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Apogossypol-mediated reorganisation of
the endoplasmic reticulum antagonises
mitochondrial fission and apoptosis
Govindaraju Yedida1, Mateus Milani1, Gerald M Cohen1,2 and Shankar Varadarajan1,2

Abstract
The endoplasmic reticulum (ER) with its elaborate network of highly curved tubules and flat sheets interacts with
several other organelles, including mitochondria, peroxisomes and endosomes, to play vital roles in their membrane
dynamics and functions. Previously, we identified structurally diverse chemicals from different pharmacological classes,
which induce a reversible reorganisation of ER membranes. Using apogossypol as a prototypic tool compound, we
now show that ER membrane reorganisation occurs at the level of ER tubules but does not involve ER sheets.
Reorganisation of ER membranes prevents DRP-1-mediated mitochondrial fission, thereby antagonising the functions
of several mitochondrial fission-inducing agents. Previous reports have suggested that ER membranes mark the
constriction sites of mitochondria by localising DRP-1, as well as BAX on mitochondrial membranes to facilitate both
mitochondrial fission and outer membrane permeabilisation. Following ER membrane reorganisation and subsequent
exposure to an apoptotic stimulus (BH3 mimetics), DRP-1 still colocalises with the reorganised ER membranes but BAX
translocation and activation, cytochrome c release and phosphatidylserine externalisation are all inhibited, thereby
diminishing the ability of BH3 mimetics to induce the intrinsic apoptotic pathway. Strikingly, both ER membrane
reorganisation and its resulting inhibition of apoptosis could be reversed by inhibitors of dihydroorotate
dehydrogenase (DHODH), namely teriflunomide and its active metabolite, leflunomide. However, neither genetic
inhibition of DHODH using RNA interference nor metabolic supplementation with orotate or uridine to circumvent the
consequences of a loss of DHODH activity rescued the effects of DHODH inhibitors, suggesting that the effects of
these inhibitors in preventing ER membrane reorganisation is most likely independent of their ability to antagonise
DHODH activity. Our results strengthen the hypothesis that ER is fundamental for key mitochondrial functions, such as
fusion-fission dynamics and apoptosis.

Endoplasmic reticulum (ER) with its ribosome-studded
sheets and reticulated tubules has long been known as the
principal site of protein synthesis, intracellular calcium
storage and lipid synthesis1–5. Alterations in these func-
tions triggers a stress response, commonly referred to as
the unfolded protein response (UPR)6. Over the last

decade, the physical interactions of the ER network with
numerous subcellular organelles and the physiological
consequences of such interactions have been extensively
studied. To date, the ER has been implicated in several
diverse functions, including the regulation of mitochon-
drial membrane dynamics7,8, endosome fission and posi-
tioning9,10, autophagosome biogenesis11, peroxisomal
motility12,13, store-operated calcium entry14 and regula-
tion of reactive oxygen species15.
Previously, we have reported an evolutionarily con-

served, novel form of ER stress response, characterised by
a reversible reorganisation of ER membranes, following
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exposure of cells to a wide variety of drugs from distinct
chemical classes16. Using one such drug, apogossypol, as a
tool compound, we characterised such ER membrane
reorganisation to be distinct from canonical ER stress and
the classical unfolded protein response (UPR). However,
such reorganisation of ER membranes resulted in defects
in ER-golgi trafficking and global protein synthesis16.
Finally, we also observed that changes in ionic fluxes, and
in particular, influx of sodium ions could regulate ER
membrane reorganisation17.
Recently, it has been reported that the physical inter-

action between ER and mitochondria plays a key role in
mitochondrial mediated functions such as fission/fusion
dynamics, DRP-1 recruitment and potentially apoptosis7,8.
In this report, we show that the reversible reorganisation
of ER tubules prevents mitochondrial fission, recruitment
and activation of BAX, outer mitochondrial membrane
permeabilisation as well as apoptosis.

Materials and methods
Cell culture
HeLa cells (purchased from ATCC, Middlesex, UK)

were grown in DMEM medium (Life Technologies Inc.,
Paisley, UK). H1299 (purchased from ATCC), KCL22
(provided by Prof. R. Clark, University of Liverpool) and
MAVER-1 cells (provided by Dr. J. Slupsky, University of
Liverpool) were cultured in RPMI 1640 medium (Life
Technologies). H929 cells (purchased from DMSZ,
Braunshweig, Germany) were cultured in RPMI 1640
medium supplemented with 0.05 mM β-mercaptoethanol
(BME). All culture media were supplemented with 10%
FBS (Life Technologies) and maintained at 37 °C in a
humidified atmosphere of 5% CO2. All cell lines used in
this study were subjected to short tandem repeat (STR)
profiling to ensure quality and integrity.

Reagents
Apogossypol and Leflunomide from ApexBio (Boston,

MA, USA), A-1331852, A-1210477, ABT-199, Z-VAD.
FMK and CCCP from Selleck (Houston, TX, USA), Ter-
iflunomide, norhydroguaiaretic acid (NDGA), Ivermectin,
Terfenadine, Suloctidil, orotate and uridine from Sigma
Aldrich (St Louis, MO, USA), MitoTracker Deep Red FM
from Thermo Fisher (Loughborough, UK) were used.
Antibodies against BAP31, RTN4, BiP, PDI, CHOP,
DHODH and tubulin from Abcam (Cambridge, UK),
CLIMP-63 and BAX (6A7) from Enzo Life Sciences
(Exeter, UK), TIM22 and KNT-1 from Sigma, HSP60,
Cytochrome c, BAX, OPA1 and DRP-1 from BD Bios-
ciences (San Jose, CA, USA), phospho-DRP-1 (S616),
phospho-DRP-1 (S637), MFN1 and MFN2 from Cell
Signaling Technologies (Danvers, MA, USA), BAK (AB-1)
from Calbiochem (Watford, UK), MFF, MID49 and
MID51 from ProteinTech (Manchester, UK) and GAPDH

from Santa Cruz Biotechnologies (Santa Cruz, CA, USA)
were used. For RNA interference, cells were transfected
with 10 nM of siRNAs against DHODH (SI00363384 and
SI00363391) purchased from Qiagen Ltd. (Manchester,
UK), using Interferin (Polyplus Transfection Inc, NY),
according to the manufacturer’s protocol and processed
72 h after transfection.

Microscopy
For electron microscopy, cells were fixed and processed

as previously described. Electron micrographs were
recorded using an ES1000W CCD camera and Digital
Micrograph software (Gatan, Abingdon, UK) with a Zeiss
902A electron microscope or with a Megaview 3 digital
camera and iTEM software (Olympus Soft Imaging
Solutions GmbH, Münster, Germany) in a Jeol 100-CXII
electron microscope (Jeol UK Ltd., Welwyn Garden City,
UK). For immunocytochemistry, cells grown on coverslips
were fixed with 4% (w/v) paraformaldehyde, permeabi-
lised with 0.5% (v/v) Triton X-100 in PBS, followed by
incubations with primary antibodies, the appropriate
fluorophore-conjugated secondary antibodies, mounted
on glass slides and imaged using a 3i Marianas spinning
disk confocal microscope, fitted with a Plan-Apochromat
×63/1.4NA Oil Objective, M27 and a Hamamatsu ORCA-
Flash4.0 v2 sCMOS Camera (all from Intelligent Imaging
Innovations, GmbH, Germany).

Cytochrome c release assay
In total 3 × 106 cells were washed in cold PBS and

resuspended in mitochondrial isolation buffer (250 mM
sucrose, 20 mM HEPES, pH 7.4, 5 mM MgCl2 and 10mM
KCl) containing 0.05% digitonin. Cells were left on ice for
10min followed by centrifugation at 13,000 × g for 3 min.
Subsequently, supernatant and pellets were analysed by
western blotting.

Flow cytometry
Apoptosis was assessed by measuring the extent of

phosphatidylserine (PS) externalisation in cells exposed
to the relevant drugs, following staining with Annexin V-
FITC, in annexin binding buffer (150 mM NaCl, 10 mM
HEPES pH 7.4, 1 mM MgCl2, 5 mM KCl, 1.8 mM CaCl2)
and propidium iodide (5 µg/ml) and subjected to flow
cytometry. To measure BAX and BAK activation, cells
were exposed to the indicated treatments, collected and
fixed with 2% paraformaldehyde at room temperature for
10 min. Fixed cells were then washed with PBS and re-
suspended in permeabilisation buffer (0.1% saponin,
0.5% BSA) for 10 min, followed by incubation with the
corresponding primary antibodies (BAX 6A7 or BAK
AB-1) and fluorophore-labelled secondary antibodies.
Activated BAX or BAK was then detected using flow
cytometry.
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Western blotting
Western blotting was carried out according to standard

protocols. Briefly, 50 μg of total protein lysate was subjected
to SDS-PAGE electrophoresis. Subsequently proteins were
transferred to nitrocellulose membrane and protein bands
visualised with ECL reagents (GE Healthcare).

Statistical Analysis
One-way ANOVA with Bonferroni’s multiple compar-

ison test was performed to evaluate differences between
conditions. Asterisks depicted correspond to the following
p values: *p ≤ 0.05, **p ≤ 0.005 and ***p ≤ 0.001.

Results
Apogossypol-induced ER membrane reorganisation
involves ER tubules and not sheets
Previously, we reported a non-canonical form of ER

stress induced by several drugs from distinct chemical

classes16. Using one of those drugs, apogossypol, as a tool
compound, we now further characterise the nature of this
novel form of ER stress. In HeLa cells, exposure to apo-
gossypol resulted in extensive reorganisation of ER
membranes (denoted by the yellow arrowheads) that
occurred in a concentration-dependent manner (Fig. 1a).
At high concentrations (>50 μM) of apogossypol, the ER
membranes were densely packed and the reticular ER
membranes were no longer detectable (Fig. 1a). Immu-
nolabeling of ER tubule markers, BAP31 and RTN4
revealed extensive redistribution of these proteins on the
reorganised ER membranes (Fig. 1b). In marked contrast,
markers that exclusively detect ER sheets (CLIMP-63 and
KTN-1)2 or ER lumen (BiP and PDI) failed to colocalise
with the reorganised ER membranes (Fig. 1b, c), sug-
gesting that exposure of the cells to apogossypol results in
the exclusive reorganisation of ER tubules and not
sheets.

Fig. 1 Apogossypol induces a concentration-dependent reorganisation of ER tubules and not sheets. a HeLa cells exposed to apogossypol
for 4 h exhibited a marked concentration-dependent reorganisation of ER membranes (yellow arrowheads). Scale bar: 2 μm. b HeLa cells were
exposed to apogossypol (20 μΜ) for 4 h and immunostained with the indicated antibodies. The boxed regions in the images are enlarged on the
right to show the extent of colocalisation. Scale bar: 10 μm
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Apogossypol-mediated ER membrane reorganisation
antagonises mitochondrial fission mediated by distinct
stimuli
Recent studies have highlighted the importance of ER

membranes in marking the initial site of mitochondrial
membrane fission7,8. These observations together with
our report of an MCL-1 inhibitor (A-1210477), inducing
extensive, DRP-1-mediated mitochondrial fission in
several cell lines, including H1299, a non-small cell lung
carcinoma cell line18, led us to question whether ER
membrane reorganisation would alter A-1210477-
mediated mitochondrial fission. Exposure of H1299
cells to apogossypol resulted in extensive reorganisation
of the ER membranes with minimal changes to the
filamentous network of mitochondrial membranes, as
assessed by immunostaining with a mitochondrial
marker (HSP70) (Fig. 2a). Exposure to A-1210477
resulted in significant mitochondrial fission, which was
markedly inhibited in cells exhibiting extensive ER
membrane reorganisation (Fig. 2b). This was not just

restricted to A-1210477, as cells with reorganised ER
membranes also inhibited CCCP (a mitochondrial pro-
ton uncoupler)-mediated mitochondrial fission in these
cells (Fig. 2c).
In order to assess whether apogossypol regulated mito-

chondrial fusion or fission events, expression levels of the
different mitochondrial fission-fusion proteins were asses-
sed. Mitochondrial fusion is mediated by GTPases, such as
OPA1 and mitofusins-1/2 (MFN1/MFN2)19. A loss of
fusion results in the proteolytic processing of the long
isoforms (L1 and L2) of OPA1 to yield three short isoforms
(S1-S3)20–22. While A-1210477 did not result in any
alterations in OPA1 processing compared to the control
cells, exposure to CCCP resulted in OPA1 proteolysis
(Fig. 2d). Surprisingly, exposure to apogossypol also
resulted in a similar proteolysis of OPA1, despite main-
taining normal mitochondrial morphology (Fig. 2a, d). In
contrast, no changes in the expression levels of MFN1 and
MFN2 or mitochondrial fission GTPase, DRP-1 or its
receptors, MFF, MID49 and MID5123,24 were evident in
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Fig. 2 Apogossypol-mediated ER membrane reorganisation antagonises mitochondrial fission. H1299 cells were exposed to apogossypol
(20 μΜ) for 1 h, followed by either a DMSO, b A-1210477 (10 µM) for 4 h or c CCCP (20 μΜ) for 1 h and assessed for mitochondrial membrane integrity
and ER membrane reorganisation by immunostaining with HSP60 and RTN4 antibodies, respectively. Scale bar: 10 μm. The boxed regions in the
images are enlarged on the right to show mitochondrial structural changes in the indicated cells. Quantification of mitochondrial fission was
performed by counting ~100 cells from 3 independent experiments. Error bars=Mean ± SEM. ***p ≤ 0.001. d Western blot analysis of whole cell
lysates of H1299 cells exposed to apogossypol (20 μΜ) in the presence and absence of A-1210477 or CCCP
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these cells (Fig. 2d). Nevertheless, exposure to apogossypol
resulted in a small decrease in the phosphorylation status
of DRP-1 (at S616, which is associated with mitochondrial
fission) in cells exposed to either A-1210477 or CCCP,
implicating a role for apogossypol in regulating DRP-1
phosphorylation (at S616) following specific stimuli
(Fig. 2d). A similar decrease in phospho-DRP-1 (at S637,
which is normally associated with mitochondrial fusion)
was observed in cells following a combination of apo-
gossypol and CCCP (Fig. 2d), further complicating the role
of apogossypol in DRP-1 phosphorylation and mitochon-
drial membrane dynamics.
Since mitochondrial translocation of DRP-1 is a pre-

requisite for mitochondrial fission, we wondered whether
the reorganised ER membranes would prevent this trans-
location. Interestingly, the normal punctate distribution of
DRP-1 (that suggests its dynamic shuttling between
mitochondria and cytosol) was grossly altered following
apogossypol, and most, if not all, DRP-1 appeared to be
associated with the reorganised ER membranes (Fig. 3a, b).

ER membrane reorganisation prevents BAX translocation
and activation following BH3 mimetics
DRP-1-mediated mitochondrial fission could be linked

to apoptosis induction due to recruitment of BAX to
mitochondrial constriction sites by the ER mem-
branes25,26. During apoptosis, cytosolic BAX translocates
to the mitochondria, where it is activated to form oligo-
meric channels, that result in mitochondrial outer mem-
brane permeabilisation (MOMP) and the release of
cytochrome c27,28. In agreement, BAX appeared largely
cytosolic both under control conditions and following
apogossypol-induced ER membrane reorganisation (Fig. 3c),
whereas following exposure to a combination of BH3
mimetics (A-1331852; BCL-XL inhibitor and A-
1210477)29,30, BAX translocated to the mitochondrial
membranes, which was characterised by a distinct punc-
tate staining (Fig. 3c). Such punctate distribution of BAX,
however, was markedly reduced in cells treated with a
combination of apogossypol and BH3 mimetics (Fig. 3c).
Consistent with this observation, exposure of cells to
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apogossypol prevented BH3 mimetic-mediated activation
of BAX but not BAK (Fig. 3d and Supplementary Fig. 1),
thus confirming that reorganisation of ER membranes
prevented BAX translocation and activation.

ER membrane reorganisation inhibits BH3-mimetic-
mediated mitochondrial cytochrome c release and
apoptosis
Since apogossypol-induced ER membrane reorganisation

prevented BAX activation and mitochondrial translocation,
we wished to assess whether it would also affect BH3
mimetic-mediated release of cytochrome c and apoptosis.
The combination of A-1210477 and A-1331852 resulted in
extensive release of cytochrome c from the mitochondria to
the cytosol, as detected both by immunocytochemistry and
western blot analyses, which was markedly inhibited by
pretreatment of cells with apogossypol (Fig. 4a, b). Fur-
thermore, exposure to apogossypol significantly diminished
BH3 mimetic-mediated apoptosis in cells that depend for

survival either on both BCL-XL and MCL-1 (H1299 and
HeLa), or exclusively on BCL-2 (MAVER-1), BCL-XL

(KCL22) and MCL-1 (H929)31–33 (Fig. 4c). Finally, to
investigate whether it was apogossypol-mediated ER
membrane reorganisation or an unrelated effect of apo-
gossypol that was responsible for the anti-apoptotic effect,
HeLa cells were exposed to structurally diverse ER mem-
brane reorganising drugs, such as NDGA, ivermectin, ter-
fenadine and suloctidil16. While the first three drugs
resulted in both an extensive reorganisation of ER mem-
branes and protection (to varying degrees) against BH3
mimetic-mediated apoptosis, suloctidil failed to protect
against BH3 mimetic-mediated apoptosis (Fig. 4d). The
protective effects of the different agents mimicked their
abilities to induce ER membrane reorganisation in cells
(Supplementary Fig. 2), thus probably explaining why
suloctidil was not as potent as the other agents in protecting
against BH3 mimetic-mediated apoptosis. Taken together,
our data convincingly demonstrated that ER membrane
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reorganisation antagonised BH3 mimetic-mediated apop-
tosis and changes in mitochondrial structure.

Teriflunomide and Leflunomide prevent apogossypol-
mediated ER membrane reorganisation
Previously, we observed that an inhibitor of store-

operated calcium entry (SOCE), 2-APB (2-aminoethox-
ydiphenylborate) was extremely effective in preventing
apogossypol-mediated ER reorganisation17. Other mod-
ulators of SOCE, such as teriflunomide and leflunomide34,
in addition to inducing canonical ER stress and the UPR35

(Supplementary Fig. 3), resulted in a concentration-
dependent decrease of apogossypol-mediated ER mem-
brane reorganisation (Fig. 5a, b), with leflunomide being
slightly more potent than teriflunomide. However, silencing
the expression levels of DHODH using two different siR-
NAs did not affect apogossypol-mediated ER membrane
reorganisation (Fig. 5c and Supplementary Fig. 4), sug-
gesting that the inhibitors most likely prevented

apogossypol-mediated ER membrane reorganisation inde-
pendent of their ability to inhibit DHODH. Therefore, we
performed metabolic supplementation studies with orotate
or uridine to circumvent the need for cells to rely on
DHODH for pyrimidine synthesis. Under control condi-
tions, in the absence of the supplements, exposure of cells
to teriflunomide and leflunomide abolished apogossypol-
mediated ER membrane reorganisation and this was unaf-
fected by supplementation with orotate or uridine (Fig. 5d).
These results strongly suggest that teriflunomide and
leflunomide most likely function in a DHODH-independent
manner to prevent ER membrane reorganisation.

Teriflunomide and Leflunomide prevent the anti-apoptotic
function of apogossypol-mediated ER membrane
reorganisation
While exposure of cells to apogossypol resulted in

diminished BH3 mimetic-mediated apoptosis, this was
reversed when cells were pre-treated with teriflunomide

Fig. 5 Teriflunomide and leflunomide prevent ER membrane reorganisation independent of their ability to inhibit DHODH. a HeLa cells
were exposed to increasing concentrations of teriflunomide or leflunomide for 1 h, followed by apogossypol (20 μΜ) for 4 h and immunostained
with BAP31 antibody. b Quantification of the reduction in ER membrane reorganisation was performed by counting ~300 cells from 3 independent
experiments. Error bars=Mean ± SEM. ***p ≤ 0.001. c HeLa cells transiently transfected with two different siRNAs against DHODH for 72 h were
exposed to apogossypol (20 μΜ) for 4 h, and then immunostained with BAP31 antibody. d HeLa cells were supplemented with excess orotate or
uridine (1 mM each), followed by inhibition of DHODH (teriflunomide or leflunomide at 200 μΜ) for 1 h, and a further 4 h with apogossypol (20 μΜ),
before immunostaining with BAP31 antibody. Scale bar: 10 μm
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(Fig. 6a). This rescue of cell death from apoptosis was
observed also in the levels of caspase activation and activity
(Fig. 6b). In cells exposed to BH3 mimetics alone, the
appearance of processed caspase-9 and cleaved PARP was
accompanied by the extensive processing of intact caspase-3
and -7 to their active processed forms (Fig. 6b). PARP
cleavage and the accompanying loss of procaspase-3 fol-
lowing BH3 mimetics were largely prevented upon exposure
to apogossypol (Fig. 6b). This rescue from apoptosis was
reversed when cells were also treated with teriflunomide, as
demonstrated by the densitometry plots of the western blots
(Fig. 6c). Collectively, this study demonstrates that
apogossypol-mediated reorganisation of ER tubules pre-
vents the recruitment of DRP-1 and BAX to mitochondrial
membranes during apoptosis, which in turn results in
defects in mitochondrial fission, outer mitochondrial
membrane permeabilisation and apoptosis (Fig. 7).

Discussion
Although several fission and fusion GTPases that reg-

ulate membrane dynamics of mitochondria have been
characterised36, the role of the ER in marking the sites of
mitochondrial fission has only recently been char-
acterised7,8,37. Our previous observations of a non-
canonical form of ER stress, characterised by the
reversible reorganisation of ER membranes16, led us to ask
what effects such ER reorganisation would have on
mitochondrial structure and function. We describe for the
first time that ER membrane reorganisation was restricted
to ER tubules and not ER sheets (Fig. 1). In this study, we
were unable to assess whether ER membrane reorgani-
sation altered fission-fusion dynamics of mitochondria in
control cells, as the mitochondria in these cells were
largely filamentous. However, apogossypol antagonised
mitochondrial fission mediated by specific fission
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inducers (Fig. 2), which is likely due to the redistribution
of DRP-1 to the reorganised ER membranes (Fig. 3).
In addition, apogossypol-mediated ER membrane reor-

ganisation also prevented BH3 mimetic-mediated apop-
tosis (Fig. 4), which was surprising as apogossypol was
originally developed as a pan-BCL-2 inhibitor to induce
apoptosis in cancer cells38,39. However later studies
showed that apogossypol, unlike more specific BH3
mimetics, induced a BAX/BAK-independent cell death
following prolonged exposure (>24 h)40,41. In marked
contrast, apogossypol-mediated ER reorganisation is an
early event occurring within 30min of exposure16. In this
study, apogossypol was merely used as a tool compound
to induce ER membrane reorganisation. Furthermore,
other ER membrane reorganising agents also protected
against BH3 mimetic-mediated apoptosis (Fig. 4), thereby
implicating ER membrane reorganisation as a modulator
of mitochondrial fission and apoptosis. Although the
involvement of DRP-1 in regulating apoptosis have pre-
viously been reported8,18,25,42, to our knowledge, this is
one of the first reports discussing the role of ER mem-
branes in BH3 mimetic-mediated apoptosis.
Apogossypol prevented BH3 mimetic-mediated apop-

tosis by preventing the activation of BAX but not BAK
(Fig. 3 and Supplementary Fig. 1). This also indicated that
activated BAK alone was insufficient to induce apoptosis

in these cells. In support of this suggestion, HCT-116
cells, which express both BAX and BAK, undergo BH3
mimetic-induced apoptosis in a BAX- but not BAK-
dependent manner31,43. Similarly, BAK is required for
BH3 mimetic-induced apoptosis, only when BAX is not
available, as evident in H1299 and Jurkat-T-
lymphocytes18,41. Since HeLa cells express both BAX
and BAK, it is possible that these cells rely on BAX more
than BAK to induce BH3 mimetic-mediated apoptosis.
ER membrane reorganisation has recently been repor-

ted in dengue virus-infected cells, in which the virus
antagonises mitochondrial fission by dephosphorylating
DRP-1 at Ser-616 to dampen the innate immune
response, thus favouring viral replication44. This could
well be true in other viral infections and antagonising ER
reorganisation in such instances could facilitate mito-
chondrial fission and enhance cell death of the virus-
infected cells. Measures to identify agents that can reverse
ER membrane reorganisation resulted in the observation
that 2-APB, an inhibitor of store-operated calcium entry
(SOCE) was effective in antagonising apogossypol-
mediated ER membrane reorganisation17. This is in
agreement with previous reports that have implicated a
critical role for Ca2+ transfer between ER and mito-
chondria to regulate ER-mitochondria contacts, as well
mitochondrial fission45–48. Since pre-treatment with 2-
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2. DRP-1-mediated mitochondrial fission
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Fig. 7 Apogossypol-mediated ER membrane reorganisation antagonises mitochondrial fission, MOMP and apoptosis. Apogossypol induces
ER membrane reorganisation (top part of the figure). ER membranes are normally in close proximity to mitochondria and mark mitochondrial
constriction sites. This is illustrated in the left lower part of the figure, which depicts ER membranes wrapping around a mitochondrion at the
constriction site. This site is also marked by the recruitment of DRP-1 monomers, which ultimately form an oligomeric constriction ring thereby
facilitating mitochondrial fission. Upon exposure to an apoptotic stress stimulus, cytosolic BAX is activated and is also recruited onto the constriction
sites, facilitating MOMP and cytochrome c release, resulting in the induction of apoptosis. Apogossypol-induced ER membrane reorganisation
antagonises mitochondrial fission, BAX activation, recruitment on mitochondrial membranes, caspase activation and apoptosis
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APB prevented apogossypol-mediated ER reorganisation,
we wished to assess whether the corresponding anti-
apoptotic effects against BH3 mimetics could also be
reversed. However, 2-APB was cytotoxic at concentra-
tions (~100 μM) required to diminish apogossypol-
mediated ER reorganisation (data not shown) and hence
could not be used in this context. However, a recent
report that screened a large panel of FDA-approved drugs
to identify modulators of SOCE revealed that inhibitors of
DHODH, teriflunomide and leflunomide, were effective at
inhibiting SOCE at clinically relevant doses34. As expec-
ted, these inhibitors were potent in antagonising ER
membrane-mediated reorganisation and its protective
effects against BH3 mimetic-mediated apoptosis, however
such protective effects appeared to be independent of
their ability to inhibit DHODH. Although the precise
mechanisms whereby DHODH inhibitors antagonise
apogossypol-mediated ER membrane reorganisation are
unclear, these inhibitors can be used as tool compounds
to uncouple the anti-apoptotic effects of ER membrane
reorganisation and potential off-target effects of apo-
gossypol in antagonising apoptosis. Furthermore, in a
therapeutic context, these inhibitors may have the
potential to dampen replication of dengue virus and
enhance the innate immune response of the host.

Acknowledgements
We thank Dr. Dinsdale for help with electron microscopy. We thank AbbVie for
the BH3 mimetics and Drs. Clark and Slupsky for the different cell lines used in
the study. This work was supported by National Overseas Scholarship, 11015/
17/2012 SCD-V, Government of India (to G.Y.), a Science Without Borders
Scholarship, CNPq 233624/2014-7, Ministry of Education, Brazil (to M.M.) and a
North West Cancer Research Grant CR1040 (to S.V. and G.M.C.). This work was
supported by National Overseas Scholarship, 11015/17/2012 SCD-V,
Government of India (to GY), a Science Without Borders Scholarship, CNPq
233624/2014-7, Ministry of Education, Brazil (to M.M.) and a North West Cancer
Research Grant CR1040 (to S.V. and G.M.C.).

Conflict of interest
The authors declare that they have no conflict of interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41419-019-1759-y).

Received: 29 January 2019 Revised: 5 June 2019 Accepted: 7 June 2019

References
1. Voeltz, G. K. G., Prinz, W. A. W., Shibata, Y. Y., Rist, J. M. J. & Rapoport, T. A. T. A

class of membrane proteins shaping the tubular endoplasmic reticulum. Cell
124, 14–14 (2006).

2. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral
ER. Cell 143, 774–788 (2010).

3. Hu, J. J., Prinz, W. A. W. & Rapoport, T. A. T. Weaving the web of ER tubules. Cell
147, 1226–1231 (2011).

4. West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER
structure reveals how ER domains are organized by membrane curvature. J.
Cell Biol. 193, 333–346 (2011).

5. Chen, S., Novick, P. & Ferro-Novick, S. ER structure and function. Curr. Opin. Cell
Biol. 25, 428–433 (2013).

6. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to
homeostatic regulation. Science 334, 1081–1086 (2011).

7. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science
334, 358–362 (2011).

8. Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family
members collaborate to drive mitochondrial division. Nature 540, 139–143
(2016).

9. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to
control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 185,
1209–1225 (2009).

10. English, A. R. & Voeltz, G. K. Rab10 GTPase regulates ER dynamics and mor-
phology. Nat. Cell Biol. 15, 1–11 (2013).

11. Nascimbeni, A. C. et al. ER-plasma membrane contact sites contribute to
autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36,
2018–2033 (2017).

12. Costello, J. L. et al. ACBD5 and VAPB mediate membrane associations
between peroxisomes and the ER. J. Cell Biol. 216, 331–342 (2017).

13. Hua, R. et al. VAPs and ACBD5 tether peroxisomes to the ER for peroxisome
maintenance and lipid homeostasis. J. Cell Biol. 216, 367–377 (2017).

14. Srikanth, S. et al. A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+sensor
that stabilizes CRAC channels in T cells. Nat. Cell Biol. 12, 436–446 (2010).

15. Yoboue, E. D., Sitia, R. & Simmen, T. Redox crosstalk at endoplasmic reticulum
(ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell
Death Dis. 9, 331 (2018).

16. Varadarajan, S. et al. A novel cellular stress response characterised by a rapid
reorganisation of membranes of the endoplasmic reticulum. Cell Death Differ.
19, 1896–1907 (2012).

17. Varadarajan, S. et al. Endoplasmic reticulum membrane reorganization is
regulated by ionic homeostasis. PLoS ONE 8, e56603 (2013).

18. Milani, M. et al. DRP-1 is required for BH3 mimetic-mediated mitochondrial
fragmentation and apoptosis. Cell Death Dis. 8, e2552 (2017).

19. Chen, H. & Chan, D. C. Emerging functions of mammalian mitochondrial
fusion and fission. Hum. Mol. Genet. 14, R283–R289 (2005). Spec No. 2.

20. Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing
controls mitochondrial fusion and is regulated by mRNA splicing, membrane
potential, and Yme1L. J. Cell Biol. 178, 749–755 (2007).

21. Anand, R. et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance
mitochondrial fusion and fission. J. Cell Biol. 204, 919–929 (2014).

22. Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S. & van der Bliek, A. M. Inducible
proteolytic inactivation of OPA1 mediated by the OMA1 protease in mam-
malian cells. J. Cell Biol. 187, 959–966 (2009).

23. Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1
during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158
(2010).

24. Palmer, C. S. et al. Adaptor proteins MiD49 and MiD51 can act independently
of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission.
J. Biol. Chem. 288, 27584–27593 (2013).

25. Xu, W. et al. Bax-PGAM5L-Drp1 complex is required for intrinsic apoptosis
execution. Oncotarget 6, 30017–30034 (2015).

26. Wang, P. et al. Dynamin-related protein Drp1 is required for Bax translocation
to mitochondria in response to irradiation-induced apoptosis. Oncotarget 6,
22598–22612 (2015).

27. Schellenberg, B. et al. Bax exists in a dynamic equilibrium between the
cytosol and mitochondria to control apoptotic priming. Mol. Cell 49,
959–971 (2013).

28. Martinou, J.-C. & Youle, R. J. Mitochondria in Apoptosis: Bcl-2 Family Members
and Mitochondrial Dynamics. Dev. Cell 21, 92–101 (2011).

29. Leverson, J. D. et al. Exploiting selective BCL-2 family inhibitors to dissect cell
survival dependencies and define improved strategies for cancer therapy. Sci.
Transl. Med. 7, 279ra40 (2015).

30. Leverson, J. D. et al. Potent and selective small-molecule MCL-1 inhibitors
demonstrate on-target cancer cell killing activity as single agents and in
combination with ABT-263 (navitoclax). Cell Death Dis. 6, e1590 (2015).

31. Greaves, G. et al. BH3-only proteins are dispensable for apoptosis induced by
pharmacological inhibition of both MCL-1 and BCL-XL. Cell Death Differ. 538,
477 (2018).

Yedida et al. Cell Death and Disease          (2019) 10:521 Page 10 of 11

Official journal of the Cell Death Differentiation Association

https://doi.org/10.1038/s41419-019-1759-y
https://doi.org/10.1038/s41419-019-1759-y


32. Al-Zebeeby, A. et al. Targeting intermediary metabolism enhances the efficacy
of BH3 mimetic therapy in haematological malignancies. Haematologica
haematol. 2018, 204701 (2018).

33. Lucas, C. M. et al. High CIP2A levels correlate with an antiapoptotic phenotype
that can be overcome by targeting BCL-XL in chronic myeloid leukemia.
Leukemia 30, 1273–1281 (2016).

34. Rahman, S. & Rahman, T. Unveiling some FDA-approved drugs as inhibitors of
the store-operated Ca2+ entry pathway. Sci. Rep. 7, 12881 (2017).

35. Ren, Z. et al. Endoplasmic reticulum stress and MAPK signaling pathway
activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology
392, 11–21 (2017).

36. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse
mitochondria. Annu. Rev. Biochem. 76, 751–780 (2007).

37. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple
mtDNA synthesis with mitochondrial division in human cells. Science 353,
aaf5549 (2016).

38. Kitada, S. et al. Bcl-2 antagonist apogossypol (NSC736630) displays single-
agent activity in Bcl-2-transgenic mice and has superior efficacy with less
toxicity compared with gossypol (NSC19048). Blood 111, 3211–3219 (2008).

39. Wei, J. et al. Apogossypol derivatives as pan-active inhibitors of antiapoptotic
B-Cell Lymphoma/Leukemia-2 (Bcl-2) family proteins. J. Med. Chem. 52,
4511–4523 (2009).

40. Vogler, M. et al. Different forms of cell death induced by putative BCL2
inhibitors. Cell Death Differ. 16, 1030–1039 (2009).

41. Varadarajan, S. et al. Evaluation and critical assessment of putative MCL-1
inhibitors. Cell Death Differ. 20, 1475–1484 (2013).

42. Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial
fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol.
212, 531–544 (2016).

43. Wang, C. & Youle, R. J. Predominant requirement of Bax for apoptosis in
HCT116 cells is determined by Mcl-1’s inhibitory effect on Bak. Oncogene 31,
3177–3189 (2011).

44. Chatel-Chaix, L. et al. Dengue virus perturbs mitochondrial morphodynamics
to dampen innate immune responses. Cell Host Microbe 20, 342–356 (2016).

45. Chami, M. et al. Role of SERCA1 truncated isoform in the proapoptotic calcium
transfer from ER to mitochondria during ER stress.Mol. Cell 32, 641–651 (2008).

46. Wales, P. et al. Calcium-mediated actin reset (CaAR) mediates acute cell
adaptations. Elife 5, 990 (2016).

47. Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. F. Dynamic actin
cycling through mitochondrial subpopulations locally regulates the fission-
fusion balance within mitochondrial networks. Nat. Commun. 7, 12886 (2016).

48. Chakrabarti, R. et al. INF2-mediated actin polymerization at the ER stimulates
mitochondrial calcium uptake, inner membrane constriction, and division. J.
Cell Biol. 217, 251–268 (2018).

Yedida et al. Cell Death and Disease          (2019) 10:521 Page 11 of 11

Official journal of the Cell Death Differentiation Association


	Apogossypol-mediated reorganisation of the endoplasmic reticulum antagonises mitochondrial fission and apoptosis
	Materials and methods
	Cell culture
	Reagents
	Microscopy
	Cytochrome c release assay
	Flow cytometry
	Western blotting
	Statistical Analysis

	Results
	Apogossypol-induced ER membrane reorganisation involves ER tubules and not sheets
	Apogossypol-mediated ER membrane reorganisation antagonises mitochondrial fission mediated by distinct stimuli
	ER membrane reorganisation prevents BAX translocation and activation following BH3 mimetics
	ER membrane reorganisation inhibits BH3-mimetic-mediated mitochondrial cytochrome c release and apoptosis
	Teriflunomide and Leflunomide prevent apogossypol-mediated ER membrane reorganisation
	Teriflunomide and Leflunomide prevent the anti-apoptotic function of apogossypol-mediated ER membrane reorganisation

	Discussion
	ACKNOWLEDGMENTS




