Skip to main content
. 2019 Jul 8;9:9848. doi: 10.1038/s41598-019-46369-4

Table 4.

The performance comparison between different methods on the Yeast dataset.

Author Model Accu.(%) Sen.(%) Prec.(%) MCC(%)
Yangs’ work40 Cod1 75.08 ± 1.13 75.81 ± 1.20 74.75 ± 1.23 N/A
Cod2 80.04 ± 1.06 76.77 ± 0.69 82.17 ± 1.35 N/A
Cod3 80.41 ± 0.47 78.14 ± 0.90 81.86 ± 0.99 N/A
Cod4 86.15 ± 1.17 81.03 ± 1.74 90.24 ± 0.45 N/A
Zhous’ work41 SVM + LD 88.56 ± 0.33 87.37 ± 0.22 89.50 ± 0.60 77.15 ± 0.68
Yous’ work42 PCA-EELM 87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 77.36 ± 0.44
Guos’ work30 ACC 89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A
AC 87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A
Wangs’ work43 SAE 96.60 ± 0.22 93.73 ± 0.46 99.36 ± 0.41 93.41 ± 0.41
Dus’ work44 DeepPPI 94.43 ± 0.30 N/A 96.65 ± 0.59 88.97 ± 0.62
Zhangs’ work45 EnsDNN 95.29 ± 0.43 95.12 ± 0.45 95.45 ± 0.89 90.59 ± 0.86
Patels’ work46 DeepInteract 92.67 86.85 98.31 85.96
Our model CNN-FSRF 97.75 ± 0.54 99.61 ± 0.22 95.89 ± 1.02 96.04 ± 1.05