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Abstract

Gasotransmitters are endogenous small gaseous messengers exemplified by nitric oxide (NO),
carbon monoxide (CO), and hydrogen sulfide (H2S or sulfide). Gasotransmitters are implicated in
myriad physiologic functions including many aspects of reproduction. Our objective was to com-
prehensively review basic mechanisms and functions of gasotransmitters during pregnancy from
conception to uterine involution and highlight future research opportunities. We searched PubMed
and Web of Science databases using combinations of keywords nitric oxide, carbon monoxide,
sulfide, placenta, uterus, labor, and pregnancy. We included English language publications on hu-
man and animal studies from any date through August 2018 and retained basic and translational
articles with relevant original findings. All gasotransmitters activate cGMP signaling. NO and sul-
fide also covalently modify target protein cysteines. Protein kinases and ion channels transduce
gasotransmitter signals, and co-expressed gasotransmitters can be synergistic or antagonistic de-
pending on cell type. Gasotransmitters influence tubal transit, placentation, cervical remodeling,
and myometrial contractility. NO, CO, and sulfide dilate resistance vessels, suppress inflamma-
tion, and relax myometrium to promote uterine quiescence and normal placentation. Cervical
remodeling and rupture of fetal membranes coincide with enhanced oxidation and altered gaso-
transmitter metabolism. Mechanisms mediating cellular and organismal changes in pregnancy
due to gasotransmitters are largely unknown. Altered gasotransmitter signaling has been reported
for preeclampsia, intrauterine growth restriction, premature rupture of membranes, and preterm
labor. However, in most cases specific molecular changes are not yet characterized. Nonclassical
signaling pathways and the crosstalk among gasotransmitters are emerging investigation topics.

Summary Sentence

Gasotransmitters modulate mammalian pregnancy via conserved ion channels, receptors, and
second messenger-mediated signal transduction pathways.
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, 3-mercaptosulfurtransferase (3-MST), pregnancy, decidua, maternal–fetal interface, extravillous trophoblast (EVT),
placenta, paraventricular nucleus (PVN), myometrium, calcium-gated potassium channel (BKCa), ATP-gated potas-
sium channel (KATP), parturition, uterus.

Nitric oxide (NO), carbon monoxide (CO), and hydrogen sul-
fide (H2S; hereafter referred to as “sulfide”) are volatile autocrine
and paracrine gaseous signaling compounds known as “gaso-
transmitters” [1–3]. Gasotransmitters participate in myriad aspects
of pregnancy, and signaling can vary by gestational age. Genetic or
pharmacologic impairment of gasotransmitter biosynthesis adversely
impacts placentation [4, 5], maternal- and feto-placental hemody-
namic adaptations of pregnancy [6, 7], the timing of parturition
[8–10], and long-term neonatal outcomes [11].

The purpose of this review is threefold:
� First, to survey gasotransmitter molecular and cellular biochem-

istry.
� Second, to evaluate reports of NO, CO, and sulfide in pregnancy

from embryo fallopian tube transit though postpartum uterine
involution.

� Third, to discuss opportunities for future gasotransmitter research
in pregnancy.

Defogger: an overview of gasotransmitter

biochemistry and signaling

The consensus among biochemists a century ago was that NO, CO,
and sulfide were environmental toxins with no physiologic functions,
although they were useful as reagents and indicators. For example,
the odor of sulfide indicated bacterial contamination in the early days
of food quality control [12]; the reaction of NO and methemoglobin
established early pH testing [13], and Archibald Hill exploited CO’s
hemoglobin affinity to establish enzymatic cooperativity [14]. The
first discussion of endogenous biosynthesis of NO, CO, and sul-
fide emerged in the 1940s when the Fromageot and Smythe labs
discovered a cysteine-dependent sulfide synthase [15, 16]. Sjöstrand
[17] later observed heme degradation-dependent CO production in
human erythrocytes, which inspired Tenhunen and Schmid’s char-
acterization of heme oxygenase (HO) in 1969 [18]. Research es-
tablishing the second messenger paradigm in the 1950s and 1960s,
exemplified by 3′,5′-cyclic adenosine monophosphate (cAMP) [19,
20], then facilitated the seminal discoveries of gasotransmitter signal
transduction.

In the 1970s, Furchgott and Zawadzki first postulated the ex-
istence of endothelium-derived relaxing factor (EDRF) mediating
acetylcholine vasodilation [21]. By 1977, Murad’s lab reported that
NO stimulates soluble guanylate cyclase (sGC) to produce 3′,5′-
cyclic guanosine monophosphate (cGMP) [22]. Ignarro and Chaud-
huri confirmed that EDRF is NO [23], and Moncada’s group pub-
lished the biosynthetic route from L-arginine to nitric oxide via NO
synthase (NOS) in 1988 [24]. These pivotal discoveries defined the
so-called classical NO pathway by which NO activates sGC to make
cGMP, causing vasodilation. Subsequently, the Ulrich and McGrath
groups reported CO-dependent vasodilation via classical sGC-cGMP
signaling [25, 26], and Snyder’s lab showed that brain cGMP corre-
lates with HO-2 transcription [27]. Sulfide research resumed in the
1990s with Abe and Kimura’s observation of sulfide synthesis in rat
brain [28], and Wang’s group demonstrated that sulfide is also a va-
sodilator [29, 30]. These discoveries established the signaling family
of gasotransmitters and their general transduction pathways.

Nitric oxide
NO is a nonpolar, selectively reactive gas with an unpaired electron.
It reacts with ferrous (Fe2+) hemoglobin, molecular oxygen (O2),
and superoxide (O2

−), respectively, to promote the three established
NO signal transduction mechanisms: classical sGC-cGMP signaling,
S-nitrosation, and the peroxynitrite (ONOO−) cytotoxic pathway
(Figure 1A) [31].

In the classical pathway, NO’s unpaired electron attacks the Fe2+

heme of sGC, inducing increased cGMP synthesis. cGMP activates
protein kinase G (PKG), which phosphorylates targets including
myosin light chain phosphatase (MLCP; activating phosphoryla-
tion) and voltage-gated calcium (Ca2+) channels (Cav; inactivating
phosphorylation). Cav closure reduces cytosolic Ca2+ entry, thereby
curtailing Ca2+ binding to calmodulin (CaM) and reducing CaM-
dependent myosin light chain kinase (MLCK) activity to promote
smooth muscle relaxation [32].

S-nitrosation is the addition of a nitroso group (—NO) to a
cysteine thiol (—SH) resulting in an S-nitrosothiol (SNO). Mod-
els suggest that cysteine S-nitrosation is indirect [33]. NO and O2

undergo radical–radical coupling to produce nitroso-oxide interme-
diates that rearrange to nitrous anhydride (N2O3). Subsequently,
glutathione’s (GSH) thiol group nucleophilically attacks N2O3 to
produce nitrite (NO2

−) and S-nitrosoglutathione (GSNO), which
is the primary agent of S-nitrosation [34]. GSH-independent S-
nitrosation has been detected in bacteria [35], but a role in mammals
is uncertain. S-nitrosation protects thiols from oxidation and can
thereby alter cysteine-dependent enzyme activity, although nitrosa-
tion is vulnerable to reducing agents [33, 36, 37]. Mass spectrometry
has identified thousands of nitrosated proteins [38, 39], but the bio-
physical basis for selective cysteine modification is unknown [40].
Sulfide and SNO react to form nitrosopersulfide (ONSS−), which
enhances NO-dependent cGMP production by an unknown mecha-
nism [41, 42].

In the cytotoxic pathway, NO and O2
− radicals form ONOO−,

a strong oxidant that damages DNA and promotes inflammation
[43]. All nucleated cells can produce ONOO− in response to envi-
ronmental oxidants, infection, or inflammatory mediators [44], but
macrophages specifically use cytotoxic ONOO− to attack microor-
ganisms [45]. NO and O2

− must accumulate to produce ONOO−

[46]. Therefore, both downregulation of the O2
−-degrading enzyme

superoxide dismutase (SOD) and upregulation of NO synthesis favor
the cytotoxic pathway [47].

Living systems produce NO via arginine oxidation and nitrate
(NO3

−) reduction [48]. Arginine oxidation to NO and citrulline re-
quires NOS enzymes, which are homodimers containing N-terminal
oxidase and C-terminal reductase domains. A salvage pathway also
exists through which NO3

− is reduced to NO2
− and then NO [48].

The purine catabolic enzyme xanthine oxidoreductase (XOR) can
reduce NO3

− to NO [49]; however, the importance of XOR for
endogenous NO synthesis is not known.

There are three NOS isoforms: neuronal (nNOS or NOS1), in-
ducible (iNOS or NOS2), and endothelial (eNOS or NOS3) (Figure
1B–D). All NOSs require the same cofactors (O2, Fe2+-heme, flavins,
NADPH, HSP90, tetrahydrobiopterin, and Ca2+-bound CaM [50]),
but each NOS has distinct tissue expression, regulation, and func-
tion. Interaction with the membrane protein PSD95 and N-terminal
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Figure 1. Nitric oxide metabolism and regulation. (A) Intermediates, enzymes (bold, italics), and biochemical effects (shaded boxes) of classical, S-nitrosothiol,
and cytotoxic NO signaling. Gray text and arrows indicate excretion pathways. Arg: arginine. Cit: citrulline. GR: GSH reductase. SM: smooth muscle. (B–D) Tran-
scriptional and post-translational regulation of neuronal (B), inducible (C), and endothelial (D) nitric oxide synthase (NOS) isoforms. Kinases, phosphoregulatory
sites, and inhibitory ubiquitin ligases are shown. Green +’s and red X’s indicate positive and negative regulation, respectively.

acylation enable membrane localization of nNOS and iNOS/eNOS,
respectively [51]. Neuronal NOS and eNOS are constitutively ex-
pressed (nNOS in neurons and skeletal muscle; eNOS in endothe-
lium, myocardium, and syncytiotrophoblast [STB]). In contrast,
iNOS expression requires inflammatory signaling [52–56]. The cel-
lular redox state is important for all three NOSs, as oxidative stress
can “uncouple” the flow of electrons to produce O2

− and promote
the cytotoxic pathway [57]. Although nNOS, iNOS, and eNOS
each require CaM, the EC50 for CaM activation of nNOS/eNOS
is 100–300 nM Ca2+, whereas iNOS is essentially Ca2+independent
[58, 59]. Because resting intracellular [Ca2+] is 10–100 nM [60],
full nNOS/eNOS activation requires external Ca2+ entry via mem-
brane channels (CaV) or internal release from endoplasmic reticulum
stores. Phosphorylation and ubiquitination also regulate NOS activ-
ity. Phosphorylation at Akt/PKA consensus sites (S1417 of nNOS
and S1177 of eNOS) reduces nNOS/eNOS Ca2+ dependence [61,
62]. Conversely, phosphorylation by CaMKII (S852 of nNOS) and
PKC/AMPK (T495 of eNOS) diminishes NOS activity even at maxi-
mal Ca2+ concentrations [63–65]. The tyrosine kinase Src decreases
iNOS activity via Y1055 phosphorylation, and the ubiquitin ligases
ECS-SPSB and SCFFBXO45 facilitate iNOS and eNOS/nNOS degrada-
tion [66–69]. Compared with synthesis and signaling, NO diffusion

and catabolism have received less attention. NO binds reversibly to
circulating hemoglobin [70], so NO carried by red blood cells may
exert endocrine actions in addition to autocrine and paracrine ef-
fects. Inhibition of the cGMP-degrading enzyme phosphodiesterase-
5 (PDE5) by drugs like sildenafil (Viagra R©) enhances penile erection
[32], underscoring the importance of the classical pathway in vas-
cular biology. NO spontaneously oxidizes to NO3

−, which is elim-
inated in urine. GSNO reductase (GSNOR) couples GSH oxidation
to SNO reduction [71], and S-nitrosation decreases GSNOR activity
[72].

Carbon monoxide
Carbon monoxide (CO) is a relatively nonpolar, chemically stable
gas composed of carbon triple bonded to oxygen. The two known
CO signaling mechanisms are the classical (cGMP) pathway and a
cGMP-independent pathway (Figure 2A). Classical CO signaling is
mechanistically identical to classical NO signaling: CO activates sGC
to increase cGMP stimulation of PKG. CO and NO bind sGC with
similar affinity, and both elicit smooth muscle relaxation. However,
NO-sGC is 25–50 times more active than CO-sGC [73]. Hence,
in some circumstances CO competes with NO and can attenuate
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Figure 2. Carbon monoxide metabolism and regulation. (A) Intermediates, en-
zymes (bold, italics), and biochemical effects (shaded boxes) of classical and
cGMP-independent CO signaling. RBCs: red blood cells, (B) Transcriptional
and post-translational regulation of HO-1 and HO-2.

NO-mediated cGMP production [74]. In the cGMP-independent CO
pathway, CO directly modulates protein function. CO binds heme
groups of Ca2+-gated large conductance K+ channels (BKCa), which
increases BKCa channel opening [75, 76]. CO also inhibits K+ inward
rectifier channels (Kir) by an unidentified cGMP-independent mecha-
nism [77]. Organometallic compounds (e.g. heme) probably mediate
nonclassical CO signaling; CO is not very reactive in the absence of
transition metals except at extreme temperature and pressure [78].
CO cannot covalently modify proteins. Thus, cGMP-independent
NO and CO pathways do not directly interact or compete, and it is
not known if the cGMP-independent NO and CO signals are physi-
ologically additive or antagonistic.

Two homodimeric heme oxygenases, HO-1 and HO-2
(Figure 2B), synthesize CO. HO-1 and HO-2 localize to the endo-
plasmic reticulum and require O2 and NADPH to oxidize Fe2+-
heme to CO, biliverdin IX-α (BV), and free Fe2+. HO-1 and
HO-2 associate with cytochrome P450 reductase (CP450), which
reduces ferric (Fe3+) heme from red blood cells to the HO sub-
strate Fe2+ heme [79]. The HO reaction producing CO is the
first step of porphyrin degradation [18]. NO inhibits both HO

enzymes [80, 81], suggesting complex interactions between NO
and CO.

Due to differences in protein structure and tissue expression,
HO-1 and HO-2 are not redundant. Like iNOS, HO-1 is ex-
pressed during inflammation and oxidative stress. HSF1, NF-kB,
HIF-1α, and heme upregulate HO-1 transcription and translation
[82], and HO-1 in turn upregulates anti-inflammatory cytokines
such as IL-10 [83]. HO-2 is constitutively expressed by neurons,
glia, vascular endothelium, and endometrium [84]. Glucocorti-
coids stimulate HO-2 transcription, and post-translational modi-
fication activates (e.g. PKC serine-79 phosphorylation) or inhibits
(e.g. GSH reduction of intramolecular disulfides) HO-2 activity
[85, 86].

Excretion of HO products involves multiple organ systems.
Endogenous CO, chemically stable and too dilute to influ-
ence O2 transport, is exhaled during respiration [87]. Intra-
cellular ferritin sequesters Fe2+ for use in iron-containing pro-
teins. Porphyrin degradation enzymes process BV to urobilin
and stercobilin, which are eliminated in the urine and feces,
respectively [88].

Sulfide
In living systems, sulfide is a mixture of polar hydrogen sulfide
gas (H2S), hydrogen sulfide anion (HS−), and nonpolar polysul-
fide (H2Sn). The [H2S]:[HS-] ratio approaches unity in vivo, and
H2S spontaneously oxidizes to H2Sn. Because these are all bioactive
and difficult to distinguish [89], they are collectively referred to as
“sulfide.” Sulfide signals through cysteine persulfidation (Cys-SH +
sulfide → Cys-SSH, also called sulfhydration) and by transactivation
of classical cGMP signaling via 8-HS-cGMP (Figure 3A). Persulfida-
tion and S-nitrosation sometimes compete at target cysteines that
alter enzyme activity [90, 91]. NFκB persulfidation reduces TNFα-
stimulated apoptosis [90], while ATP-gated K+ (KATP) and BKCa

channel persulfidation hyperpolarizes cell membranes [92]. 8-HS-
cGMP forms by persulfidation of 8-nitro-cGMP, a cGMP deriva-
tive that promotes autophagy and oncogenesis [93]. Compared with
cGMP, 8-HS-cGMP resists degradation by PDE5. As such, 8-HS-
cGMP augments cGMP signaling [3]. Recent reports suggest PDE5
inhibition contributes to sulfide-dependent smooth muscle relaxation
[94, 95].

Three enzymes synthesize sulfide by cysteine oxidation:
cystathionine-β-synthase (CBS) and cystathionine-γ -lyase (CSE)
which are primarily cytosolic, and 3-mercaptosulfurtransferase (3-
MST) which is mitochondrial (Figure 3B–D) [89]. CBS and CSE can
produce sulfide from numerous sulfur-containing amino acids, but
cysteine and homocysteine (Hcy) are preferred substrates [96]. CBS
is predominant in brain and kidney, whereas CSE is more abun-
dant in liver and blood vessels [97]. CBS and CSE are also widely
expressed as key enzymes in the reverse transsulfuration (RTS) path-
way by which methionine (Met) is recycled to cysteine. 3-MST gener-
ates sulfide from 3-mercaptopyruvate (3-MP), a product of cysteine
deamination. Expressed in all cell types, 3-MST is most abundant in
liver, kidney, and brain [98].

Sulfide biosynthetic enzymes are subject to transcriptional and
post-translational regulation. Oxidative stress stimulates ATF4- and
Nrf2-dependent CSE transcription [99, 100], and estrogen (E2)
promotes CSE activity in human osteoblasts and mouse liver and
vasculature [101, 102]. Multiple allosteric mechanisms regulate CBS
activity. CBS binds S-adenosyl methionine (SAM) with high affinity,
increasing CBS activity and exposing an NO/CO sensitive inhibitory
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Figure 3. Sulfide metabolism and regulation. (A) Intermediates, enzymes
(bold, italics), and biochemical effects (shaded boxes) of classical and
persulfide-based sulfide signaling. B/I/SKCa: Ca2+-gated large, intermediate,
and small conductance K+ channels. GSSH: GSH persulfide. Protein-SSH:
Proteins with persulfidated cysteine residues. ROS: reactive oxygen species.
(B–D) Transcriptional and post-translational regulation of CBS (B), CSE (C),
and 3-MST (D).

heme moiety [103, 104]. On the other hand, PKG phosphorylation
of CBS S227 increases CBS activity [105]. These apparently oppos-
ing mechanisms suggest that CBS activity is maintained within an
ideal range; high NO inhibits CBS to prevent overactivation of the
classical pathway, while CBS phosphorylation enables sulfide syn-
thesis to resume when NO decreases. Rat liver CBS translocates to
mitochondria during hypoxia [106], which could bolster ATP pro-
duction and prevent apoptosis by supplying sulfide as an alternate
electron donor. CSE also translocates to mitochondria during hy-
poxia [107], and 3-MST may be an oxidant sensor because 3-MST
cysteine oxidation increases mitochondrial GSH levels [108].

Sulfide catabolism requires a trifecta of mitochondrial enzymes.
Sulfide-quinone reductase (SQR), sulfide dioxygenase (ETHE1), and
rhodanese (RDN) utilize a soluble thiol (likely GSH) to oxidize sul-
fide to sulfite (SO3

2−) and thiosulfate (S2O3
2−), which are excreted

in urine [109–111]. Since SQR, ETHE1, and RDN1 localize to mi-
tochondria, alternate pathways exist in cells with few mitochondria.
For example, erythrocytes couple methemoglobin reduction to sul-
fide oxidation [112].

Key points

� NO, CO, and sulfide are gaseous paracrine and autocrine signal-
ing molecules.

Figure 4. Integration of gasotransmitter metabolism. Sulfide synthesis via
reverse transsulfuration generates NH4

+ and αKB, which can produce NO
and CO via the urea cycle and heme metabolism, respectively. αKB: α-
ketobutyrate. CP: carbamoyl phosphate. Ctn: Cystathionine. Orn: ornithine.
Ser: Serine. Double arrowheads indicate pathways in which multiple interme-
diates have been omitted for clarity

� NO is produced by arginine oxidation or NO3
− reduction. The

NO metabolites GSNO and ONOO− mediate S-nitrosation and
cytotoxicity, respectively.

� CO is made via heme oxidation.
� Sulfide is generated by cysteine oxidation. Sulfide augments the

classical cGMP pathway and increases target protein activity by
thiol persulfidation.

� All three gasotransmitters activate the classical sGC-cGMP-PKG
pathway. All three can modify ion channels by covalent modifi-
cation or heme binding.

Gasotransmitter crosstalk
As discussed above, reactions among gas molecules can alter signal-
ing (e.g. O2

− and NO produce ONOO–). Gasotransmitters can also
regulate each other’s production or activity (e.g. CO reduces NO
stimulated sGC activity) or metabolism (e.g. sulfide prolongs NO
signals by inhibiting PDE5 activity). Other interactions likely exist
among gasotransmitter metabolic pathways (Figure 4).

Having reviewed gasotransmitter biochemistry, in the next sec-
tion we turn to specific roles of NO, CO, and sulfide in pregnancy.

Fueling pregnancy: gasotransmitters in

conception, placentation, and vascular

adaptation

Fallopian tube transit, decidualization, and
implantation
Gasotransmitters and their biosynthetic enzymes change as the
nascent conceptus travels to the uterus (Figure 5A). Women ex-
hale twice as much CO in the luteal phase compared to the
follicular phase [113]. The reason for this change is unknown but
may reflect regulation of tubal transit or early systemic adaptations
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Figure 5. Gasotransmitters regulate fallopian tube transit, decidualization, implantation, and placentation. (A) Fallopian tube transit. ET1 from the fallopian
endothelium upregulates iNOS in the fallopian ampulla. Deficiencies in CBS hinder transit of fertilized embryos. Depending on its concentration, NO stimulates
or inhibits pregnancy-sustaining progesterone (P4) by the corpus luteum (CL). (B) Decidualization and implantation. HO-1 drives proliferation of ectoplacental
cone (EPC) cells. Decidual eNOS, nNOS, iNOS, and SOD1 increase in abundance as the endometrium decidualizes, and NOS activity facilitates implantation. ICM:
inner cell mass, GC: Giant cells. (C) Developmental changes at the maternal-fetal interface (MFI). During pregnancy, CO facilitates remodeling of maternal spiral
arteries (red circle) into low-resistance, high-flow canals (red patch) surrounding the placental villi (yellow, green, and black branched structure). Endothelial NOS
potentiates placental amino acid transport from maternal circulation (red) to fetal circulation (black). On the fetal side, eNOS, both HO isoforms, CBS, and CSE
facilitate dilation and angiogenesis of fetal vasculature (black). AAs: amino acids. SA: spiral arteries. Green circles and yellow layers represent cytotrophoblasts
and the syncytiotrophoblast, respectively. (D) EVT motility. Wnt and PI3K pathways both activate iNOS, which inhibits EVT apoptosis and promotes cell motility.
HO-1 and PPARγ inhibit EVT motility. Green +’s and red X’s denote up- and downregulation, respectively.

of pregnancy. In cattle, endothelins induce iNOS accumulation in the
ampulla [114]. Human fallopian tubes express CBS, which produces
sulfide to relax fallopian tube smooth muscle [115]. In mice, CBS in-
hibition causes morula retention in the tube. This suggests NO and
sulfide can counteract procontractile endothelins to facilitate tubal
peristalsis and embryo transit.

Decidualization is endometrial maturation under the influence
of progesterone (P4) secreted by the corpus luteum (Figure 5B). It
includes mesenchymal-to-epithelial transdifferentiation of endome-
trial fibroblasts into secretory stromal cells, invasion of leukocytes
that assist tissue reorganization, and capillary angiogenesis to po-
tentiate implantation [116]. Human decidua expresses both eNOS
and iNOS in the vascular endothelium and glandular epithelium
[117]. In nonhuman primates, decidualization enhances endome-
trial nNOS, iNOS, and eNOS expression [118], while in mice only
iNOS and eNOS accumulate. In rats, the nonselective NOS in-
hibitor L-nitroarginine methyl ester (L-NAME) blocks decidualiza-
tion [119, 120]. NO (probably from eNOS) also promotes secretory
endometrial differentiation and endometrial vessel dilation to in-
crease perfusion during early pregnancy. Additionally, first trimester
decidua from women with spontaneous miscarriage shows higher
prostaglandin F2α and lower Cu-Zn SOD (SOD1) than normal
pregnancies [121]. This suggests SOD1 could suppress cytotoxic
ONOO− production [46], preventing feed-forward synergy between
rising NO and prostaglandin F2α .

The rigid glycocalyx surrounding the preimplantation embryo
(the zona pellucida) is disassembled just before decidual implanta-
tion, a process called “hatching.” In mice, both NO donors and NOS
inhibitors prevent hatching [122], suggesting hatching requires an
optimal NO concentration. Implantation occurs when trophoblast
cells of a hatched blastocyst attach to the decidualized endometrium
[123] (Figure 5B). Trophoblast comprises multinucleated STB and
mononucleated cytotrophoblasts (CTBs), some of which differen-
tiate into extravillous trophoblasts (EVTs). In the preimplantation
murine embryo, giant cells are analogous to human EVTs, and the
ectoplacental cone is analogous to STBs and CTBs. If implantation is
successful, EVT invasion extends chorionic villous STBs and CTBs
deep into the decidua as the blastocyst inner cell mass undergoes
gastrulation. Although giant cells and the ectoplacental cone ex-
press iNOS, and NOS inhibitors abolish implantation [119, 124],
iNOS knockout mice have no pregnancy defects [125]. In contrast,
conceptus-derived CO is crucial for implantation; HO-1 knockout
embryos make fewer ectoplacental cone cells and implant less effi-
ciently, a phenotype rescued by exogenous CO inhalation. In HO-1
heterozygous dams, 40% of HO-1 null fetuses die by E14, compared
with only 20% of HO-1 heterozygous fetuses and 10% of wild-type
fetuses [11]. CO upregulates and is upregulated by vascular endothe-
lial growth factor (VEGF), a family of angiogenic signaling pro-
teins [126]. However, CO likely promotes trophoblast proliferation
independent from VEGF and angiogenesis since inhibition of HO
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enzymatic activity prevents differentiation of immature trophoblast
stem cells into giant cells [11].

After ovarian follicle oocyte release, the corpus luteum forms
from the remnant steroidogenic theca and granulosa cells. Luteal
P4 sustains all mammalian pregnancies prior to placentation and is
required for the entire pregnancy in rodents. In humans, by 10–12
weeks’ gestation the placenta replaces the corpus luteum as the main
source of P4. Low concentrations of NO donors enhance luteal P4

secretion in horses, sheep, and rats, whereas high concentrations
of NO donors decrease P4 [127–129]. High NO bolus doses (e.g.
0.1–1 mM) or NOS activators diminish P4 and increase apoptosis
of corpora lutea obtained from eumenorrhoeic women [130, 131].
Similar to blastocyst hatching, intermediate NO levels may optimally
prevent luteolysis.

Key points

� Fallopian tube iNOS and CBS levels increase during embryo tran-
sit to the uterine cavity. Sulfide facilitates tubal peristalsis.

� NO promotes decidualization, and eNOS increases in endometrial
vascular endothelium and glandular epithelium from conception
to placentation.

� CO enhances trophoblast proliferation and aids embryo implan-
tation and early survival.

� Elevated NO prevents P4 synthesis and can be luteolytic in early
pregnancy.

Feto-placental angiogenesis and hemodynamics
Primates, rodents, and lagomorphs exhibit hemochorial placenta-
tion, in which maternal and fetal blood are separated by placental
CTB/STB and chorionic villus capillary endothelial cells (Figure 5C).
Gas, nutrients, and wastes are transferred between maternal blood
from spiral arteries (which become low-resistance conduits to the in-
tervillous space after remodeling) and fetal blood in placental capil-
laries. Inadequate placental vascularization limits nutrient extraction
(particularly O2) required for normal fetal growth. Abnormal pla-
centation is associated with intrauterine growth restriction (IUGR),
gestational diabetes, preeclampsia, and preterm birth [132].

Decidual invasion by EVTs is critical for normal pregnancy (Fig-
ure 5D), and in vitro iNOS stimulates EVT motility and invasiveness
while inhibiting EVT apoptosis. Interdependent PI3K-Akt-mTORC1
and Wnt-β-catenin pathways activate EVT iNOS [133–135], and
conversely iNOS and sGC inhibition inactivate Akt, destabilize
β-catenin, and increase EVT apoptosis [136, 137]. The invasive
EVT leading edge accumulates iNOS and matrix metalloprotease-
9 (MMP9). Although MMP9 inhibition curtails EVT motility in
cell culture models [138, 139], this has not been tested in vivo.
Murine pregnancy does not require iNOS [125], but there is a
correlation between stimuli that reduce trophoblast invasion and
reduced placental iNOS and MMP9 [140]. On the other hand,
HO-1 expression (and likely CO production) is inversely related
to trophoblast invasiveness. By an unknown mechanism, HO-1 and
PPARγ reduce EVT motility. HO-1 and PPARγ are decreased in
first trimester EVTs, while overexpression or knockdown of HO-1
respectively enhances or suppresses PPARγ [141, 142], and HO-
2 neutralizing antibodies inhibit CTB migration [143]. In contrast,
iNOS-dependent EVT invasiveness is sensitive to CO activation of
PPARγ [144].

Development of placental chorionic villi (composed of fetal ves-
sels surrounded by CTB and STB) requires trophoblast remodel-

ing (Figure 5C). Feto-placental angiogenesis and vasodilation occur
throughout pregnancy to maintain fetal nutrient delivery; lower HO-
2 in placental vascular endothelium correlates with preeclampsia
and IUGR [145, 146]. Placental microvasculature is less developed
in HO-1 knockout mice [147]. In rats, placenta-permeable HO in-
hibitors decrease placental growth factor (PLGF, a VEGF homolog
[148]) and increase placental oxidative stress [149]. These effects
are probably due to CO deficiency, as exogenous CO prevents HO
inhibitor-induced giant cell apoptosis, and low dose inhaled CO in
pregnancy rescues the HO-1 null placental structural defects [11].
Placental sulfide may also stimulate placental angiogenesis via miR-
NAs. Relative to term healthy placentas, CBS and CSE protein and
VEGF transcript levels are lower and miRNAs 20a and 200c in-
crease in term preeclamptic placentas. Sulfide donors rescue VEGF
levels and decrease miR20a/200c and sFlt1. CBS or CSE siRNA
knockdown in human placental explants also blocks sulfide donor
effects [150, 151]. Further, CBS knockout dams resorb most CBS
heterozygous embryos, underscoring the importance of maternal
sulfide production [5]. Based on these data, CO and sulfide likely
promote placental angiogenesis via PLGF and VEGF, respectively.
Both VEGF [152] and villous trophoblast sulfide [153] stimulate
Akt-dependent activation of eNOS, and eNOS-deficient mice ex-
hibit placental hypoxia [4]. This suggests NO also mediates placental
angiogenesis.

Along with placental angiogenesis, normal pregnancy requires
regulated placental hemodynamics. NO donors dilate term human
placental arteries in a sGC and BKCa-dependent manner [154]. VEGF
increases eNOS expression in human umbilical vein endothelial cells
and increases NO production from excised human umbilical vein
[155, 156]. In IUGR placentas, NO effects are attenuated, and the
proportion of phosphorylated eNOS S1177 (more active) decreases
[157]. IUGR placental arteries also show eNOS promoter hyper-
methylation [158] and impaired Ca2+-dependent eNOS activation
[159], suggesting that eNOS mediates placental NO production.
Similarly, CO dilates human placental vessels via cGMP-PKG [160].
Although hypoxia does not induce HO-1 or HO-2 in term placental
explants [161], HO inhibitors do reduce vasodilation and decrease
placental perfusion [162–164]. Sulfide also regulates placental vas-
cular tone. In human preeclamptic placentas, miRNA 20 suppresses
CSE accumulation [165], and stem villus artery CSE loss is associated
with human IUGR [166]. Placental explants subjected to hypoxia-
reoxygenation show reduced actin and myosin, but sulfide donors
prevent those changes [166]; thus, placental vascular sulfide may
protect against IUGR. KATP channel and NOS may synergize to me-
diate placental sulfide signaling since glibenclamide (a KATP channel
blocker) and L-NAME both block sulfide donor-dependent placental
artery vasodilation [165]. Sulfide can augment classical signaling via
PDE5-resistant 8-nitro-cGMP [3, 94, 95] and ONSS− stimulation
of cGMP synthesis [41, 42]. These data show that gasotransmit-
ters have both acute (vasodilation) and chronic (angiogenesis and
cytoskeletal remodeling) effects on placental vasculature.

Key points

� NO inhibits EVT apoptosis and stimulates EVT motility via Akt
and Wnt pathways.

� HO-1 and PPARγ reduce EVT motility.
� HO enzymes and sulfide promote placental angiogenesis via PLGF

and VEGF expression.
� Endothelial NOS produces NO to dilate placental capillaries, and

CSE produces sulfide to augment NO production and signaling
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and further relaxes placental vascular smooth muscle by activating
KATP channels.

� IUGR correlates with lower HO-1, HO-2, CBS, and CSE expres-
sion and decreased eNOS S1177 phosphorylation in placental
vessels.

Maternal hemodynamics
Maternal vascular resistance decreases in pregnancy as cardiac
output and blood volume increase, thus maintaining blood pres-
sure. Central nervous system NO may regulate maternal hemo-
dynamics. The hypothalamic paraventricular nucleus regulates
autonomic sympathetic output [167, 168], which increases pe-
ripheral vascular resistance. In rats, paraventricular nNOS de-
clines during pregnancy [169], and paraventricular expression of
a dominant negative nNOS mutant increases vascular resistance
[170]. Sympathetic neurotransmission also rises in pregnant women
[171, 172], whereas parasympathetic output decreases [173–175].
This suggests decreased paraventricular nNOS in pregnancy dis-
inhibits the sympathetic nervous system [169, 176] despite the
overall decrease in vascular resistance during pregnancy. This is
probably because of hormone-dependent increased NO produc-
tion in the vasculature. Serum relaxin, a smooth muscle relax-
ant, and estrogen (E2) increase several hundred-fold during preg-
nancy [177–179]. Relaxin induces vasodilation via PI3K-Akt phos-
phorylation of eNOS S1177 [180]. E2 reduces paraventricular
nNOS protein expression in rats [181] and increases eNOS tran-
scription via E2 receptors (ERs) [181, 182]. E2 promotes phos-
phorylation of eNOS at S1177 by activating plasma membrane
ERα-Gαi to stimulate a Src-PI3K-Akt pathway [183–185]. While
ERα promotes activating eNOS S1177 phosphorylation, ERβ

curtails inhibitory phosphorylation of eNOS T495 in pregnant
bovine uterine artery endothelial cells [186]. Pregnant women ex-
press more uterine artery eNOS than age-matched nonpregnant
women [187, 188], and E2 promotes uterine artery eNOS accu-
mulation in ovariectomized sheep [189]. Moreover, eNOS knock-
out mice are hypertensive [190]. These studies suggest decreased
paraventricular nNOS helps maintain vascular resistance to bal-
ance the increased peripheral vasodilation necessary for pregnancy
(Figure 6A).

CO and sulfide also regulate maternal vascular tone, and low
respiratory and serum CO and sulfide are associated with hyperten-
sion in pregnancy. Exhaled CO is inversely correlated with gesta-
tional hypertension [191], while longer HO-1 promoters attenuate
HO-1 expression and are predictive of preeclampsia [146]. In mice,
HO inhibition at mid-pregnancy does not affect placental histol-
ogy or fetal growth, but does increase maternal vascular resistance
[192]. Therefore, while early placentation requires embryonic HO,
maternal HO curtails vasoconstriction later in pregnancy. Uterine
artery CBS increases during pregnancy [188], and decreased mater-
nal serum sulfide and placental CBS and CSE protein levels correlate
with preeclampsia [165, 193, 194]. CSE knockout mice exhibit re-
duced VEGF-dependent angiogenesis [195], and sulfide donors block
sFlt1-induced hypertension in rats [196]. sFlt1 is a soluble VEGF re-
ceptor that reduces free serum VEGF, antagonizes VEGF signaling,
and is linked to preeclampsia [196]. Sulfide may also regulate ma-
ternal vascular tone by directly persulfidating smooth muscle KATP

channels [197, 198]. During pregnancy, KATP and CBS levels increase
in human and ovine uterine artery smooth muscle cells [199, 200].
Endogenous sulfide stimulates KATP opening in rat mesenteric artery
smooth muscle cells [201], and sulfide donors inhibit ATP-dependent

Figure 6. Gasotransmitters regulate maternal vascular tone and immunotol-
erance. (A) Prior to pregnancy, nNOS in the paraventricular nucleus of the hy-
pothalamus (H) limits sympathetic activity in the rostral ventrolateral medulla
(M) and inhibits endothelin 1 (ET1)-mediated release of vasopressin from
the pituitary (P), both of which reduce peripheral vascular resistance. During
pregnancy, rising E2 inhibits PVN nNOS and stimulates PVN eNOS expres-
sion via ERβ. ERα facilitates E2-mediated eNOS activation in the periphery
by promoting S1177 and curtailing T495 phosphorylation. AVP: Vasopressin.
(B) CO promotes recruitment of uNKs to the decidua, which enhance fetal
alloimmune tolerance via endometrial IL-15 and CBS. Inducible NOS and HO-
1 activity attenuate TCTX maturation, while persulfidation of NFYB enhances
naı̈ve TDN differentiation into Tregs. Endo: endometrium. TDN: double-negative
(CD4− CD8−) naı̈ve T cells.

Ca2+ entry into porcine vascular smooth muscle cells [202]. Hence,
KATP persulfidation may increase uterine blood flow by antagonizing
vasoconstriction.

Key points

� E2 promotes maternal vascular eNOS transcription, protein accu-
mulation, and NO production.

� E2 downregulates hypothalamic nNOS protein expression in preg-
nancy. This increases sympathetic tone and thereby maintains
blood pressure.

� HO activity decreases maternal vascular resistance during preg-
nancy.

� CSE- and CBS-produced sulfide enhance VEGF signaling in en-
dothelial cells and KATP channel opening in vascular smooth mus-
cle to lower vascular resistance.
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Maternal angiogenesis and vascular remodeling
The maternal side of the maternal-placental interface undergoes va-
sodilation and angiogenesis akin to the fetal side to support ad-
equate placental exchange. Uterine blood flow increases dramat-
ically during pregnancy to about 20% of cardiac output by the
third trimester. This is accommodated by increased myometrial
radial artery angiogenesis, as well as remodeling of endometrial
spiral arteries to low-resistance, high-flow canals that maximize
maternal blood flow to the intervillous space (Figure 5C). Inad-
equate placental perfusion may result in placental ischemia and
oxidative stress and promote the release of placental factors that
cause preeclampsia [203]. Both NO and CO regulate uterine blood
flow.

Although eNOS expression is similar in uterine artery endothe-
lial cells from pregnant and virgin sheep, VEGF only stimulates
uterine artery eNOS during pregnancy. VEGFR2 increases PI3K-
dependent Ca2+ entry, which stimulates eNOS independently of
ERK1/2, Akt, or eNOS S1177 phosphorylation [204, 205]. Pregnant
eNOS knockout mice exhibit IUGR that is rescued by administra-
tion of an endothelin receptor A antagonist [190]. Similar to fallop-
ian tube peristalsis, maternal uterine artery expansion could involve
dynamic interplay between endothelin-dependent contraction and
eNOS-dependent relaxation. Additionally, the placental basal plate
expresses both HO isoforms, which influence placental perfusion
[145, 162–164, 206]. HO-1 knockout mice exhibit reduced spiral
artery remodeling, and human IUGR correlates with longer mater-
nal HO-1 promoters (associated with decreased HO expression) but
not with HO activity [11, 145, 146, 164]. CO inhalation (50 ppm)
in early pregnancy nevertheless increases placental bed angiogenesis
in HO-1 knockout mice [6, 11], so CO may drive uteroplacental
vascular remodeling [149].

Spiral artery remodeling is associated with the appearance of de-
cidual uterine natural killer cells (uNKs) in early pregnancy. The
precise function of uNKs is still uncertain, but they mediate al-
lorecognition and tolerance during placentation and also assist spiral
artery remodeling [207]. They promote endometrial accumulation
of VEGF-C that induces lymphangiogenesis [208, 209]. All three
gasotransmitters regulate uNKs. Titers of uNKs are lower in mice
with genetic deletion of eNOS, HO-1, or CBS. Decreased decidual
uNKs in eNOS knockouts [4] is consistent with eNOS-dependent hu-
man NK resistance to apoptosis [210] and indicates NO autocrine
or paracrine facilitation of uNK proliferation. Remarkably, early
pregnancy CO inhalation (50 ppm) rescued uNK levels in preg-
nant HO-1 heterozygous mice and normalized the growth of HO-1
knockout conceptuses [6, 211]. CO, therefore, appears necessary
for early pregnancy local immune cell changes but dispensable in
late pregnancy. Uterine NKs upregulate decidual transcription of
CBS and CSE [208], and early pregnant CBS knockout mice pro-
duce fewer uNKs [5]. Despite these connections, mechanisms are
speculative since uNK origins are not clearly understood. While CO
and NO cause uNK proliferation, CBS regulation of uNKs may be
indirect.

Key points

� VEGF induces eNOS to facilitate maternal uterine artery vasodi-
lation.

� HO promotes spiral artery remodeling.
� CO increases uNKs in pregnancy that in turn upregulate endome-

trial CBS and CSE expression.

Immune adaptation
The developing conceptus is an allograft sharing only half of the
maternal genes. Since maternal leukocytes can cross the placenta
and enter fetal circulation [212] and may identify the placenta and
fetus as foreign, maintaining maternal immune tolerance is critical
for successful gestation. Pregnancy reshapes the maternal adaptive
immune system (Figure 6B). Early in pregnancy, the ratio of T helper
cell type-1 (Th1) cytokines (i.e. IFNγ ) to Th2 cytokines (i.e. IL-4 and
IL-10) decreases. Since Th2 cells transduce inflammatory signals less
efficiently than Th1s [213], this shift likely contributes to maternal
tolerance. In animal models, NOS and HO facilitate the Th1/Th2
shift. Lymphocyte NO synthesis increases during bovine pregnancy,
and in pregnant goat serum NO3

− correlates with Th2 cytokines
[214, 215]. Maturation of rat naı̈ve T cells into cytotoxic effectors
(TCTX) requires downregulation of antigen-presenting cells’ iNOS
and HO-1 [216]. CO and sulfide also regulate T regulatory cell (Treg)
suppression of TCTX maturation. HO inhibitors raise dendritic cell
titers and induce embryo resorption in mice [217], but exogenous CO
prevents antigen-presenting cell activation and TCTX maturation by
a cGMP-independent pathway [218, 219]. Similarly, CBS- or CSE-
produced sulfide persulfidates NFYB, driving Tet1/2 methylcytosine
dioxygenase expression and de-repressing Foxp3 expression. Foxp3
(a forkhead transcription factor) commits CD4− CD8− progenitors
to become Tregs [220]. Because CBS loss impairs murine fertility and
uNK titers [5], CBS may regulate the uterine Treg niche.

Key points

� Inducible NOS and HO-1 suppress naı̈ve T-cell differentiation
into TCTX.

� HO-1 increases naı̈ve T-cell differentiation to Tregs.
� Sulfide increases Treg cells via NPYB persulfidation and increased

Foxp3.

Rising to delivery: gasotransmitters in later

pregnancy and parturition

Myometrial quiescence
The myometrium is the uterine visceral smooth muscle between the
endometrium and the serosa. Endocrine signals (e.g. corticotrophin
releasing hormone, P4 withdrawal) drive myometrial contractility
through expression of contraction-associated proteins and altered
ion channel activity. The myometrium is quiescent for about 90%
of pregnancy until maternal-fetal-placental signals stimulate expres-
sion of Gq protein-coupled oxytocin receptor (OTR), prostaglandin
F2α receptor, cyclooxygenase enzymes, and the gap junction protein
Connexin 43 [221]. The OTR and prostaglandin F2α receptors ac-
tivate phospholipase C to produce inositol triphosphate and diacyl-
glycerol, which promote myocyte depolarization, voltage-sensitive
L-type Cav channel activation, and regular intracellular Ca2+ spikes.
Increased Ca2+ activates CaM-dependent myosin light chain phos-
phorylation and myosin-actin cross-bridge cycling to increase con-
tractile force (Figure 7A). In contrast, relaxation occurs when the
contractile phenotype has not been activated or when intracellu-
lar [Ca2+] is insufficient to activate MLCK. In addition to actin,
myosin, and regulatory kinases and phosphatases, cytoskeletal ac-
cessory proteins can influence myocyte contractility. Connexin 43
increases electrochemical connections among myocytes, allowing de-
polarization to spread and amplify during labor [222]. About half
of preterm labor leading to preterm delivery involves precocious
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Figure 7. Gasotransmitters in parturition. (A) Regulation of myometrial contractility (depicted cell is a uterine myocyte). NOS activity in myocytes or adjacent
endothelium inhibits contraction by stimulating BKCa and raising GSNO levels. GSNO is tocolytic. Myocyte CBS curtails GPR109A activity, which reduces OTR
signaling. CBS and/or CSE also activate KATP and potentiate an unidentified protein downstream of ClCa that induces tocolysis. Sulfide and GSNO produce
ONSS−, which promotes uterine contractility. F2αR: receptor for prostaglandin F2α PLC: phospholipase C. (B) Cervical remodeling. In early pregnancy, P4 inhibits
iNOS synthesis. More iNOS and less SOD1 near parturition allows ONOO− to accumulate, which stimulates prostaglandin F2α synthesis. Prostaglandin F2α

in turn promotes PR-A accumulation and thus blocks P4 perception. (C) Rupture of fetal membranes. Inducible NOS activity drives formation of ONOO−,
which accelerates membrane rupture. By an unknown mechanism, CBS activity promotes PGDH-dependent prostaglandin F2α degradation, which slows fetal
membrane rupture.

activation of uterine contractions. To prolong pregnancy, investi-
gators have studied mechanisms of tocolysis (the cessation of my-
ometrial contraction). Exogenous NO and sulfide potently relax
oxytocin-stimulated and spontaneous myometrial contractions [223,
224].

Endothelial NOS may be the primary uterine NO source in preg-
nancy. In humans, E2 increases myometrial eNOS expression [225],
while in mice both P4 and E2 increase uterine eNOS [226]. Human
pregnant myometrium expresses vascular eNOS [225, 227] and my-
ometrial eNOS [228, 229]. Since NO can freely diffuse between
cells, localization may not be critical. Whereas rat uterine iNOS and
eNOS increase until labor at E22, nNOS decreases by E18 [230,
231]. Like vascular and gastrointestinal smooth muscle, the my-
ometrium contains autonomic (predominantly sympathetic) nerve
endings. However, female puberty coincides with E2-dependent re-
duction of myometrial sympathetic innervation [232, 233], and
uterine neuronal signals are nearly undetectable during pregnancy
[234–236]. Collectively, there is little evidence for neuronal control
of the myometrium, and nNOS is probably not a major quiescence
mediator.

Pregnant myometrium expresses both HO isoforms as well as
CBS and CSE. Myometrial explants from term laboring (TL) and
term nonlaboring (TNL) pregnancy express more HO-1 and HO-
2 and produce more CO than explants from nonpregnant women.
Exogenous heme relaxes term human and E22 rat myometrial strips

[237], but exogenous CO gas has no effect [238]. Hence, other HO
products (Fe2+ or BV) are likely the tocolytic agent(s). TNL explants
also express more CBS and CSE and lower levels of contraction-
associated proteins (e.g. OTR) compared with TL tissue, and there
is one report of endogenous cysteine-dependent relaxation of TL
myometrium via CBS [239, 240]. Compared with wild-type ani-
mals, CBS+/– dams express OTR earlier and deliver earlier. Recent
publications also report differential S-nitrosation of myometrial cy-
toskeletal proteins during pregnancy that may influence contractility
[241–243].

There is some debate regarding molecular mechanisms of
gasotransmitter-induced tocolysis. Classical NO signaling is insuf-
ficient to explain NO tocolysis because pharmacological inhibi-
tion of cGMP pathways does not inhibit uterine NO effects [223,
244]. Nonclassical NO and sulfide myometrial targets fall into three
groups: cytoskeleton-associated proteins, ion channels, and mem-
brane receptors. MLCK, vinculin, and galectin-1 SNOs are less
abundant in preterm laboring human myometrium than in TNL
tissue [244], while pregnant guinea pig myometrium exhibits in-
creased desmin, vimentin, and transgelin SNOs relative to nonpreg-
nant myometrium [38]. Myometrial GSNOR expression is higher in
women with preterm labor than TNL [245], suggesting myometrial
SNOs maintain uterine quiescence. Active site cysteine SNOs de-
crease the activity of numerous enzymes, including GAPDH [246],
SIRT1 [247], and PDK1 [248], but effects of noncatalytic cysteine
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SNOs on actin-myosin accessory proteins are complex. S-nitrosation
decreases skeletal muscle myosin cross-bridge cycling velocity and in-
creases myosin stall force [249], and a cofilin-1 SNO depolymerizes
actin fibers [250]. Myometrial protein SNOs correlate with preg-
nancy status, but their relationship to contractility is uncertain.
ONSS− promotes contraction of rat myometrium despite relaxing
blood vessels [42]. This may be due to unique cell-specific signal-
ing mechanisms in vascular and myometrial smooth muscle. Altered
protein expression in the two muscle types has been described; for
example, α-actin and vimentin contents are higher in vascular muscle
compared to visceral muscle [251]. Whatever the underlying mecha-
nism, there are clear difficulties with directly extrapolating vascular
findings to uterine myometrial function.

Uterine smooth muscle BKCa and KATP channels are impor-
tant mediators of uterine quiescence [252, 253]. Contractile stim-
uli induce membrane depolarization [254] that promotes opening of
voltage-sensitive Nav and Cav channels. As Ca2+-CaM dependent
contraction proceeds, Ca2+ activates BKCa to increase K+ outflow,
hyperpolarize the membrane, and close Cav channels. Ca2+ pumps
reduce cytosolic [Ca2+], and the smooth muscle cell relaxes [255,
256]. At rest, BKCa, Nav, Cav, and Ca2+-gated Cl− channels (ClCa)
are closed, Kir channels are intermittently open, and the resting mem-
brane potential matches the K+ reversal potential. NO donors and
arginine increase BKCa channel opening, and PKG/NOS inhibitors
block BKCa current in myometrial cells from pregnant women [257].
PKG agonists and cGMP analogs stimulate BKCa activity in preg-
nant myometrial myocytes, but not in nonpregnant myocytes [258].
KATP is active when the ATP:ADP ratio decreases, and increased
K+ permeability maintains uterine myocyte hyperpolarization and
quiescence [259, 260]. Cysteine and sulfide donors activate my-
ometrial KATP via persulfidation, but tocolysis is sensitive to the
KATP inhibitor glibenclamide [9, 239, 261]. The mechanism may be
more complex, as antagonists of myometrial ClCa channels (which
conduct outward Cl− current and are therefore depolarizing/pro-
contractile) [262, 263] paradoxically inhibit sulfide relaxation of rat
myometrium [9]. Sulfide may, therefore, act downstream of ClCa

channels.
G protein-coupled receptors and receptor kinases are expressed

throughout the myometrium (e.g. OTR, VEGF receptor) and can
be regulated by gasotransmitters. Intraperitoneal sulfide reduces
murine preterm birth induced by the Toll-like receptor agonist
LPS [10, 264, 265], but the mechanism is not known. The G
protein-coupled niacin receptor GPR109A promotes inflammatory
pathways and accumulates in the placenta and uterus of pregnant
CBS heterozygous dams [266, 267]. Intriguingly, GPR109A dele-
tion rescues OTR overexpression and premature delivery in preg-
nant CBS heterozygous mice [266], suggesting sulfide antagonizes
GPR109A-activated contractility. Complete understanding of uter-
ine receptor modulation by gasotransmitters will require additional
investigation.

Key points

� Uterine eNOS, CBS, and CSE levels increase during pregnancy
and decrease during labor.

� The HO substrate heme is a tocolytic, but direct CO application
is not.

� NO activates both classical pathway and non-cGMP dependent
uterine relaxation.

� NO activates myometrial smooth muscle BKCa activity, and sul-
fide increases myometrial KATP activity.

� S-nitrosation of cellular contractile proteins correlates with
preterm labor.

Cervical remodeling
Cervical remodeling is the softening, shortening, and dilation of the
uterine cervix before delivery. It begins in mid pregnancy with gly-
cosaminoglycan degradation, decreased collagen fiber production,
and neutrophil/macrophage invasion [268–270]. Inflammatory me-
diators such as IL-8, IL-1α, and prostaglandin F2 α augment cervi-
cal effacement (i.e. shortening) [271, 272] and relax the myocer-
vical circular smooth muscle [273, 274]. NO promotes cervical
remodeling.

Pregnant human cervix expresses all three NOS isoforms, and
cervical fluid NO3

− is lower in TNL women [275]. Cervical epithe-
lia contain nNOS. Inducible NOS and eNOS accumulate in vascular
endothelial cells, and cervical leukocytes also express iNOS. Cervi-
cal iNOS increases 2-fold between the first trimester and term [276],
and human cervical fibroblasts treated with IL-1α upregulate iNOS
transcription 16-fold. L-NAME blocks IL-1α stimulated secretion
of matrix metalloprotease-1 [277], suggesting that iNOS can facil-
itate cervical ripening. P4 suppresses iNOS transcription in RAW
macrophages [278] and prevents NO-stimulated prostaglandin E2

production in human cervical explants [279, 280]. In rodents, peri-
partum luteolysis reduces P4, which then permits iNOS accumulation
[231]. P4 receptor (PR) antagonists accelerate cervical remodeling in
humans and animals and increase iNOS transcription fourfold in
pregnant rats [281]. P4 and cervical iNOS are inversely related near
the end of pregnancy and intimately associated with inflammation
signals prior to parturition. In humans, P4 levels do not decline,
but PR switching before labor from active PR-B to truncated PR-A
causes functional withdrawal of P4 signaling [282, 283].

Both classical and cytotoxic (ONOO−) NO signaling influence
cervical remodeling. NO donors increase cervical cGMP [284] and
promote human myocervical relaxation ex vivo [285–288]. Low con-
centrations of NO donors (10 μM) suppress and high concentrations
(3 mM) promote uterine prostaglandin synthesis in mice [289]. Cer-
vical cytokines and reactive oxygen species increase as labor ap-
proaches [271, 272, 290], while cervical SOD1 decreases. Thus,
increased cervical iNOS producing NO along with increased O2

−

and oxidative stress causes ONOO− formation [43, 57, 276, 291],
suggesting the cytotoxic pathway mediates cervical change [292]
(Figure 7B). However, there is no preterm labor phenotype in iNOS
knockout mice [125]. This may reflect compensatory upregulation
of nNOS/eNOS.

Key points

� P4 signaling, via PR switching, and SOD1 decrease in the cervix
at parturition, promoting ONOO− production.

� NO may stimulate prostaglandin synthesis via either classical or
cytotoxic NO pathways.

� There is no evidence for sulfide or CO regulating cervical
remodeling.

Rupture of membranes
The fetal membranes comprise the fused inner amnion and outer
chorion. They provide a structural barrier to infection and the
maternal immune system and contain the amniotic fluid reservoir
and fetus [293]. Membrane cells continue to multiply in late ges-
tation, and membrane stretch accommodates rapid fetal growth.
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As telomeres shorten in the cells comprising fetal membranes,
apoptosis ensues, and the membranes rupture [294–296]. This re-
leases inflammatory cytokines to enhance uterine contractions [221].
Loss of amniotic fluid is a strong signal for delivery [297], and
NO and sulfide may influence the timing of membrane rupture
(Figure 7C).

As in the cervix, iNOS in fetal membranes correlates with la-
bor. In humans, TL membranes after vaginal delivery express more
iNOS than intact TNL membranes from cesarean delivery [298].
Oxytocin stimulates iNOS expression and ONOO− synthesis in hu-
man membrane explants [299]. Inducible NOS expression stimulates
p38 MAPK-dependent chorion cell apoptosis [300], while NOS in-
hibitors delay membrane apoptosis [301]. ONOO− protein nitration
and p38 MAPK signaling increase in mouse fetal membranes exposed
to cigarette smoke extract [302], implicating the cytotoxic pathway
as a mechanism for preterm premature rupture of membranes in
smokers. In contrast, sulfide reportedly maintains chorion/amnion
integrity. Human and rat fetal membranes express CBS and CSE.
CBS is more abundant in rats [303]. CBS and CSE expression is lower
in TL membranes compared with TNL cesarean controls [304]. Since
sulfide attenuates oxidative stress and inhibits prostaglandin synthe-
sis, CBS expression might reduce inflammation and delay membrane
rupture [305].

Key points

� Fetal membrane iNOS increases in late gestation and may facili-
tate rupture of membranes via the cytotoxic pathway.

� Membrane sulfide may curtail inflammatory signaling, thereby
delaying membrane rupture.

Uterine involution
After birth, the uterus must continue contracting to limit postpar-
tum bleeding [306]. Over several weeks, uterine involution proceeds
with the myometrium and vasculature returning to the pregravid
state. In pigs, uterine iNOS increases from postnatal day 7 to 35
[307], which may be a return to baseline and/or may represent in-
creased inflammation and phagocytosis. Inducible NOS-expressing
uterine M1 macrophages, however, accumulate sharply at parturi-
tion and then decrease after delivery [308]. Thus, the source, direc-
tion, and function of iNOS/NO in uterine involution are unclear.
In mice, eNOS-derived NO may prevent postpartum uterine blood
vessel narrowing. Parous wild-type dams have uterine arteries with
wider lumens than virgin mice, but eNOS knockout uterine arteries
remain similar to nulligravid wild-type mice [7]. Whether this is due
to defects in eNOS-dependent vascular remodeling during pregnancy
or altered postpartum involution involving NO is uncertain. If NO
does facilitate uterine involution, it is probably not via the classi-
cal pathway in myocytes since involution is a contractile process.
Inflammation in the postpartum uterus is prominent, and cytotoxic
NO signaling may occur if sufficient O2

− is present to yield ONOO−.
A mechanism by which sulfide promotes autophagy and apoptosis
has been identified [309], but this mechanism has not been studied
in the postgravid uterus.

Key points

� Few studies have examined the mechanisms of uterine involution
or the effect of gasotransmitters in the postpartum uterus.

� Uterine iNOS increases postpartum and may be associated with
general tissue inflammation.

The winds of tomorrow: gasotransmitters in

perinatal research

We have summarized the evidence for gasotransmitter regulation of
pregnancy from conception to postpartum involution. Where pos-
sible, we have described specific mechanisms. However, important
gaps remain in the present literature. Here we describe some of the
challenges, questions, and future opportunities for gasotransmitter
pregnancy research.

� Novel gasotransmitters and signaling pathways. New small gas
transmitters have been proposed in recent years, but almost none
have been studied in pregnancy. For example, brain, kidney, and
liver produce ammonia (NH3), the abundance of which influ-
ences renal pH even in healthy people [310]. Methane (CH4), a
stable but rare volatile, may protect against hypoxia-reperfusion
injury [311]. Carbonyl sulfide (COS) is rapidly converted to sul-
fide and bicarbonate by carbonic anhydrase [312], and carbon
disulfide (CS2) prevents NFκB-mediated inflammation [313]. The
relevance of these gasses and the novel products of gasotransmit-
ter combinations require exploration. The product of NO and sul-
fide, SSNO−, is both a uterotonin and a vasodilator. This finding
complicates the conventional view of NO/sulfide synergy [165,
314]. Methylated sulfides such as trimethylsulfonium [315] re-
lax smooth muscle but also activate specific antioxidant enzymes
[316], suggesting persulfidation may not be the only mechanism of
sulfide signal transduction. As our technical capabilities expand,
time and attention will become limiting resources to measure and
identify novel gasotransmitters.

� Nongaseous products of gasotransmitter enzymes. The gasotrans-
mitter synthetic reactions create other nonvolatile products with
possible signaling roles. Citrulline (produced with NO by NOS
enzymes) is a hydroxyl radical scavenger [317]. Homocysteine-
mia and cystathioninuria occur with CBS and CSE deficiency,
respectively, because of altered RTS that changes intracellular
cysteine levels, affects glutathione and taurine metabolism, and
perturbs the intracellular redox state [318, 319]. Biliverdin pro-
duced by HO is an antioxidant that modulates oxidative damage
[320], while free Fe2+ can generate reactive free radicals. These
nongaseous co-products may mediate some effects of gasotrans-
mitter enzyme activity or deficiency, which deserves consideration
in future experiments.

� Current enzyme tools and pharmacology. For many com-
mercially available gasotransmitter enzyme agonists and
antagonists, isoform selectivity is low. For example, the NOS
inhibitors 7-nitroindazole (7-NI), 2-amino-5,6-dihydro-6-methyl-
4H-1,3-thiazine (AMT), and diphenyleneiodonium (DPI) are re-
portedly selective for nNOS, iNOS, and eNOS. Unfortunately,
the IC50s show considerable overlap, which risks incorrect conclu-
sions for tissues expressing multiple NOS isoforms [321]. Similar
issues exist for HO and CSE/CBS inhibitors. Genetic knockout
models can be informative, but confounding effects require atten-
tion (e.g. dramatically increased cystathionine in CSE knockout
mice may be a cause of the phenotype). Experimental design using
multiple drugs or approaches will produce more robust findings.

� Gasotransmitter measurement and reporters. Specific, real-time
detection of gasotransmitters in living cells and tissues can yield ar-
tifact since many gasotransmitter-reactive dyes also interact with
other redox mediators. In vitro enzymatic assays are reliable, but
they do not assess bioactivity in the natural intracellular milieu.
New genetically encoded fluorescent biosensors for NO [322],
CO [323], and sulfide [324] are promising, but their selectivity
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in living cells requires verification. This issue is well illustrated
by a sulfide biosensor that is 25 times more selective for sul-
fide than GSH [324], even though intracellular GSH is more than
1000 times more abundant than sulfide [325]. Chemiluminescence
[326–328], amperometry [329–331], and stable metabolite quan-
tification [332, 333] accurately quantify gasotransmitters [334],
but implementation is complicated and limited in scale. Multiple
approaches and reagents are probably needed in present gaso-
transmitter research.

� Limited perinatal research. After the initial excitement surround-
ing NO in the 1990s, few labs have ongoing basic investigation
of gasotransmitters in pregnancy. Indeed, many seminal discov-
eries regarding gasotransmitters in pregnancy still require inde-
pendent verification. Although many lines of promising research
show therapeutic potential for obstetrical syndromes, few repro-
ductive sciences labs are active in this area. Devoting increased
effort and resources to basic mechanisms, including expanding
the number of laboratories and investigators, could better inform
clinical trials and thereby advance therapeutic and diagnostic tools
for pregnancy.

Key points

� In different cells and tissues, gasotransmitters can antagonize or
synergize with one another.

� Novel gasotransmitters have been identified, but their function in
reproductive biology has not been tested.

� The important effects of by-products of gasotransmitter enzy-
matic activity deserve separate consideration from gasotransmit-
ters themselves.

� Experimental design should account for limitations of current
enzyme inhibitors and activators and gasotransmitter tracers.

� The most accurate and sensitive tools to measure NO, CO, and
sulfide are ozone chemiluminescence, palladium-catalyzed fluo-
rescence, and amperometry, respectively.

� Study of gasotransmitters in reproductive biology, especially
with independent confirmation of findings, will accelerate op-
portunities for accurate development of pregnancy therapies and
diagnostics.

Conclusion

NO, CO, and sulfide influence multiple aspects of pregnancy physi-
ology. In the decades since the earliest discoveries showing that NO
potently relaxes the uterus, we have developed a deeper and more
complex knowledge of gasotransmitter production, regulation, and
interactions (Figure 8). NO regulates P4 secretion to maintain early
pregnancy and augments endometrial decidualization. NO and sul-
fide affect fallopian tube peristalsis. NO and CO balance trophoblast
invasion and proliferation during implantation, and CO promotes
spiral artery remodeling. All three gasotransmitters facilitate placen-
tal angiogenesis and augment maternal uterine blood flow, together
maximizing utero-placental transfer. All three also modulate mater-
nal immune function in pregnancy, activating uNK and Treg popula-
tions while suppressing alloimmunity. As the myometrium acquires
resistance to NO and sulfide quiescence at labor, NO weakens the
fetal membranes preparing for rupture and promotes cervical re-
modeling. The precise role of gasotransmitters in specific perinatal
pathologies is not well established, and recently recognized reac-
tions among gasotransmitters and established second messengers are
largely unexplored. There are many opportunities for further study,

Figure 8. Summary schematic of gasotransmitter-mediated processes in preg-
nancy. Blue dotted, red dashed, and yellow solid lines denote NO, CO, and
sulfide, respectively.

and we anticipate the development of new pregnancy therapies from
increased understanding of perinatal gasotransmitter signaling.
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mer DA, Lukasik K, Szóstek AZ, Woclawek-Potocka I, Skarzynski DJ.
Nitric oxide stimulates progesterone and prostaglandin E2 secretion as
well as angiogenic activity in the equine corpus luteum. Domest Anim
Endocrinol 2011; 40(1):1–9.

129. Motta AB, Estevez A, Tognetti T, Gimeno MA, Franchi AM. Dual effects
of nitric oxide in functional and regressing rat corpus luteum. Mol Hum
Reprod 2001; 7(1):43–47.
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MB, Spasojević I, Blagojević D. Comparison of the effects of
methanethiol and sodium sulphide on uterine contractile activity. Phar-
macol Rep 2014; 66(3):373–379.



Gasotransmitters in pregnancy, 2019, Vol. 101, No. 1 25

317. Akashi K, Miyake C, Yokota A. Citrulline, a novel compati-
ble solute in drought-tolerant wild watermelon leaves, is an ef-
ficient hydroxyl radical scavenger. FEBS Lett 2001; 508(3):438–
442.

318. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M. Cys-
tathionine gamma-Lyase-deficient mice require dietary cysteine to protect
against acute lethal myopathy and oxidative injury. J Biol Chem 2010;
285(34):26358–26368.

319. de Valk HW, van Eeden MK, Banga JD, van der Griend R, de Groot
E, Haas FJ, Meuwissen OJ, Duran M, Smeitink JA, Poll-The BT, de
Klerk JB, Wittebol-Post D et al. Evaluation of the presence of prema-
ture atherosclerosis in adults with heterozygosity for cystathionine-beta-
synthase deficiency. Stroke 1996; 27(6):1134–1136.

320. Ziberna L, Martelanc M, Franko M, Passamonti S. Bilirubin is an en-
dogenous antioxidant in human vascular endothelial cells. Sci Rep 2016;
6(1):29240.

321. Boer R, Ulrich WR, Klein T, Mirau B, Haas S, Baur I. The inhibitory
potency and selectivity of arginine substrate site nitric-oxide synthase in-
hibitors is solely determined by their affinity toward the different isoen-
zymes. Mol Pharmacol 2000; 58(5):1026–1034.

322. Eroglu E, Charoensin S, Bischof H, Ramadani J, Gottschalk B, Depaoli
MR, Waldeck-Weiermair M, Graier WF, Malli R. Genetic biosensors for
imaging nitric oxide in single cells. Free Radic Biol Med 2018; 128:50–
58.

323. Wang J, Karpus J, Zhao BS, Luo Z, Chen PR, He C. A selective fluo-
rescent probe for carbon monoxide imaging in living cells. Angew Chem
Int Ed 2012; 51(38):9652–9656.

324. Chen Z-J, Ai H-W. A highly responsive and selective fluorescent
probe for imaging physiological hydrogen sulfide. Biochemistry 2014;
53(37):5966–5974.

325. Velázquez-Moyado JA, Navarrete A. The detection and quantification,
in vivo and in real time, of hydrogen sulfide in ethanol-induced lesions
in rat stomachs using an ion sensitive electrode. J Pharmacol Toxicol
Methods 2018; 89:54–58.

326. Hetrick EM, Schoenfisch MH. Analytical chemistry of nitric oxide. An-
nual Rev Anal Chem 2009; 2(1):409–433.

327. Bailey TS, Pluth MD. Chemiluminescent detection of enzymatically pro-
duced hydrogen sulfide: substrate hydrogen bonding influences selectivity
for H2S over biological thiols. J Am Chem Soc 2013; 135(44):16697–
16704.

328. Cao J, Lopez R, Thacker JM, Moon JY, Jiang C, Morris SN, Bauer JH,
Tao P, Mason RP, Lippert AR. Chemiluminescent probes for imaging
H2S in living animals. Chem Sci 2015; 6(3):1979–1985.

329. Shin JH, Privett BJ, Kita JM, Wightman RM, Schoenfisch MH. Fluo-
rinated xerogel-derived microelectrodes for amperometric nitric oxide
sensing. Anal Chem 2008; 80(18):6850–6859.

330. Seto H, Kondo T, Yuasa M. Sensitive and selective electrochemical de-
tection of carbon monoxide in saline at a Pt-Ru/Nafion/MnO2-modified
electrode. Anal Sci 2012; 28(2):115–120.

331. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lan-
caster JR, Jr, Darley-Usmar VM, Kraus DW. Polarographic measurement
of hydrogen sulfide production and consumption by mammalian tissues.
Anal Biochem 2005; 341(1):40–51.

332. Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys
Acta 1999; 1411(2-3):273–289.

333. Wang R. Physiological implications of hydrogen sulfide: a whiff explo-
ration that blossomed. Physiol Rev 2012; 92(2):791–896.

334. Hunter RA, Storm WL, Coneski PN, Schoenfisch MH. Inaccuracies of
nitric oxide measurement methods in biological media. Anal Chem 2013;
85(3):1957–1963.


