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Prioritizing target-disease 
associations with novel safety and 
efficacy scoring methods
Mario Failli, Jussi Paananen & Vittorio Fortino   

Biological target (commonly genes or proteins) identification is still largely a manual process, where 
experts manually try to collect and combine information from hundreds of data sources, ranging from 
scientific publications to omics databases. Targeting the wrong gene or protein will lead to failure of 
the drug development process, as well as incur delays and costs. To improve this process, different 
software platforms are being developed. These platforms rely strongly on efficacy estimates based on 
target-disease association scores created by computational methods for drug target prioritization. 
Here novel computational methods are presented to more accurately evaluate the efficacy and safety 
of potential drug targets. The proposed efficacy scores utilize existing gene expression data and tissue/
disease specific networks to improve the inference of target-disease associations. Conversely, safety 
scores enable the identification of genes that are essential, potentially susceptible to adverse effects 
or carcinogenic. Benchmark results demonstrate that our transcriptome-based methods for drug 
target prioritization can increase the true positive rate of target-disease associations. Additionally, the 
proposed safety evaluation system enables accurate predictions of targets of withdrawn drugs and 
targets of drug trials prematurely discontinued.

The development of a new drug, from target (herein a gene or a protein) identification to Food and Drug 
Administration (FDA) approval, takes over 10 years and far exceed the cost of $2.6 billion1. Most of the costs are 
sunk into failures, which often occur in late-stage clinical development with a considerable waste of time and 
money. Reasons for drug failures are mainly safety findings or lack of efficacy in the disease they were intended 
for. To stem this phenomenon, academic and industrial research has focused on the identification of the most 
biologically plausible molecular targets that are relevant to the specific disease. This step, often indicated as drug 
target discovery, represents the first and crucial stage of drug development2. Over the last decades, several bioin-
formatics tools have been implemented to rapidly identify and prioritize genes that encode promising drug targets 
from public scientific literature and biomedical data3,4. In particular, computational methods using large-scale 
omics data have been proposed. For instance, genome-wide association studies (GWAS) and transcriptome anal-
ysis have been successfully used to find target genes for diseases5–8, leading to a few cases of new FDA-approved 
drugs9,10. Following the accretion of publicly available data, computational platforms linking potential drug tar-
gets to diseases have risen. Some of them, such as Guildify11, the Comparative Toxicogenomics Database12 (CTD) 
and DISEASES13 focus on evidence based on single data types (e.g. interactome- or literature-based). Others, such 
as DisGeNET14, PHAROS15 and Open Targets16 (OT) platforms systematically integrate and harmonize multi-
ple biomedical data sources belonging to several data types in order to associate and prioritize potential targets 
with diseases. In particular, the OT platform detects, scores and integrates evidence-based associations between 
diseases and putative targets by using a breadth of data types (i.e. genetic associations, somatic mutations, know 
drugs, gene expression, affected pathways, literature mining and animal models). An important data type is RNA 
expression, which provides efficacy estimates based on the combination of expression fold change, statistical 
significance (P-value) and percentile rank. The success of these platforms, in delivering accurate targets, strongly 
relies on the use of specialized data mining methods enabling the identification of key patterns from large-scale 
data to be then used for efficacy assessment. However, it is acknowledged that certain methods are more accurate 
than others17,18. For instance, Ferrero et al.17 have used a machine learning approach to demonstrate that scoring 
methods derived from different data types used by OT exhibit different prediction performances on known gene 
disease associations. Besides, efficacy is not the only relevant aspect to be considered. There are in fact other 
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properties that should be examined in the pre-assessment of potential therapeutic targets19, such as safety, which 
is often overlooked by current target discovery platforms20.

In this study novel data mining methods are proposed to improve the evaluation of efficacy scores from exist-
ing transcriptome data and to complement this information with target safety assessment. Based on the hypoth-
esis that a perturbed gene could result in the correction of transcriptional signatures dysregulated in a particular 
disease21, a new efficacy score, namely modulation score, is defined to estimate the likelihood of a gene pertur-
bation (e.g., knockout and knockdown) to result in specific reversion of disease gene-expression profiles. Then, 
a tissue-specific efficacy score is provided under the hypothesis that disease-associated genes are more likely to 
exhibit tissue-specific expression than non-disease-associated genes22. By traversing existing tissue/disease spe-
cific networks, the tissue-specific scoring method detects gene targets that are closely related to disease genes in 
disease-relevant tissues. Moreover, three novel safety scores are introduced to estimate the likelihood of a poten-
tial target to be carcinogenic, to develop either common or rare adverse reactions, and to play important roles in 
biological processes. Figure 1 depicts the general schema of the proposed scoring methods for drug target prior-
itization. Starting from different sets of known target-disease associations, here referred as to gold standards, the 
performances of the novel efficacy scores were evaluated alone and in combination with those obtained from OT. 
Additionally, different benchmarks were compiled in order to accurately test the safety assessment scores. In par-
ticular, targets linked to discontinued drugs or drugs failed clinical trials were considered as targets with known 
safety issues and, therefore, these targets were used to evaluate the prediction capabilities of the propose safety 
scores. Finally, a case study was conducted to prioritize targets for Type 2 Diabetes (T2D) and Alzheimer’s disease 
(AD), in order to prove that the proposed scoring methods enable the selection of efficient and safer drug targets.

Results
Benchmark datasets for evaluation of drug target prioritization methods.  DrugBank23 (version 
5.1.0) was queried to build a set of known target-disease associations. Medical Subject Headings24 (MeSH) terms 
were systematically matched to the description of DrugBank entries in order to identify known drug-disease 
associations. These associations were then transformed to target-disease associations by availing of the infor-
mation on the potential drug targets. Finally, MeSH identifiers were converted to disease EFO25 ids (Methods 
for details). The compiled set of known drug target-disease associations was used to verify whether and to what 
extend top ranked target-disease associations, resulting from the application of a given efficacy score, matched 
known associations. In more details, the positive predictive values (ppv) was computed as the percentage of true 
positives normalized against the expected ppv for a random ordering of target-disease pairs26. The ppv curves 
were supplemented with barplots, which indicate the exact percentage of true positives (TP) obtained with the 
top n target-disease associations (where n corresponds to the 1st, 5th and 10th percentile of the target-disease 
association list sorted by a given efficacy score). Two additional sets of known target-disease associations were 
obtained from OT and CTD (see Methods online). Sets of drug targets with potential safety issues were also built 
in order to evaluate the accuracy of safety assessment scores. A first set of potentially unsafe targets was obtained 
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Figure 1.  An overview of the proposed methods for drug target prioritization. (a) Graphical view of the 
modulation and tissue-specific scores. (b) Graphical view of the ADR, centrality and onco-driven scores. (c) 
Example of trade-offs between efficacy and safety scores.
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by selecting targets linked to drugs withdrawn from the market in at least one jurisdiction. Then, targets in clin-
ical trials terminated “prematurely” were obtained from ClinicalTrials.gov by assuming that safety was the main 
cause of an early termination. Known essential genes in Human27 and a derived set of targeted genes in cancer 
therapies (see Methods) were also considered. In the same way as for the evaluation of efficacy score, ppv curves 
were measured to evaluate the safety scores. Therefore, drug targets were first ranked based on a given safety 
scores (from unsafe to safer) and then the top n selected targets were selected and compared with those having 
known safety issues.

Efficacy scores derived from Open Target exhibit different accuracy results.  A set of 1,337,423 
direct target-disease associations was retrieved from OT (release 19.02), along with association scores for 20 data 
sources and 7 data types and an overall score compiled as the sum of the harmonic series of the individual data 
source scores. These efficacy estimates were then analyzed to understand how the OT platform uses the different 
target-disease associations to identify and prioritize drug targets. In particular, the number of efficacy estimates 
covered by the single data types (target-disease association with a score greater than 0), and their combinations 
(target-disease associations with more than one efficacy estimate), was calculated in order to generate an upset 
plot indicating the most used data types in OT. The upset plot in Supplementary Fig. S1 shows that almost the 
90% of associations are covered by a single data type and that text mining of scientific literature alone covers 
more than 40% of the entire set of target-diseases associations. Likewise, the number of drug targets (or genes) 
having at least one OT-score greater than 0 was compiled. This analysis reveals that different data types supply 
evidence for the same targets (see Supplementary Fig. S2). Figure 2 depicts the ppv curves obtained after bench-
marking the OT-driven efficacy scores with known target-disease associations. The positive predictive values 
show that somatic mutation and genetic association data types performed up to 15.5- and 7.3-fold better than 
random, respectively. Moreover, RNA-expression performed very poorly (0.6 times better than random at most) 
suggesting that current scoring methods ranking target-disease associations from transcriptome-data need to 
be improved. Then, in order to better investigate the poor performance of the RNA-expression scoring method, 
ppv plots were generated for different therapeutic areas: neurodegenerative, infectious, immune, metabolic, 
cardiovascular and cancer diseases (see Supplementary Fig. S3). These ppv plots clearly show that the current 
RNA-based scoring method is not informative for most of the selected therapeutic areas.

Novel transcriptome-based efficacy scores improve drug target identification.  This study pre-
sents two novel computational methods to assess the efficacy of potential drug targets by using existing transcrip-
tome data. A first computational strategy aims to find gene perturbations able to revert the gene expression profile 
induced by a disease, in order to compile the modulation score, here referred to as Sm. First, known lists of up- and 
down-regulated genes associated with gene perturbations and diseases were downloaded from Enrichr28. These 
lists were then used to compile the number of reversed genes between a given gene modulation and a disease, 
here referred as to as Cg,d. Each count value Cg,d, was finally compared with a background distribution in order to 
calculate its statistical likelihood and to generate a robust efficacy score (see Methods). The second computational 
strategy instead aims to verify whether a gene is a candidate disease drug target based on its relative distance to 
known disease genes in tissue-specific gene networks. This score is here referred to as St. In practical terms, genes 
that are tied to disease genes through paths including highly tissue-specific genes will tend to have higher efficacy 
scores (see Methods). The scores proposed for the efficacy evaluation of drug targets were evaluated alone and in 
combination on a list of known target-disease associations. In particular, ppv curves and barplots, which report the 
rates of true positives for different percentiles of the score distributions, were used for the comparative analysis. The 

Figure 2.  Benchmark results obtained from the individual OT scores. Target-disease pairs having score greater 
than 0 are sorted based on their efficacy scores for each of the 6 data types available in OT. The sorted lists are 
then trimmed on the 50th percentile and compared with a set of known target-disease associations in order 
to obtain the number positive predicted values and calculate the corresponding normalized ppv curves. The 
dashed line in black indicates the normalized ppv for a random ordering of target-disease pairs.
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ppv curves depicted in Fig. 3a show that both the modulation and tissue-specific scores performed better than the 
RNA-expression data type of OT, by exhibiting 1.8- and 3.7-fold improvements, respectively. Moreover, the pro-
posed efficacy scores lead to new target-disease associations, as shown in Fig. 3b. In addition, ppv curves reporting 
the rates of two further sets of manually curated and known target-disease associations from CTD and OT, respec-
tively, confirm the improvements of the proposed efficacy scores (see Supplementary Fig. S4). These results, taken 
together, demonstrate that our efficacy evaluation methods have the ability to detect putative drug targets.

Efficacy scores were also evaluated in combination with those provided by OT. To this end, two different 
ensemble systems were considered. The first ensemble strategy, here referred to as Emax, selects the maximum 
value between the maximum derived from all OT scores (OTmax) and a new efficacy score; Emax = max(OTmax, 
Sm) or Emax = max(OTmax, St). The second ensemble strategy, here referred to as Ehs, selects the max between 
the harmonic sum compiled by OT (OThs) and a new efficacy score; Ehs = max(OThs, Sm) or Ehs = max(OThs, St). 
Note that the overall score obtained from OT was recompiled in order to eliminate the evidence obtained from 
known drugs. Then, two lists of inferred target-disease associations were selected for the benchmark: one includ-
ing solely the OT associations and one extending the OT associations with those discovered by the proposed 
efficacy score (namely OText). These lists were subsequently sorted (from highest to lowest), by using the two 
aforementioned ensemble methods, and trimmed to the same size. Finally, the resulting target-disease association 
lists were compared against known target-disease associations in order to compile the true positive (TP) rates. 
Figure 4a,b show the TP rates achieved by using the ensemble methods on the lists OT and OText. Supplementary 
Excel File S7 reports the exact differences between each pair of TP rates along with bootstrap confidence inter-
vals. Furthermore, the comparison between the OT system and its extended versions with the modulation and 
tissue-specific efficacy scores was also carried out with Tukey’s post hoc test to assess if the identified means of 
true positive rates are significantly different from each other (see Supplementary S7). Barplots in Fig. 4a shows 
that the ensemble systems including the modulation score perform better than the OT integrated score. In par-
ticular, the Emax strategy achieved the best results on the 5th and 10th percentiles of the target-disease associations 
in OT, increasing the rate of true positives by a factor of 3.882 (549 target-disease associations) and 7.839 (2,217 
target-disease associations), respectively. Vice versa, the ensemble systems including the tissue-specific efficacy 
score obtained the highest TP rates on the extended set of target-diseases associations OText, indicating its ability 
to discover known target-diseases associations that are currently missed by OT. In more details, the Ehs strategy 
including the tissue-specific score increases the rate of TP by a factor of 6.783 (112 associations) and 8.154 (672 
associations) on the 1th and 5th percentiles of the target-disease associations in OText. Following a similar trend, 
the Emax strategy increases the rate of TP by a factor of 12.736 (210 associations) and 17.324 (1,427 associations) 
on OText. Moreover, no significant increase in performance were found in Ehs and Emax when considering solely 
OT associations (see Fig. 4b). Supplementary Figs S5–S6 and Supplementary Excel Files S8–S9 report the results 
for the additional benchmark dataset. To summarize, the benchmark results described in this paragraph demon-
strate that the proposed transcriptome-based efficacy scores can be used to improve the accuracy of drug target 
prioritization platforms and to discover novel target-disease associations.

Genome-wide data are instrumental in predicting unsafe drug targets.  A second important aim 
of this study is to evaluate an OT-like system for the identification and prioritization of potentially safe drug 
targets. To this end, three safety scores were implemented to assess adverse effects of a drug target (ADR score), 

Figure 3.  Benchmark results obtained from the novel efficacy scores. (a) Ppv curves compiled on the new 
efficacy estimates for target-disease associations. Target-disease pairs having score greater than 0 are sorted 
based on the modulation and tissue-specific efficacy scores. The sorted lists are then trimmed on the 50th 
percentile and compared with a set of known target-disease associations in order to obtain the normalized ppv-
curves. The dashed line in black indicates the normalized ppv for a random ordering of target-disease pairs. (b) 
Three-set Venn diagram showing the number of target-disease associations covered by the OT, modulation and 
tissue-specific efficacy scores.
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which were compiled from the ADReCS-Target database29, target centrality in tissue-specific gene network (cen-
trality score) and whether targets can cause cancer progression when inactivated by a drug (onco-driven safety 
score) (see Methods online). These safety assessment scores were systematically evaluated alone and in combina-
tion on sets of targets with known safety issues. In particular, targets associated with drugs withdrawn from mar-
ket or drugs in clinical trials terminated without results were selected to define sets of drug targets with potential 
toxic effects. Then, non-conditional essential genes and genes targeted by cancer therapies were also selected (see 
Methods online). In a similar way as for the assessment of efficacy scores, the benchmarking of safety scores was 
carried out ordering targets from unsafe to safer. Then, the rate of true positives was compiled for the first top n 
potentially unsafe targets, with n corresponding to the 1st, 5th and 10th percentile of the target list. The ppv curves, 
depicted in Fig. 5a, show that the ADR and centrality scores perform 5 and 2 folds up, respectively, and that the 
harmonic sum combining the three safety scores perform 3 folds up for more than the 15th percentile of the target 
list. Figure 5b shows the number of targets covered by each score and their overlapping sets. These results, taken 
together, indicate that the proposed safety assessment system for putative drug targets is robust and accurate. 
Figure 6 depicts a summary of the TP rates achieved by the safety scores against each set of potential unsafe 
targets. ADR score was highly informative for the prediction of withdrawn-drug targets, failed-trial targets and 
cancer targets. However, it performed poorly when identifying essential genes (see Fig. 6a). On the other hand, 
the centrality score reached high rates of TP on the set of essential genes (see Fig. 6b), indicating that an integra-
tion of the ADR and centrality score can successfully predict all the defined categories of potentially unsafe targets 
(see Fig. 6d). There were less significant rates of TP with the onco-driven scores (see Fig. 6c), indicating that this 
safety score should be improved. A detailed overview of all comparisons between TP rates obtained with different 
ranking methods for target safety assessment is reported in Supplementary Excel File S10.

Combining efficacy and safety scores can lead to the discovery of novel drug targets.  A case 
study aiming to identify and prioritize drug targets for Type 2 diabetes mellitus (T2D) and Alzheimer’s disease 
(AD) was conducted in order to show the relevance of combining efficacy with safety scores. According to World 
Health Organization (WHO) estimates, both T2D and AD are amongst the top ten causes of death worldwide 
(as at December 2016). Interestingly, pathogenesis and therapeutic similarities have been found between the 
two diseases30. Emerging therapies for the treatment of T2D and AD targeting Glucagon-like peptide-1 receptor 
(GLP1R) agonists have been proposed31. However, a series of adverse effects (acute kidney injury, injection site 
reactions, headache, and nasopharyngitis) associated with drugs targeting GLP1R and their involvement in car-
diovascular events, pancreatitis, or pancreatic cancer32, may require the identification of novel drug targets. To 
this end, the proposed Ehs ensemble system and the complement of the harmonic sum of the three proposed safety 
scores were calculated to identify putative safer T2D- and AD-targets. The resulting efficacy and safety scores, 
ranging between 0 and 1, were finally combined with a weighted sum (WEfficacy = WSafety = 0.5) in order to compile 
an overall score and rank drug targets for T2D and AD. The top 50 selected targets were then compared with those 

Figure 4.  Performance results obtained by combining the proposed efficacy estimates with OT scores. Lists of 
target-disease associations sorted by the individual efficacy scores were evaluated separately on set of known 
associations extracted from DrugBank. Rates of TP were determined on both lists OT and OText. The OT 
contains target-disease associations found by OT; while OText includes novel associations found by the proposed 
efficacy evaluation systems. These lists were systematically sorted by combining a novel efficacy score with an 
integration of the OT scores (max or harmonic sum). The sorted lists were then trimmed to the same size in 
order to have a fair comparison when comparing the rates of TP. (a) Barplots indicating the rate of TP obtained 
from the combination of the modulation score with the OT scores. (b) Barplots indicating the rate of TP 
obtained from the combination of the tissue-specific efficacy score with the OT scores. Each barplot is divided 
in three sections in order to compare the rates of TP achieved on the 1st, 5th and 10th percentile of the sorted 
target-disease association lists. Each bar indicates the mean TP percentages ± CI are reported for each (n = 100/
group; ***fdr < 0.001 vs. Ehs(OT data type) or Emax(OT data type), one-way ANOVA followed by Tukey’s HSD 
post-hoc test).
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provided by the OT platform. Surprisingly, the targets selected by OT often presented very low safety scores (see 
Fig. 7). Moreover, the combination of efficacy and safety scores leaded to potential comorbid associations between 
T2D and AD. In particular, 15 out of 50 putative targets (30%) were shared between the two diseases (Table 1), 
and three of them (S1PR, GPR120/FFAR4 and RBP2) showed direct evidence of therapeutic involvement in both 
diseases, based on recent findings and literature. Sphingosine-1-phosphate receptor (S1PR) modulators have 
been demonstrated to decrease the amyloid-β (Aβ) peptide, the major component of senile plaques deposited in 
the brains of patients with AD33; on the other hand, S1PR blockers have shown to significantly improve glucose 
tolerance and insulin sensitivity in genetically obese mice, a type 2 diabetes model34. Then, G protein-coupled 
receptor 120 (GPR120/FFAR4) agonists have emerged as promising therapeutic treatments of type 2 diabetes35; 
additionally, the GPR120 agonist docosahexaenoic acid (DHA) has proven to slow the progression of AD36. The 
cellular retinol binding proteins (RBP) have been proposed as potential therapeutic targets for T2D due to their 
role in adipogenesis37; indications of RBP2 as a marker of AD were found too38. Other targets shared between 
T2D and AD were also linked in literature. In particular, the twist family bHLH transcription factor 2 (TWIST2) 
has been found involved in neuroinflammation and glycogen storage regulations39,40, whereas histone H3K4 and 
H3K9 methylation has been found associated with T2DM and AD progression41,42. In this context, both TWIST2 
and H3K4 and H3K9 demethylase, such as KDM1B and KDM3A, may represent novel targets for the prevention 
of both diseases. A list of drugs targeting the selected genes is available in Supplementary Excel File S11. It should 
be noticed that the case study was conducted by compiling the average between the efficacy and safety scores 
(which is equivalent to have a weight of 0.5 for both scores). However, in case of life-threatening diseases or highly 
disabling disorders the efficacy score could be weighted more than the safety score, determining a different target 
prioritization result. It has already occurred, indeed, that successful drug discovery campaigns of the past have 
focused more on target efficacy when the efficacy overweighted target safety. A good example is the development 
of Fingolimod, a sphingosine 1-phosphate receptor 1 (S1PR1) agonist, approved in 2010 for the treatment of 
Relapsing-remitting multiple sclerosis (RRMS) and known for causing a decrease in heart rate43. In accordance 
with this evidence, Fingolimod’s target, S1PR1, was found unsafe by the proposed safety score (overall safety 
score ~ 0.11). By implication, S1PR1 was detected among the top targets for RRMS only by weighting efficacy 
more than safety (e.g. WEfficacy = 0.8 and WSafety = 0.2; see Supplementary Excel File S12). Moreover, a counterex-
ample was identified in the development of the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. 
PCSK9 inhibitors are a class of drugs approved in 2015 for the treatment of both Familial hypercholesterolemia 
(FH) and Atherosclerosis (AS), and not associated with any particular safety risks44. The favorable safety profile 
of their target, PCSK9, was confirmed by the proposed scores (overall safety score~0.79). In addition, PCSK9 
placed 6th and 21st among the top targets for AS and FH, respectively, in condition of averaged efficacy and safety 
(Supplementary Excel File S13).

Discussion
This study presents five data mining methods to identify efficient and safer drug targets for specific disease condi-
tions. Two novel methods are proposed to identify and rank target-disease associations by using gene expression 
profiles in gene modulations and human diseases, and tissue-specific gene expression networks. Furthermore, 
three safety assessment scores are provided for early detection of potential unsafe targets. Efficacy-driven prioriti-
zations were validated against known target-disease associations obtained from DrugBank; instead, safety-driven 
rankings of putative drug targets were evaluated on different sets of targets with known safety issues. In particu-
lar, targets of withdrawn drugs (retrieved from DrugBank), targets of drugs failed clinical trials (retrieved from 

Figure 5.  Benchmark results obtained from the safety scores. (a) Putative targets are sorted from unsafe to 
safer according to each safety assessment method. The sorted lists are then trimmed on the 50th percentile and 
compared with a set of targets with known issues in order to obtain the normalized ppv-curves. The dashed line 
in black indicates the normalized ppv for a random ordering of target-disease pairs. (b) Three-set Venn diagram 
showing the number of targets covered the different safety scoring systems.
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ClinicalTrials.gov) and targets corresponding to essential genes were used to test the safety evaluation scores. 
Benchmark results demonstrated that proposed transcriptome-based scoring methods improve the prediction 
accuracy of current platforms for drug target prioritization. In particular, they provide better predictions than the 
OT-gene-expression score. Additionally, the applied methods identified many known target-disease associations 
that are not annotated in OT. Likewise, safety scores have also proved to make a valuable contribution to the 
detection of potentially unsafe targets. In this regard, it is interesting to observe that ADR and centrality scores 
are complementary features and their combination is therefore important to ensure early identification of unsafe 
drug targets. Finally, a case study was conducted to prioritize and select 50 targets for Type 2 Diabetes (T2D) and 
Alzheimer’s disease (AD) by using efficacy and safety scores in combination. The main finding of this study is a 
set of 15 novel target genes that are common between AD and T2D. These targets represent the best trade-offs 
between efficacy and accuracy and, based on recent findings, they could lead to novel T2D/AD therapeutics. Even 
though current literature provides support for these genes being potential drug targets for T2D and AD, further 
studies are obviously needed to study the function and validate the efficacy and safety of these targets.

Overall this study presents novel computational methods for drug-target prioritization that can be used to 
optimize the selection of putative drug targets based on efficacy and safety pre-evaluations. In particular, the pro-
posed safety assessment scores could be added to current platforms for drug target discovery in order to provide 
safety information along with efficacy estimates based on target-disease association scores. However, this study 
represents a first step toward more effective drug target prioritization systems and, most importantly, we believe 
that novel methods, discovering target-disease associations and related safety issues, should be implemented in 
order to better leverage the growing volume of omics information for target identification.

Figure 6.  Performance results obtained by testing the safety scores on single benchmarks. Lists of targets 
sorted by the individual safety scores (from unsafe to safer) were evaluated separately on different categories 
of potential hazardous targets. These categories include targets of discontinued drugs, targets of drugs failed 
clinical trials, essential genes and cancer targets. (a) Benchmark results obtained by ordering putative targets 
according to ADR, (b) centrality, (c) onco-driven and (d) overall safety scores. Each barplot reports the TP rates 
along with bootstrap confidence intervals compiled on the 1st, 5th and 10th percentile of the sorted target list 
(n = 100/group; ***fdr < 0.001 vs. control, one-way ANOVA followed by Tukey’s HSD post-hoc test).
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Methods
Modulation score.  The proposed modulation score aims to evaluate whether downstream effects of a per-
turbed gene can result in the correction of the transcriptional signature dysregulated in a particular disease. First, 
up- and down-regulated gene lists associated to disease and gene modulations (e.g., knockout and knockdown 
genes) were downloaded from Enrichr28. Then, gene sets associated with experiments performed on animal mod-
els were converted to human gene sets by considering the human-mouse equivalent gene names or the human-
mouse orthologs (genes with no human orthologs were removed). Starting from the selected gene sets, two 
separated matrices of gene co-occurrences were created by matching the genes upregulated in diseases with those 
downregulated in gene perturbations and vice versa. Then, a composite z-score was compiled for each dis-
ease-gene perturbation interaction: = +f Z Z Z Z( , ) ;i j i j  where Zi and Zj are the z-scores from Ci, the set of all the 
co-occurrence values for disease i (row i), and Cj, the set of all the co-occurrence values for gene perturbation j 
(column j). Finally, the modulation score between disease i and gene perturbation j was compiled as:

= ′ + ″( )( ) ( )MS i j f Z Z f Z Z( , ) 1
2

, ,i j i j

Figure 7.  Comparison of the safety and efficacy scores associated to drug targets found for AD and T2D. 
Scatter plots showing the safety and efficacy scores for the top 50 targets selected by OT and by a weighted 
scoring system integrating the efficacy (w = 0.5) and safety (w = 0.5) estimates compiled with the new methods. 
The safety score was derived using a harmonic sum on the ADR, centrality and onco-driven scores. The efficacy 
score instead was obtained by applying the Ehs ensemble strategy. Targets with known safety concerns are 
highlighted with the red color. (a) Top 50 targets for T2D and (b) AD identified by each approach.

Gene symbol Extended name

AMER1 APC membrane recruitment protein 1

B4GALNT2 beta-1,4-N-acetyl-galactosaminyltransferase 2

CACNA1S calcium voltage-gated channel subunit alpha1 S

CHRNA9 cholinergic receptor nicotinic alpha 9 subunit

FFAR4 free fatty acid receptor 4

HMX1 H6 family homeobox 1

KDM1B lysine demethylase 1B

KDM3A lysine demethylase 3A

NFIA nuclear factor I A

PCTP phosphatidylcholine transfer protein

PRLH prolactin releasing hormone

RBP2 retinol binding protein 2

S1PR3 sphingosine-1-phosphate receptor 3

TWIST2 twist family bHLH transcription factor 2

ZFP42 ZFP42 zinc finger protein

Table 1.  Putative targets in common between T2DM and AD among the top 50 identified with the proposed 
framework.
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with ′( )f Z Z,i j  and ″( )f Z Z,i j  representing the composite z-scores calculated over the two gene co-occurrences 
matrices. Finally, for each gene-disease pair, only the perturbation giving the maximum score was selected.

= … ∀ ∈MS i g MS i a MS i a a P( , ) max{ ( , ) ( , )}n g1

with Pg the set of perturbations found in Enrichr for the gene g.

The tissue-specific efficacy score.  The second transcriptome-based efficacy score is based on the tissue 
specificity of human disease genes. In particular, it uses tissue-disease-gene networks to detect shortest paths 
connecting targets to disease genes by using intermediate genes that are highly tissue-specific. First, genetic asso-
ciation scores provided by OT were used to select the most relevant disease genes (genetic association score equal 
to 1), here indicated with D. Then, the tissue-specific human interactome published by Kitsak et al.45 was used to 
evaluate the paths connecting putative gene targets to disease genes. This interactome consists of 141,296 exper-
imentally supported physical interactions between 13,460 proteins, and gene-expression data for 13,068 genes 
from 64 non-diseased tissues45. For each tissue t, a tissue-specific sub-network, here indicated as It, was formed 
by selecting the genes that are particularly active in t (significance level zE ≥ 1.0)45. Then, starting from a tissue t 
relevant for the disease d the tissue-specificity score of a gene was compiled with the following formula.

∑= − ∗
∈

TSS D I g
D

c d Dijkstra I g d( , , ) 1 ( ) ( , , )t
d D

t

Dijkstra’s algorithm determines the weighted shortest path connecting a putative target g to a gene disease. 
However, in order to apply this algorithm, the node-weighted graph It was transformed to an edge-weighted directed 
graph. In more detail, an edge connecting a node A to node B was weighted according to the expression level of B in 
the tissue t if B was not a disease gene, otherwise the expression level of the node A was used as edge weight. 
Moreover, since Dijkstra’s algorithm does not work with negative values, the expression values were converted in the 
form of z-scores scaled in the range [0,1]. Finally, a weighted average was computed on the shortest path scores 
derived from the best paths connecting a target g to each ∈d D. The weights were compiled in order to reflect the 
centrality of the destination nodes (or the disease genes). In more details, the Borda aggregation method46 was used 
to rank the disease genes based on three node centrality scores: degree, weighted betweenness and weighted cluster-
ing coefficient. Then, a quantile-based discretization method was used to group the genes into equal-sized buckets 
based on rank and to replace the rank values with discrete levels of node centrality: 0.25, 0.5, 0.75.

Drug target prioritization based on safety scores.  Three scoring methods were proposed to 
pre-evaluate the safety of gene targets. The first score is based on the hypothesis that genes highly downregulated 
in cancer can hinder cancer progression, because they might play a causal role in the development of the disease. 
Therefore, a collection of manually curated gene sets associated with oncogenic pathway activation was download 
from the Molecular Signatures Database47 (MSigDB) oncogenic library. From this library, the gene sets that were 
highly downregulated under carcinogenic conditions were selected in order to compile the following frequency 
score for each putative target g:

∑. . =
=

onco driven score g f g s( ) ( , ),
s

S

1

where f is the function that returns 1, if a putative target g occurs in the set s, and 0 otherwise.
The second safety score is based on the idea that genes with high centrality in biological networks have a sig-

nificantly higher chance of disrupting relevant biological pathways. Therefore, starting from the tissues where 
diseases were most likely to occur, different centrality scores (degree, weighted betweenness and clustering coef-
ficient) were compiled for each gene within a given tissue-specific interactome It. The centrality scores were then 
used to rank the genes, from most (low safety) to least connected (high safety), and the resulting rankings were 
aggregated with Borda: =R I Borda R I R I R I( ) ( ( ), ( ), ( ))t d t c t b t . The ranking outcome obtained from each 
tissue-specific interactome was finally used to calculate an overall centrality score:

∑. =
=

centrality score g rank position R I g( ) _ ( ( ), )
t

T

t
1

The third safety score was implemented under the hypothesis that rare adverse reactions resulting from drug 
target interactions may have more severe clinical implications than frequent ones. The Adverse Drug Reaction 
Classification System-Target29 database was used to collect adverse drug reactions associated to genes. Then, the 
ADRs were grouped into 17 high-level categories (HLCs) by etiology (e.g. infections and inflammations), manifes-
tation site (e.g. cardiovascular) or purpose (e.g. emotional). The Supplementary Excel File S14 reports the complete 
list of the defined categories of ADRs. Therefore, starting from the set of HLC terms associated to a gene H(g), the 
following formula was applied to determine the probability that a gene can lead to rare adverse reactions as:

∏= −
∀ ∈

ADRS g freq a( ) ( )
a H g( )

Efficacy and safety scores were finally scaled to [0,1], with 1 indicating the most effective targets or the most 
unsafe targets.
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Selection of known target-disease associations.  In order to assess the accuracy of the proposed effi-
cacy scores, a set of 11,439 known target-disease associations was generated by text-matching Medical Subject 
Headings24 (MeSH) terms (or their synonyms), with the description in DrugBank23 entries. Disease-drug associ-
ations thus identified were then transformed in target-disease associations by replacing drugs with their potential 
targets retrieved from DrugBank and converting gene symbols to Ensembl IDs. Then the Disease Ontology48 
(DO) and the Experimental Factor Ontology25 (EFO) files were used to map MeSH-IDs to DO-IDs and DO-IDs 
to EFO-IDs, respectively. The mapping between MeSH-IDs and DOI-IDs was needed to maximize the overlap 
between MeSH-IDs and EFO-IDs. A second set of 29,265 known target-disease associations was obtained from 
Open Targets by selecting those associations for which evidence of existing drugs that engage the target and treat 
the disease were provided. Only drugs that are currently in phase III of clinical trials or marketed were consid-
ered at this stage (known drugs score ≥ 0.7). Finally, a third set of 183,959 known target-disease associations 
was derived from the Comparative Toxicogenomics Database12 (CTD). CTD supplies manually curated chemi-
cal–gene/protein interactions and chemical–disease associations from the published literature. Thus, the last set 
of known associations was generated by joining the aforementioned tables by chemical IDs (MeSH-IDs). Since 
CTD provides both direct and indirect evidence of chemical–gene/protein interactions, only direct interactions 
(i.e. “chemical binds to protein” or “chemical activates protein”) were considered. Once again, gene symbols were 
converted to Ensembl IDs and MeSH-IDs to EFO-IDs passing through DO-IDs.

Selection of drug targets/genes with known safety issues.  Four sets of known or putative unsafe 
drug targets were collected in order to evaluate the performance of the proposed safety scores. The first set of drug 
targets was built under the assumption that drug treatments, used in interventional studies prematurely termi-
nated or withdrawn without results, might be regarded as potentially unsafe targets. Thus, from ClinicalTrials.gov 
the top 10,000 studies that matched the aforementioned criteria were selected. Matchings involving placebo or 
combinations of drugs were excluded. Drug treatments were then crossed with DrugBank (version 5.1.0) entries 
in order to identify a total number of 598 targets. A second set of potentially unsafe targets was obtained from 
DrugBank by considering drugs withdrawn from the market in at least one jurisdiction (266 targets). The third 
set of unsafe targets correspond to the set of (non-conditional) human essential genes extracted from the Online 
GEne Essentiality27 (OGEE) database (183 targets). Finally, the first set of known target-disease associations was 
used to build two further sets: targets of cancer treatments (454) and targets of non-cancer treatment (234). The 
set of targets of non-cancer treatment was used as control.

Statistical analysis.  Estimated mean percentages and confidence intervals (P(CI1) = 0.25 & P(CI2) = 0.975) 
of true positives were compiled by resampling 100 times the 80% of the gold standard sets. Percentage of each 
sampled set was established for the top n effective target-disease associations (or the top n unsafe targets), with 
n corresponding to the 1st, 5th or 10th percentile of ordered associations (or targets) according to each efficacy (or 
safety) score. Differences between TP (sample) means, derived from the bootstrap process, were assessed with a 
one-way analysis of variance (ANOVA) followed by a Tukey’s honestly significant difference (HSD) test. The ppv 
curves were systematically normalized against ppv obtained from a random ordering of target-disease associa-
tions or, in the case of safety scores, from a random ordering of targets.

Data Availability
The source code for the plots and data (including associations, scores and benchmarks) are available as supple-
mentary materials (CodeAndInputFiles.zip).
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