailed information as reference, radiomics, defined as 
a set of quantitative features from medical images (CT, 
magnetic resonance imaging, ultrasound, etc.) using data-
characterization analyses, may be paly an effective role. 
Recent researches have reported that radiomic analysis 
showed huge effect for excellent CT lesion characterization 
and excellent performance (11,12).

By applying numerous quantitative imaging features, 
radiomics provides a novel approach to decode the tumor 

phenotype. Herein, we aim to identify the patients with 
DPD preoperatively by CT images radiomics analysis. 

Methods

Patients

The institutional review board approved this retrospective 
study with informed consent (IRB No. K18-105). This 
retrospective study included consecutive patients with 
histologically confirmed NSCLC of the primary lung 
cancer from Jan 2015 to Dec 2016. All included cases 
fulfilled the following inclusion criteria: (I) All patients 
underwent examinations to exclude remote metastasis. 
Whole body bone scan, brain magnetic resonance imaging, 
and upper abdominal ultrasonic examinations confirmed the 
only locally advanced nature of the tumors preoperatively 
(II) qualified clinical characteristics, including smoking 
history, age, sex, Location, histological subtype and TNM 
stage; (III) Complete thin-section CT images stored in the 
Picture Archiving and Communication System (PACS); (IV) 
patient did not received neoadjuvant treatment (including 
target therapy). Patients were excluded if they reported M1a 
with malignant pleural effusion postoperatively. Eligible 
patients were divided into the non-DPD metastases cohort 
and DPD metastases cohort (Figure 1).

Propensity scores matching

The propensity scores analysis, which convert the 
observational  (nonrandomized) study to simulate 

Figure 1 Overview of radiomics model development.
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a randomized control led tr ia l  by mimic basel ine 
characteristics, including the following variables: age, sex, 
smoking history, histological subtype, T stage and N stage 
represent the probability of being assigned to either non-
DPD metastases group and DPD group. After the matching 
procedure, the non-DPD metastases group and DPD group 
had balanced distributions of propensity scores, minimizing 
the distinction in variables between two cohorts. In this 
study, it was settled as propensity scores one by three using 
nearest neighbor algorithm, with 0.1 caliper width and no 
replacement. After propensity score matching, the clinical 
characteristics comparation were listed, respectively. All 
clinicopathological and demographic data were presented as 
median (range) or number (percentage). 

CT scanning protocol

All CT scans were obtained by using a Somatom Definition 
AS (Siemens Medical Systems, Germany). All images 
were reconstructed at 1.0 mm slice thickness, with  
0.7 mm increment, 512 mm × 512 mm and a standard soft 
kernel (Siemens B31 filter, Siemens Medical Solutions, 
Forchheim, Germany). All CT scans were obtained in the 
full inspiratory phase. 

Tumor segmentation and radiomic feature extraction

The open-source software 3D-slicer (www.slicer.org) were 
used in this study as the analysis platform to achieve nodule 
segmentation and radiomic feature extraction (13). Nodules 
were delineated on the CT images using a semi-automatic 
GrowCut segmentation algorithm, which is settled to have 
best accuracy and speed for the 3D nodule segmentation 
with an interactive region growing method and allows more 
robust radiomic feature extraction (14,15). Primary tumor 
segmentation was confirmed by the radiologist attending  
(J Shi and X Sun), both who had twenty years of experience 
in pulmonary radiogram. After tumor segmentation, 1,080 
radiomic features (16) were extracted by the “pyradiomics” 
package with the software (JetBrains PyCharm Community 
Edition 2017.2.4; https://www.jetbrains.com/pycharm/). 

Statistical analysis

Pearson test was used to compare the categorical data, 
and an independent sample t-test was used to compare 
the numerical data between two groups. The least 
absolute shrinkage and selection operator (LASSO) binary 

regression model were applied to select the most predictive 
features in order to develop the radiomic signature. The 
discrimination of the signature was calculated by the area 
under the curve (AUC). We used the “glmnet” package of 
R software (version 3.2.2) to run the LASSO analysis. All 
other statistical analysis was calculated with SPSS, version 
23.0. A two-sided P value <0.05 was considered statistically 
significant.

Results

Clinical characteristics

Finally, matched 192 patients from non-DPD metastases 
group and 64 patients from DPD group were included in 
the analysis. Clinical characteristics in both DPD and non-
DPD were listed in Table 1. The majority of patients had 
peripheral lesions (93%). The median age was 58 years. 
The majority of tumors were T2 stage disease (67%) 
and adenocarcinoma (95%). After matching, there were 
no significant differences in age, sex, smoking status, 
histological subtype, T stage and N stage between the non-
DPD and DPD group. 

Feature selection of the radiomic signature

We used 10-fold cross-validation via minimum criteria as 
tuning parameter (λ) selection in the LASSO model and 
settled the λ value of 0.018 with log(λ) –3.97 (one standard 
error of the minimum criteria) for optimal value (Figure 2).  
Under this procedure, 1,080 radiomic features were reduced 
to 10 effective predictors with nonzero coefficients in the 
LASSO model in the cohort. The Figure S1 showed the 
10 robust and non-redundant radiomic features (Log.
sigma.1.0.mm.3D_glcm_Imc2, Original_firstorder_
Skewness, Original_glcm_ClusterShade, Original_glcm_
MaximumProbability, Wavelet.HHH_glcm_ClusterShade, 
Wavelet.HLH_glrlm_LongRunHighGrayLevelEmphasis, 
Wavelet.LHH_glcm_Idn, Wavelet.LHL_glcm_Idn, Wavelet.
LLH_glszm_LargeAreaHighGrayLevelEmphasis, Wavelet.
LLL_glcm_Imc1) with Pearson’s correlation matrix. 

 The radiomic signature, which was based on selected 
10 radiomic features, was calculated for each case (http://
fp.amegroups.cn/cms/atm.2019.05.20-1.pdf). The score 
of radiomics signature calculated for each case was shown 
in a waterfall plot (Figure 3) and demonstrated by heatmap 
(Figure S1). The values were significantly different between 
non-DPD and DPD status for all 10 selected radiomics 
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Table 1 Clinical and pathological characteristics in the cohort after propensity scores matching

Characteristics Non-DPD (n=192) DPD (n=64) P value

Age (years), mean ± SD 61.474±9.871 58.390±9.694 0.943

Gender 0.718

Male 97 [51] 34 [53]

Female 95 [49] 30 [47]

Tumor size (cm), mean ± SD 3.267±1.146 3.225±1.077 0.363

Location 0.869

Peripheral 183 [95] 60 [94]

Central 9 [5] 4 [6]

Histology subtype 1

Adenocarcinoma 185 [96] 61 [95]

Squamous cell carcinoma 7 [4] 3 [5]

T status 0.734

T1 57 [29] 19 [30]

T2 132 [69] 43 [67]

T3 3 [2] 2 [3]

Node status 0.133

N0/1 71 [37] 18 [28]

N2 95 [49] 31 [48]

Nx 26 [14] 15 [24]

Radiomics score −2.129±1.444 0.071±0.829 <0.001

Data are presented as median ± SD or n [%], DPD, dry pleural dissemination 

features (P<0.001). The mean values of the radiomics 
signature with DPD status (−2.129±1.444) was significantly 
higher  compared to  those  without  DPD disease 
(0.071±0.829; P<0.001; Table 1).

Performance of the radiomics signature

The radiomic signature that we developed showed a 
significant capability to distinguish DPD status from non-
DPD status in the cohort (AUC: 0.93, 95% CI, 0.891 
to 0.958; Figure 4). The sensitivity and specificity of the 
radiomics signature was 85.94% and 85.94%, with the 
optimal cut-off value of −0.696 and Youden index of 0.71.

Discussion

Radiomic assessment of the image phenotype can be 

used with non-invasive CT scan that are used routinely 
in clinical prevention procedure for lung cancer (17,18). 
Our innovative point was using quantitative radiomic 
measurements, which should more individually reflect 
tumor malignancy. In this study, by using a propensity 
scores matching screening dataset of image, we demonstrate 
that radiomic model cam distinguish DPD and non-DPD 
status with sensitivity 0.859 and specificity 0.859. This 
approach, after being valid in clinical trials, could improve 
the management of screen-identified primary lung cancer 
and potentially minimize health care costs and reduce 
unnecessary surgery associated with the clinical routine for 
the evaluation and management of undetected DPD status 
before surgery.

From the beginning of seventh TNM staging for 
NSCLC, pleural dissemination was transferred to the 
M1a category, which including pleural metastasis and/or 
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Figure 2 Radiomic feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model.

Figure 3 Rad-score for all patients in the cohort. Classification of dry pleural dissemination status was marked with different colors.
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contralateral metastatic nodules (19). For now, DPD has not 
been clearly classified, but the surgeons suspected that DPD 
can be defined as a type of intrathoracic tumor spread. One 
important aim of promoting the application of CT features 
in patients with lung cancer is to more accurately diagnose 
M1a patients before surgery. Previous studies (20,21) have 
revealed that DPD can more frequently appeared when the 
primary lesion is adjacent to the pleura or the fissure. Kim 
et al. (9) reported that NSCLCs with lower T and N status 
can invade into the thorax breakthrough pleura when the 
lesions are adjacent to the fissure or the pleura.

CT image is widely used in oncological practice for lung 
cancer detection. Usually, we diagnose the lung nodule 
rely on the manual assessment of physicians; there are tiny 
features, which can not be detected manually and require 
computer-aided techniques. Many published researches have 
revealed that the use of CT-based radiomics texture analysis 
in prediction of driver mutations in NSCLC (13,22,23). To 
the best of our knowledge, only a few studies have focused 
on the association between CT radiomics features and DPD 
status. Here, this study presented a sophisticated radiomic 
feature analysis using semi-automatic segmentation in 192 
patients from non-DPD metastases group and 64 patients 
from DPD metastases group. Radiomics features were 
extracted to evaluate the potential to predict DPD status 
preoperatively. To avoid the overfitting because of vast sum 
of radiomic features in the classification model, LASSO 
binary model and 10-fold validation was used to develop the 
radiomics signature. After above procedure, ten radiomic 

features were set up from two different feature categories, 
which showed significantly association with DPD status. 

There are main differences between histological and 
radiological based exam. Medical image diagnoses can 
collect the malignant features at a macroscopic level (CT 
high pixel), while histology relies on a microscopic level and 
provides a more detailed analysis of underlying pathological 
processes. However, Imaging outweigh histology because 
it can capture the complete tumor burden in a single scan. 
Imaging-based features could potentially be extracted in 
clinical situations as adding clinical information ahead of 
bio-histology results. More validation trial should focus on 
comparing radiomics to liquid biopsy (such as ctDNA or 
cfDNA), since both of these approaches show dominant 
advance in reflecting the overall tumor burden as opposed 
to the histological exam (24).

There were some limitations of our study: (I) this was a 
retrospective study from a single institution from China, 
and there may have been selection bias in the study cohort. 
(II) Our analysis did not analysis the perifissural nodules, 
while Mets et al. indicated that incidental perifissural 
nodules do not represent lung cancer in a routine care, 
heterogeneous population (25). (III) In our study, radiomics 
features were applied for only the main lung primary lesion 
of each case, which could influence sensitivity and specificity 
of the model. (IV) positron emission tomography CT 
(PET-CT) test information were not included in this study. 
However, in spite of these limitations potentially adding 
noise to the data, this study using quantitative radiomic 
measurements to identify a strong signal predictive of 
DPD preoperatively. Further innovation test and validation 
of imaging phenotype is an important aspect for the 
introduction of imaging-based features. 

Conclusions

In conclusion, this research revealed a strong association 
between the imaging phenotype captured from radiomic 
features and DPD status. The signature based on radiomics 
features can provide added predictive value to identify 
DPD.
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Supplementary

Figure S1 Heatmap of ten selected radiomic signature.
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