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Abstract

Cancer has long been viewed as a disease of altered metabolism. Although it has long been 

recognized that the majority of cancer cells display increased dependence on glycolysis, the 

metabolism of “cancer stem-like cells” (CSCs) that drive tumor growth and metastasis is less well 

characterized. In this chapter, we review the current state of knowledge of CSC metabolism with 

an emphasis on the development of therapeutic strategies to exploit the metabolic vulnerabilities of 

these cells. We outline emerging evidence indicating distinct metabolic pathways active in the 

proliferative, epithelial- (E) and quiescent, mesenchymal-like (M) CSC states in triple negative 

breast cancer (TNBC). These CSC states are characterized by their different redox potentials and 

divergent sensitivities to inhibitors of glycolysis and redox metabolism. We highlight the roles of 

two redox-regulated signaling pathways, HIF1α and NRF2, in regulating CSC epithelial-

mesenchymal plasticity during metabolic/oxidative stress, and discuss clinical strategies using 

combinations of pro-oxidant based therapeutics simultaneously targeting E- and M-like CSCs. By 

specifically targeting CSCs of both states, these strategies have the potential to increase the 

therapeutic efficacy of traditional chemotherapy and radiation therapy.
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1. Introduction

There is substantial evidence that many cancers, including breast cancer, are hierarchically 

organized and driven by a small population of tumor cells displaying stem cell properties [1–

3]. These “cancer stem-like cells (CSCs)” or “tumor initiating cells (TICs)”, which reside at 

the apex of tumor heterogeneity, have the capacity for self-renewal, tumor initiation and 
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generation of differentiated tumor progeny constituting the tumor bulk. In addition to their 

tumorigenic potential, CSCs are inherently resistant to traditional cancer therapies including 

chemotherapy and ionizing radiation, leading to treatment failure, metastases, and cancer 

relapse [4–10].

As discussed in several recent reviews, tumor cells including the small population of CSCs 

display remarkable genetic/epigenetic heterogeneity and cellular plasticity [11–13]. Adding 

another layer of complexity, recent studies demonstrate that BCSCs maintain the plasticity 

to transition between proliferative, epithelial-like (E) and quiescent, mesenchymal-like (M) 

states [14]. These distinct E- and M-like BCSCs exhibit discrete patterns of marker 

expression characterized by elevated aldehyde dehydrogenase (ALDH) activity and 

CD24−CD44+ expression respectively [14]. The transition of CSCs from the E- to M-like 

state closely resembles the epithelial-to-mesenchymal transition (EMT), which is associated 

with the acquisition of stem cell properties [15]. The equilibrium of these dynamic CSC 

states is regulated by the tumor microenvironment through mechanisms including, but not 

limited to, cytokine/chemokine signaling, genetic/epigenetic regulation of key transcription 

factors as well as growth factor receptors and microRNA/LncRNAs [13, 16, 17]. Most 

recently, we demonstrated that the dynamics of BCSCs in distinct E- and M-like states is 

tightly controlled by changing reduction-oxidation (redox) states induced by metabolic 

stressors [18]. In this chapter, we highlight the emerging knowledge regarding redox-

regulated CSC plasticity, the underlying signaling mechanisms governing redox regulation 

of CSC state dynamics, and the different metabolic pathways contributing to their 

differential redox potentials as well as divergent responses to inhibitors of glycolysis and 

redox metabolism. We emphasize the implications of these findings for the development of 

novel combinatory therapeutic strategies to effectively target CSCs of distinct phenotypic 

states, and discuss how these strategies may enhance tumor responses to the conventional 

treatment approaches including chemo- and radiation therapies.

2. CSC plasticity as a mechanism conferring treatment resistance and 

metastatic relapse

Current cancer therapies are mainly aimed at reducing tumor mass by targeting rapidly 

proliferating bulk tumor cells. Although these therapeutic strategies are effective in reducing 

the size of tumors, they frequently fail to eradicate advanced tumors and are associated with 

metastatic relapse. The CSC hypothesis suggests that conventional antitumor strategies 

targeting rapidly proliferating cells may fail to target CSCs, which divide infrequently and 

are endowed with multiple mechanisms accounting for their therapeutic resistance[19]. 

Indeed, a large body of studies has indicated that BCSCs are resistant to ionizing radiation 

and chemotherapy [9, 20–22]. This has been demonstrated in cultured cancer cell lines, in 

primary mammary tumor cells [7, 23, 24], in patient derived tumor xenografts [9, 25, 26] as 

well as in the clinical setting of breast cancer patients undergoing neoadjuvant chemotherapy 

[8, 25].

The demonstration that BCSCs exist in a dynamic equilibrium of E- and M-like states [14] 

suggests that CSC epithelial-mesenchymal plasticity may contribute to therapeutic resistance 
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and metastatic relapse. The plasticity of CSCs allowing them to transition from a 

proliferating epithelial state to an invasive, mesenchymal state facilitates these cells escaping 

from traditional therapies and disseminating into the circulation and distant organs. 

Conversely, the plasticity allowing them to transition from an invasive, mesenchymal state to 

a proliferating epithelial state facilitates metastatic colonization. This suggests that CSCs are 

not a fixed population but rather a dynamic, metaplastic phenotypic state that is regulated by 

the tumor microenvironment (i.e., growth factor/inflammatory signaling, stromal-tumor 

interactions and metabolic reprograming). In agreement with this notion, published studies 

have shown that HER2 overexpression drives the self-renewal of ALDH+ E-BCSCs that are 

sensitive to the HER2 antibody trastuzumab [27]. Conversely, resistance to HER2 blockade 

is associated with an increase in CD24−CD44+ M-BCSCs resulting from the activation of an 

IL6 driven inflammatory loop [28]. Moreover, in trastuzumab-resistant HER2+ breast 

cancer, a combinatory approach targeting IL6 receptor by tocilizumab and HER2 by 

trastuzumab synergistically abrogated tumor growth and metastases by eliminating both M- 

and E-BCSCs [28], providing a proof-of-concept that simultaneously targeting distinct CSC 

states may eradicate metastatic/drug-resistant breast cancer by eliminating the refractory 

CSC population. These studies also imply that therapeutic approaches targeting either state 

alone may not be sufficient to eliminate CSCs, since the targeted cell population could be 

rapidly regenerated by cells in alternative states. Thus, multiple CSC therapies attacking 

distinct forms of CSCs may be required to effectively eliminate these lethal seeds of cancer, 

leading to more effective therapies.

3. Cell redox as a key regulator of CSC plasticity

Cancer cells are characterized by increased levels of oxidative stress, generated by increased 

metabolic demands and oncogenic signaling [29, 30]. Many chemotherapeutic agents or 

ionizing radiation, by inducing oxidative stress, are able to elicit ROS-mediated cytotoxicity 

in bulk tumor cells which are more susceptible to second oxidative insults compared to their 

normal counterparts [31, 32]. However, ROS levels in the quiescent CSCs are significantly 

different as compared to the bulk of tumor cells [7]. Recently, we demonstrated that 

modulation of redox potential through co-inhibition of glycolysis and NRF2-mediated 

antioxidant responses is able to disrupt the state equilibrium of BCSCs, leading to terminal 

differentiation and apoptosis of both M- and E-BCSCs [18]. This provided a novel 

framework using pro-oxidant based therapeutics targeting metabolism of distinct CSC states 

to effectively eliminate the refractory CSC populations.

As is the case for their normal tissue counterparts, CSCs obtain energy principally through 

two different metabolic pathways: mitochondrial respiration, which depends on oxygen; and 

fermentation of glucose through aerobic glycolysis, which is oxygen-independent. CSCs 

appear to be capable of deriving energy from both sources. In the quiescent M state, they 

primarily rely on glycolysis; in the proliferative E state, they utilize oxygen to fuel 

mitochondrial oxidative phosphorylation (OXPHOS). Such dynamic utilization of distinct 

metabolic pathways depending on the tumor microenvironment is critical for cells in these 

CSC states to meet redox homeostasis and bioenergetics needs. Thus, the reactive oxygen 

species (ROS) generated from the mitochondrial OXPHOS is not merely a by-product of 

cancer metabolism, but rather serves as a key mediator regulating CSC plasticity.
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3.1. ROS as a secondary messenger in cell signaling

Metabolic reactions utilizing molecular oxygen (O2) produce reactive oxygen species (ROS) 

including superoxide (O2
−, hydrogen peroxide (H2O2) and hydroxyl radical (HO·). Although 

ROS are generated in various cellular compartments such as the peroxisomes and 

endoplasmic reticulum (ER), it is well recognized that mitochondrial OXPHOS serves the 

major source of ROS production, as ~2% of the oxygen consumed by the mitochondria is 

estimated to be reduced to form superoxide anion [29, 33, 34]. Mitochondrial ROS are not 

stable and rapidly dismutated by the manganese superoxide dismutase (MnSOD, SOD2) at 

the mitochondria or Cu/Zn-containing SOD (SOD1) in the cytosol into H2O2, which is 

permeable to the cell/nuclear membranes and further converted to HO· [35].

At high levels, ROS induce damage to various cellular components including DNA, proteins 

and lipids, leading to cell senescence, death or oncogenic transformation[29]. The extensive 

production of ROS during normal metabolism requires the activation of adequate antioxidant 

defenses to maintain redox homeostasis. Recent evidence has suggested that, although high 

levels of ROS are toxic, low-to-intermediate levels of ROS are crucial for cell development 

and homeostasis [36]. ROS act as important secondary massager to modulate a wide variety 

of signaling molecules including kinases, phosphatases, and transcription factors including 

JAK-STAT[37, 38], p38 MAPK/ERK/JNK[39–41 ], PI3K-AKT[42, 43], NF-kB[44–46], 

PKA[47], PKC[48, 49], NRF2/Keap1[50], Hippo-FOXO[51], etc., which in turn stimulate 

diverse cellular responses including cell survival, proliferation and differentiation[52, 53] 

and cell migration, adhesion and invasion[54, 55].

3.2. CSC radio-resistance is associated with low reactive oxygen species

The antitumor effects of both radiation and chemotherapy are mediated, at least partially, by 

the generation of ROS, which results in DNA damage and subsequent single-stranded and 

double-stranded breaks [56–58]. In neural stem cells (NSCs) and hematopoietic stem cells 

(HSCs), protection from oxidative stress is critical for the maintenance of their self-renewal 

[59–61], and mice deficient in ATM kinase or FoxO1, FoxO3, and FoxO4 transcription 

factors exhibit elevated ROS levels in the HSC compartment, leading to rapid extinction of 

HSCs [60, 62, 63]. In parallel studies, Diehn et al. documented that human and mouse 

BCSCs, similar to their normal tissue counterparts, are characterized by low levels of ROS 

associated with increased expression of free radical scavenging systems that account for the 

radio-resistance of these cells[7]. This study suggests that strategies that block these 

antioxidant defenses may successfully target CSCs. Indeed, pharmacological depletion of 

ROS scavengers in BCSCs markedly decreases their clonogenicity resulting in radio-

sensitization [7]. Accordingly, treatment of human acute myeloid leukemia (AML) with 

parthenolide, a naturally occurring compound that induces ROS, effectively targets AML 

stem and progenitor cells for apoptosis [64].

3.3. E- and M-like CSCs intrinsically differ in their redox states

As summarized above, there is compelling evidence that low levels of intracellular ROS are 

required for maintaining CSCs including hematopoietic stem cells (HSCs) [60–62] and 

mammary stem cells (MaSCs) [7]. Like their normal counterparts, the CD44+/CD24− 

mesenchymal BCSCs are characterized by low ROS [7]. Epigenetic silencing of the 
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gluconeogenic enzyme fructose-1,6-biphosphatase FBP1 by Snail facilitates increased 

glycolysis while suppressing OXPHOS to maintain low ROS levels in M-like BCSCs, 

promoting their self-renewal and an EMT-like CSC phenotype in TNBC [65].

The mammary epithelium is comprised of an outer layer of basal and an inner layer of 

luminal epithelial cells maintained by distinct basal and luminal stem cells that give rise to 

cells restricted to the basal and luminal lineages respectively during mammary gland 

development [66]. Interestingly, MaSCs located in the basal compartment (EpCAM
−/lowMUC1−CD49f+CD90+) are characterized by lower ROS levels while the luminal 

epithelial cells including the primitive luminal stem and/or progenitor cells (EpCAM
+MUC1+CD49f+CD90−) are characterized by higher levels of ROS [67]. Moreover, this 

study also demonstrated that the primitive luminal stem cells/progenitor cells display 

increased mitochondria mass and greater rates of oxygen consumption, and that glutathione-

dependent and -independent antioxidant defense mechanisms are active in the basal and 

luminal mammary epithelial compartments respectively [67]. These distinct luminal and 

basal stem cell populations identified in mammary epithelium are reflective of the ALDH+ 

and CD24−CD44+ CSC states isolated in different subtypes of breast cancers [14].

The finding that basal and luminal MaSCs maintain different ROS levels and lineage-

specific mechanisms of ROS control suggest that the E- and M-like BCSCs reflective of 

their respective luminal and basal stem cell lineages may inherit distinct ROS levels and 

metabolic pathways to control their respective redox states. Indeed, our recent studies in 

TNBC revealed that E-BCSCs and M-BCSCs display significantly different ROS levels and 

divergent responses to metabolic/oxidant stressors [18]. We further demonstrated that 

metabolic/oxidative stress generated by 2DG, H2O2 or hypoxia promotes the transition of 

ROSlo M-BCSCs to a ROShi E-state, and this transition was reversed by N-acetylcysteine 

and mediated by activation of the AMPK-HIF1α axis [18]. These differential responses of 

E- and M-BCSCs to metabolic/oxidative stressors are linked to their distinct bioenergetics 

and redox metabolism, which is discussed in the following section.

4. Metabolic pathways of CSCs

For most slowly proliferating normal tissue cells, mitochondria serve as the main source of 

energy production through the tricarboxylic acid (TCA) cycle coupled with OXPHOS in the 

mitochondria membrane, which generates 36 ATP per molecule of glucose. Cancer cells, 

however, are characterized by high rate of proliferation and thus need to adapt their cellular 

metabolism to support increased proliferation by providing rapid ATP generation as well as 

biosynthesis of nucleotides, proteins and lipids to support tumor growth. Almost 100 years 

ago, Otto Warburg reported that cancer cells preferentially utilize glycolysis (which 

generates 2 ATP per unit of glucose) to generate copious amounts of lactate, regardless of 

the presence of oxygen[68]. Such an inefficient way of energy production, however, is 

necessary for generation of various metabolic intermediates important for maintaining tumor 

redox homeostasis and anabolic metabolism (macromolecular biosynthesis). Despite a 

glycolytic phenotype in the bulk of tumor cells, the metabolic pathways utilized by the small 

subset of CSCs are less well characterized. Currently there is no consensus on the 
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metabolism of CSCs and a growing body of evidence in different cancer types indicates that 

the metabolism of CSCs is context-dependent and reliant on glycolysis and/or OXPHOS.

4.1. Metabolic heterogeneity and plasticity of CSCs

It was originally hypothesized that CSCs display a glycolytic phenotype with similarities to 

the quiescent adult stem cells [69]. This hypothesis is supported by the findings that 

transition from somatic oxidative metabolism into pluripotency-dependent glycolysis 

facilitates nuclear reprogramming and formation of induced pluripotent stem cells (iPSCs) 

[70, 71]. In contrast, bioenergetics transition from glycolysis to OXPHOS occurs during 

differentiation of human embryonic stem cells (hESCs) [72]. Thus, metabolic reprograming 

is not merely associated with sternness, but also acts as a regulator of cell differentiation.

A number of studies in breast cancer supported the above notion by demonstrating that 

BCSCs enriched by sphere formation [73], CD24−CD44+[65, 73] or CD49fhighEpCAMlow 

[74] preferentially utilize glycolysis over mitochondrial OXPHOS compared to the 

differentiated cells from the same tumor. This glycolytic phenotype is also found in the 

CD133+ hepatocellular CSCs [75] and the radio-resistant sphere-forming nasopharyngeal 

carcinoma cells [76]. Despite the studies suggesting a dependence of CSCs on glycolysis, 

other studies demonstrate that CSCs might also rely on oxidative metabolism. For example, 

quantitative proteomics studies of breast cancer cells revealed that key mitochondrial-related 

proteins involving in fatty acid β-oxidation and ketone metabolism as well as mitochondrial 

biogenesis were significantly upregulated in the mammospheres relative to the epithelial 

monolayers, suggesting that clonal expansion of BCSCs requires mitochondrial OXPHOS 

[77]. Indeed, XCT790, a well-established inhibitor of estrogen-related receptor a (ERRa), 

which functions as an essential cofactor of PGC-1α required for mitochondrial biogenesis 

[78, 79], suppresses BCSC activity by blocking several independent signaling pathways 

normally required for the self-renewal of CSCs, including Sonic hedgehog, TGFβ-SMAD, 

STAT3 and Wnt signaling [80]. This PGC-1α mediated mitochondrial biogenesis and 

OXPHOS is essential for the functional motility of breast cancer cells and metastasis [81]. 

The requirement of mitochondrial biogenesis for the self-renewal of CSCs is also supported 

by the findings that a number of antibiotics (i.e., Azithromycin and Tetracycline) targeting 

mitochondrial ribosomes effectively eradicate CSCs across multiple tumor types [82]. This 

functional link of mitochondria to the CSC phenotype was subsequently confirmed by the 

findings that proliferative ALDH+ BCSCs display increased mitochondrial mass and 

activity, and that high mitochondrial mass identifies a sub-population of BCSCs that are 

chemo-resistant [83, 84]. A recent study further demonstrated that MYC and MCL1, two 

genes frequently amplified in TNBC, cooperatively promote mitochondrial OXPHOS, 

leading to ROS-mediated HIF1α stabilization and enrichment of ALDH+ BCSCs [85].

The roles of mitochondrial oxidative metabolism in conferring therapeutic resistance by 

promoting the maintenance of CSCs have also been described in other malignancies. For 

example, the oncofetal insulin-like growth factor 2 mRNA-binding protein IMP2 in 

glioblastoma has been shown to control OXPHOS, which is crucial for preserving CD133+ 

glioblastoma CSCs [86]. In acute myelogenous leukemia (AMF), the quiescent leukemia 

stem cells (FSCs) express high levels of BCF-2 and have a selective dependency on 
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oxidative respiration [87]. Furthermore, the BCF-2 inhibitors ABT-737 and ABT-263 

selectively inhibit the quiescent FSCs by targeting OXPHOS [87]. Similarly, in chronic 

myeloid leukemia (CMF), the primitive CD34+ leukemic stem cells (FSCs) rely on oxidative 

metabolism for their survival. Treatment with the combination of imatinib and tigecycline, 

an antibiotic inhibiting mitochondrial protein translation, selectively eradicates CML LSCs 

in vitro and in a xenograft model of human CML [88]. The antidiabetic drug metformin, 

which blocks mitochondrial function via inhibition of the ETC complex I, inhibits cellular 

transformation and selectively kills BCSCs by depleting the TCA cycle and glycolytic 

intermediates and suppressing nucleotide biosynthesis [89]. In pancreatic ductal 

adenocarcinoma (PDAC), metformin specifically targets CD133+ CSCs, which display 

elevated expression of PGC-1α essential for mitochondrial biogenesis, OXPHOS 

functionality, and the self-renewal and tumorigenic potential of pancreatic CSCs [90]. 

Interestingly, metformin-resistant CSC clones in PDAC emerge due to an intermediate 

glycolytic/OXPHOS phenotype driven by increased expression of MYC, and genetic/

pharmacological suppression of MYC restores metformin sensitivity in metformin-resistant 

pancreatic CSCs [90]. Thus, the balance of MYC/PGC-1α expression appears to determine 

the dynamic metabolic states (glycolysis versus OXPHOS) of pancreatic CSCs. This 

metabolic heterogeneity and plasticity of CSCs identified in various tumor types highlight 

that CSCs display metabolic plasticity enabling them to adapt to changing tumor 

microenvironments and nutrient availability.

4.2. CSCs in distinct E and M states depend upon different metabolic pathways

As discussed in the previous section, the Warburg effect characterized by increased aerobic 

glycolysis in the bulk of tumor cells represents a striking metabolic difference between 

cancer and its normal tissue cells. However, despite the dependence of cancers on glycolysis, 

glycolytic inhibitors such as 2-Deoxyglucose (2DG) and Lonidamine exhibit little effect on 

solid tumor growth [91, 92]. Although the mechanisms accounting for the lack of sensitivity 

of cancer cells to glycolytic inhibition remain to be fully characterized, a recent study 

suggested that mTORCl-dependent metabolic rewiring underlies the escape of cancer cells 

to glycolytic addiction [93].

The phenotypic plasticity of BCSCs enabling them to transition between a quiescent 

mesenchymal state and proliferative epithelial state facilitates the capacity of BCSCs to 

initiate and grow primary tumors, to invade the basement membrane and tissue vasculature, 

and ultimately colonize distant organs to form clinically significant metastases [17, 19]. 

Despite the functional significance of this CSC plasticity in tumor development, treatment 

resistance and metastatic relapse, the cellular and molecular mechanisms regulating BCSC 

plasticity by the complex tumor microenvironment remain largely elusive. Currently, little is 

known about the metabolic pathways active in distinct BCSC states and how these CSC 

states evolve under various metabolic stressors such as glycolytic inhibition, nutrient 

deprivation, hypoxia, and xenobiotic/oxidant stress. These metabolic differences of M- and 

E-like CSCs may confer resistance to glycolytic inhibition and play critical roles for tumor 

cell survival and progression under stress. As CSCs exhibit a dynamic equilibrium of 

proliferative E- and quiescent M-like states coordinately driving tumor growth, metastasis 

and treatment resistance, elucidation of these metabolic differences will help to define and 
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exploit metabolic vulnerabilities of each CSC state, providing a conceptual framework to 

effectively target this critical tumor cell population.

To address these questions, we investigated how metabolic/oxidative stress modulates the 

state dynamics of BCSCs and identified markedly different responses of M- and E-BCSCs to 

oxidant stress that are closely linked to their distinct redox potentials. Specifically, 

metabolic/oxidative stress generated by 2DG, H2O2 or hypoxia, by activating AMPK-

dependent HIF1α stabilization and NRF2-mediatted antioxidant responses, promotes the 

transition of BCSCs from a quiescent, ROSlow M-like state to a ROShigh proliferative E-state 

[18]. Interestingly, these divergent responses of M- and E-BCSCs to oxidative stress are 

closely associated with their different metabolic pathways. As depicted in Figure 1, the 

CD24−CD44+M-BCSCs and ALDH+ E-BCSCs significantly differ in many aspects of 

cellular metabolism. Although both CSC states exhibit elevated glycolysis regulatory genes, 

the relatively quiescent M-BCSCs exhibit higher glycolytic rate in glucose-rich culturing 

conditions. In contrast, the proliferative E-BCSCs are endowed with robust expression of 

mitochondrial OXPHOS regulatory genes and exhibit highest metabolic plasticity for 

OXPHOS under glycolytic inhibited conditions. These proliferative E-BCSCs are also 

endowed with robust NRF2-mediated antioxidant responses, exemplified by highly elevated 

expression of a wide variety of antioxidant genes involved in drug transport and 

detoxification, NADPH production, TXN and GSH antioxidant pathways, etc. These 

metabolic differences of M- and E-BCSCs suggest that while glycolysis plays an important 

role in supporting the low redox states of M-BCSCs, both mitochondrial respiration and 

NRF2-mediated antioxidant defenses are important for E-BCSCs to maintain their 

proliferation and to prevent the accumulation of oxidative stress generated from 

mitochondrial OXPHOS.

As metabolic/oxidative stress produced by 2DG-mediated glycolytic inhibition facilitates the 

transition of quiescent, ROSlow M-BCSCs to a proliferative, ROShigh E-state susceptible to 

the blockade of NRF2 or its downstream thioredoxin (TXN) and glutathione (GSH) 

antioxidant pathways, we validated a combinatory treatment approach utilizing 2DG 

together with inhibitors of TXN (by AUR) and GSH (by BSO) antioxidant pathways. This 

combination treatment approach significantly suppressed tumor growth, tumor-initiating 

potential and metastasis by abrogating both M- and E-BCSCs in patient-derived xenograft 

(PDX) and systemic metastasis models of TNBC [18]. As 2DG is not an FDA-approved 

cancer therapeutic, our preclinical studies suggest a pro-oxidant based therapeutic approach 

utilizing standard-of-care radio-chemotherapy and antiangiogenic therapies (all of which 

generate oxidative stress) in combination with inhibitors of NRF2-mediated antioxidant 

responses to treat metastatic cancer (i.e., TNBC). As illustrated in Figure 2, this combinatory 

approach, by elevating oxidant stress in the ROSlow M-like CSCs, promotes the transition of 

quiescent M-BCSCs to a ROShigh E-state that is more susceptible to inhibition of NRF-

mediated antioxidant pathways (i.e., NRF2 inhibitor Trig or inhibitors of TXN/GSH 

pathways such as AUR/BSO), leading to terminal differentiation and subsequent apoptosis 

of the both M- and E-like BCSCs. Thus, elucidating metabolic differences of distinct CSC 

states may provide a conceptual framework to effectively target CSCs in various tumor 

types, leading to enhanced treatment responses for traditional cancer therapies.
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5. Redox-regulated signaling pathways modulating CSC phenotypic/

metabolic plasticity and therapeutic responses

Although a plethora of ROS-dependent signaling pathways including PTEN/PI3K/AKT/

mTOR [94, 95], JAK/STAT[37, 96], Notch [97–99], Hippo [51], ATM/p53 [100–102], Wnt 

[65, 103, 104] and NF-kB [46, 105–107] cascades have been implicated in regulating CSCs 

through modulation of cancer metabolism and redox homeostasis, our recent studies 

demonstrate a prominent role of ROS-induced HIF1α and NRF2, two redox-sensitive 

transcription factors, in regulation of BCSC plasticity during metabolic stress[18]. In this 

section, we focus on the roles of HIF1α and NRF2 in regulating CSC metabolism and 

phenotypic plasticity as well as the clinical implications of targeting these redox-sensitive 

signaling pathways to overcome therapeutic resistance.

5.1. Roles of HIF1α in regulation of redox and intermediary metabolism

Advanced cancers often display intra-tumor hypoxia, which promotes tumor metastasis and 

therapeutic resistance largely mediated by induction/stabilization of hypoxia-inducible 

factors (HIFs) [108, 109]. HIFs including HIF1 and HIF2 are transcription factors mediating 

hypoxic responses and HIF1 functions as a master regulator of glycolysis [110]. HIF1 has 

two subunits: HIF1α and HI FI β. HIF1 protein levels increase under hypoxic stress and 

decrease under normoxic conditions due to oxygen-dependent prolyl hydroxylation of 

HIF1α, which targets HIF1α for proteasomal degradation via the von Hippel-Lindau (VHL) 

ubiquitin ligase complex [111]. HIF1 promotes glycolysis through transcriptional activation 

of a number of glycolytic genes including glucose transporters (i.e., GLUT1 and GLUT3), 

hexokinases (i.e., HK1 and HK2), pyruvate kinase (PKM) and lactate dehydrogenase 

(LDHA). HIF1α also promotes the transcription of the PDK1 gene encoding pyruvate 

dehydrogenase kinase I, which phosphorylates and inactivates pyruvate dehydrogenase 

(PDH), the first enzymatic entry into the TCA cycle [112, 113]. This HIF1α-mediated 

metabolic rewiring by increased influx to the glycolytic pathway and reduced influx to the 

TCA cycle helps to overcome elevated oxidant stress associated with hypoxia by blunting 

the production of mitochondrial ROS.

In addition to modifying metabolic influx to glycolytic pathway versus TCA cycle, HIF1α 
also mediates increased metabolic influx to the serine biosynthetic pathway and 

mitochondrial one carbon (folate cycle) metabolism. This facilitates NADPH and 

glutathione synthesis to reduce mitochondrial oxidant stress to promote BCSC maintenance 

and lung metastasis [114, 115]. This role of HIF1α in maintaining ROS homeostasis 

including redox balance at the mitochondria is critical for the maintenance of CSCs under 

metabolic stressful conditions (i.e., chemotherapy or antiangiogenic therapy). Indeed, when 

TNBCs were treated with paclitaxel or gemcitabine, induction of HIF activity including 

HIF1α and HIF2α led to increased ALDH+ BCSCs and chemotherapy resistance, associated 

with increased secretion of IL-6 and IL-8 [116], two prominent inflammatory cytokines 

promoting BCSC activity [117, 118]. Subsequent studies identified a redox-mediated 

mechanism of HIF1α promoting a chemotherapy-induced BCSC phenotype [119].
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The development of antiangiogenic agents was thought to be a major advance in cancer 

treatment. Several therapeutic agents targeting tumor neovascularization have been 

developed, including antibodies (i.e., bevacizumab) targeting vascular endothelial growth 

factor (VEGF) and receptor tyrosine kinase inhibitors (i.e., Sunitinib and Nintedanib) that 

block signaling mediated by the VEGF receptor. Despite the encouraging responses of some 

tumor types including colorectal [120], renal cell [121] and pancreatic neuroendocrine [122] 

carcinomas to antiangiogenic therapies, numerous other tumor types, particularly breast 

cancer [123–125], are poorly responsive to antiangiogenic regimens. Previous studies in our 

laboratory showed that that tumor hypoxia generated by anti-angiogenic agents enriches 

ALDH+ E-BCSCs within the tumor hypoxic zones in a HIF1α dependent manner [126], 

suggesting that the induction of ALDH+ E-BCSCs by standard antiangiogenic therapy may 

contribute to antiangiogenic resistance in breast cancer. Thus, targeting HIF1α-dependent 

induction of ALDH+ BCSCs by chemo or antiangiogenic therapy may overcome 

chemotherapy or antiangiogenic resistance. In support of this idea, co-administration of HIF 

inhibitors such as digoxin together with standard chemotherapeutic (paclitaxel and 

gemcitabine) overcome chemo resistance and prevented tumor relapse in TNBC xenograft 

mice [116]. Similarly, concurrent administration of a novel HIF1α inhibitor CRLX101 (an 

investigational nanoparticle-drug conjugated with camptothecin) and bevacizumab led to 

decreased induction of both HIF1α and ALDH+ CSCs in breast tumors leading to tumor 

regression and delayed tumor recurrence in preclinical mouse models [127].

5.2. Roles of NRF2 in regulation of redox and intermediary metabolism

The nuclear factor erythroid 2-related factor 2 (NRF2) is one of the most important 

transcription factors orchestrating intrinsic resistance to oxidative stress and adaptive 

antioxidant responses to various environmental stressors [50, 128]. NRF2 has been 

traditionally regarded as a tumor suppressor due to its roles as the main defense mechanism 

of the cell and a major regulator of cell survival. Yet, recent studies demonstrate that 

hyperactivation of the NRF2 pathway creates an environment that not only supports the 

survival of the normal cells, but also the growth and progression of malignant cells, 

protecting them against oxidative/xenobiotic stress, chemotherapeutic agents, and 

radiotherapy[129]. Accumulating evidence is emerging to demonstrate that NRF2 

profoundly influences the metabolism of glucose, lipids, amino acids and nucleotides [128, 

130]. Through regulation of redox and intermediary metabolism of tumor cells, NRF2 

pathway serves as a driver of cancer progression, metastasis, and resistance to therapy.

5.2.1. Regulation of NRF2 activity—NRF2 belongs to the cap ‘n’ collar (CNC) 

subfamily of basic leucine zipper (bZIP) transcription factors equipped with 7 modular 

NRF2-ECH homology domains (Nehl-7), each of which preforming distinct functions to 

regulate NRF2 activity [128]. In unstressed conditions, NRF2 protein levels remain low in 

the cytoplasm, where it forms a complex through dimerization of its Neh2 domain with the 

Kelch-like ECH-associated protein 1 (Keap1), a NRF2 negative regulator that targets NRF2 

for ubiquitination and proteasomal degradation [131, 132]. Electrophiles and oxidants 

inhibit Keap1-mediated proteasomal degradation of NRF2, thereby enabling NRF2 

accumulation and nuclear translocation to initiate the transcription of a wide variety of 

antioxidant genes that facilitate cellular adaptation to stress[128]. Once activated, NRF2 
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hetero-dimerizes with the small MAF proteins to control the basal and inducible expression 

of over 200 genes that contain antioxidant response elements (AREs) in their regulatory 

regions [133]. Although NRF2 is principally regulated by Keap1, the Neh6 domain of NRF2 

confers additional mechanism of stability control by recruiting β-transducin repeat-

containing protein (β-TrCP), a substrate adaptor for the S-phase kinase-associated protein 1 

(Skpl)–Cul1–Rbx1 core E3 complex. This negative regulation of NRF2 by β-TrCP is 

enhanced by glycogen synthase kinase 3 (GSK3) activities [134–136].

In addition to ubiquitination, NRF2 protein expression is subject to other forms of post-

translational modifications including phosphorylation and acetylation, which allow 

modulation of NRF2 activity by fine-tuning its subcellular localization in the cytoplasm/

nucleus. For example, activation of the AMP-activated protein kinase (AMPK), a master 

regulator of metabolism to maintain cellular bioenergetics during metabolic stress, increases 

NRF2 activity through phosphorylation of GSK3β, leading to the inhibition of GSK3β 
function in promoting NRF2 nuclear exclusion and degradation [137, 138]. AMPK is also 

capable of directly phosphorylating NRF2 at Ser550 to facilitate its nuclear localization 

[139]. In addition to the phosphorylation of NRF2, multiple lysine residues in the Nehl 

domain of NRF2 were shown to be acetylated by p300/CBP, which augments promoter-

specific DNA binding of NRF2 to ARE sequences and induction of antioxidant responsive 

gene expression during stress [140].

NRF2 activity is also controlled by transcriptional regulation. For example, functional AREs 

in mouse NRF2 promoter region have been identified, which mediate the autoregulation of 

NRF2 through transcriptional activation, providing a positive feedback mechanism [141]. 

NRF2 activity can also be regulated by various polymorphisms in its promoter and protein 

coding regions and a single nucleotide polymorphism in the ARE-like sequences of human 

NRF2 promoter is associated with diminished NRF2 expression a single nucleotide 

polymorphism in the ARE-like sequences of human NRF2 promoter is associated with 

diminished NRF2 expression and increased susceptibility to lung cancer[142]. The NRF2 

promoter also contains a NF-kB binding site, thereby enabling its transcriptional activation 

by inflammatory stimuli such as lipopolysaccharide [143]. This constitutively high NRF2 

expression driven by NF-kB in human acute myeloid leukemia underlies its chemo-

resistance [144].

5.2.2. NRF2 in metabolic reprograming of cancer

Beyond its function as a master regulator of antioxidant responses, NRF2 has recently been 

recognized as a key transcription factor mediating metabolic reprogramming in cancer cells 

[128, 130, 145]. Through direct regulation of key metabolic genes or indirectly through 

crosstalk with other transcription factors, NRF2 serves as a major hub to modulate numerous 

enzymes in major metabolic pathways of carbohydrates, nucleic acids, lipids, and amino 

acids.

NRF2 and glucose metabolism—Metabolic reprogramming refers to a process that 

cancer cells utilize in order to rewire their metabolic pathways and energy production 

network to support their proliferative and/or invasive characteristics. This phenomenon was 
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first demonstrated in cancers by the Warburg effect of aerobic glycolysis observed in the 

1920s [68]. Although glycolysis represents one of the remarkable features of cancer 

metabolic alternations, the underlying mechanisms driving this metabolic alteration and its 

influences on cancer development and progression are still not fully understood. Activation 

of NRF2 increases glucose uptake and diverts it to the pentose phosphate pathway (PPP) by 

promoting enzyme expression in the oxidative (including glucose-6-phosphate 

dehydrogenase, G6PD and 6-phosphogluconate dehydrogenase, PGD) and non-oxidative 

(including transketolase, TKT and transaldolase, TALDO1) arms of PPP [130, 146, 147]. In 

addition to G6PD and PGD, NRF2 also promotes the expression of two other NADPH 

synthetic enzymes ME1 and IDH1[146], suggesting a role of NRF2 in replenishing NADPH, 

the main reducing equivalent required for redox hemostasis and biosynthesis of lipids and 

nucleotides. This role of NRF2 in promoting nucleotide synthesis is supported by the 

findings that the expression of de novo purine synthesis enzymes, phosphoribosyl 

pyrophosphate amidotransferase (PPAT) and methylenetetrahydrofolate dehydrogenase 2 

(MTHFD2), was significantly decreased following knockdown of NRF2 in A549 cells 

(which is deficient of Keap1) [146]. The role of NRF2 in redirecting glycolytic 

intermediates into anabolic pathways to support tumor growth was further demonstrated in a 

recent study by showing that activation of NRF2 upregulates the expression of key serine 

biosynthesis enzymes including PHGDH, PS ATI and SHMT and diverts glycolytic 

intermediate 3-phosphoglycerate (3PG) to serine/glycine synthetic pathway, which augments 

glutathione and nucleotide production and confers poor prognosis in human non-small cell 

lung cancer (NSCLC) [148].

The folate cycle, through transfer of one carbon unit between tetrahydrofolate and its 

derivatives in the cytoplasm or mitochondria, produces metabolites essential for cell growth, 

including nucleotides, methionine and NADPH [149]. Interestingly, MTHFD1L, an enzyme 

critical for folate cycle maintenance[150], is transcriptionally activated by NRF2, which 

confers metabolic advantages in hepatocellular carcinoma [151]. Together with the study 

showing that HIF1α induced by chemotherapeutic agents promotes BCSCs and lung 

metastasis by redirecting glycolytic intermediates to serine synthesis and mitochondrial one 

carbon metabolism [115], these studies provide evidence for a role of NRF2 and HIF1α to 

confer metabolic advantages to cancer cells including CSCs through metabolic 

reprograming.

NRF2 and glutamine metabolism—In addition to glycolysis, many tumors fuel their 

cellular bioenergetics by degradation of glutamine through glutaminolysis, which is 

catalyzed by a NRF2 target gene glutaminase (GLS), thereby providing cancer cells with 

nitrogen for the biosynthesis of nucleotides and nonessential amino acids [128, 146]. The 

glutamate generated by GLS can be deaminated into α-ketoglutarate to fuel the TCA cycle 

and this step is enhanced by the NRF2 target gene ME1[152]. Alternatively, glutamate can 

be used to fuel glutathione biosynthesis, which is catalyzed by glutamate-cysteine ligase 

(with catalytic GCLC and regulatory GCLM subunits) and glutathione synthetase (GS), two 

enzymes also regulated NRF2[152]. Upregulated expression of GCLC and GCLM and ME1 

by NRF2 has been shown to direct increased carbon flux from glutamine toward GSH 

biosynthesis and TCA cycle [146]. illustrating a role of NRF2 in rewiring glutamine 
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metabolism in cancer. Of note, the ability of NRF2 to promote cell proliferation through 

metabolic reprogramming (i.e., PPP shunting, NADPH production, nucleotide synthesis and 

glutamine metabolism) is augmented in the presence of active PI3K-Akt signaling [146]. 

suggesting a positive feedback mechanism between oncogenic pathways and NRF2 in 

driving the malignant phenotype.

NRF2 and lipid metabolism—As summarized in two recent reviews [128, 130]. NRF2 

negatively regulates a variety of genes involved in fatty acid biosynthesis, desaturation and 

transport. In contrast, a number of lipases involved in the degradation of triglycerides/

phospholipids and enzymes involved in mitochondrial fatty acid β-oxidation (FAO) are 

positively regulated by NRF2. The FAO products including NADH and FADH2 counteract 

ROS accumulation to reduce oxidative stress and increase ATP production by serving as the 

electron carriers of the ETC complex [153]. Several studies have reported a function of FAO 

in the maintenance of hematopoietic stem cells (HSCs) and CD8+ memory T cells, which 

display some stem like characteristics [154–156].

Recent studies also implicate a role of FAO in driving a CSC-like phenotype and chemo-

resistance. For instances, the promyelocytic leukemia (PML) gene expressed in breast cancer 

acts as both a negative regulator of PGC-1α acetylation and a potent activator of PPAR 

signaling and fatty acid oxidation, which promotes ATP production and inhibits anoikis, a 

property associated with CSCs and metastasis[157]. The expression of the oncogenic 

transcription factor MYC is elevated in many TNBCs, which drives dysregulated FAO 

activity [158]. Pharmacologic inhibition of FAO catastrophically decreased energy 

metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-

driven transgenic TNBC model and a MYC-overexpressing TNBC patient-derived xenograft 

model [158]. The activation of JAK/STAT3 promotes M-like BCSC phenotype and tumor 

growth [159]. Inhibiting JAK/STAT3 blocks the self-renewal of M-like BCSCs and the 

expression of diverse lipid metabolic genes, including carnitine palmitoyltransferase IB 

(CPT1B), a rate-limiting enzyme of FAO pathway; and blocking FAO re-sensitize breast 

cancer cells to chemotherapy while reducing cancer sternness in vivo [160].

5.3. Roles of NRF2 and HIF1α in promoting CSC plasticity

Our recent studies demonstrated that NRF2 and HIF1α are critical for promoting an E-

BCSC phenotype during metabolic/oxidative stress and suppression of NRF2 or HIF1α 
impedes the maintenance and clonal expansion of E-BCSCs [18]. As shown in Figure 3, 

three different mechanisms by which metabolic/oxidant stress induces an enhanced E-BCSC 

phenotype are identified: 1) conversion of M- to E-BCSCs, which is mediated by AMPK-

dependent HIF1α stabilization, 2) activation of HIF1α-NOTCH self-renewal pathway, 3) 

activation of NRF2-mediated ALDH1A1/3 expression, which is independent of HIF1α.

Although our studies identify ROS-AMPK-HIF1α and NRF2 pathways in regulation of 

BCSC state dynamics, additional studies are necessary to determine how activation of 

AMPK regulates HIF1α stability during metabolic/oxidative stress. Interestingly, previous 

studies showed that NRF2 knockdown reduces HIF1α protein levels and, consequently, the 

expression of VEGF, PDGF, and angiopoietin in glioblastoma [161], suggesting that NRF2 
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mediates HIF1α stabilization induced by hypoxic stress. Therefore, it is likely that that 

enhanced NRF2 expression not only promotes the self-renewal/proliferation of E-BCSCs, 

but also mediates AMPK-dependent HIF1α stabilization required for facilitating M to E 

state transition of BCSCs under metabolic/oxidative stress. If so, NRF2 would serve as an 

important hub in facilitating BCSC M to E state transition as well as maintenance and 

proliferation of E-BCSCs under metabolic/oxidant stress (Figure 3). In addition, as the 

tumor microenvironment including nutrient/oxygen availability and tumor stroma constantly 

impacts tumor behavior, future studies to assess how these environmental factors affect 

BCSC metabolism and phenotypic plasticity in vivo will be critical.

One plausible mechanism of NRF2 and HIF1α mediating treatment resistance is through 

metabolic reprograming, which confers metabolic advantages in CSCs, especially E-like 

CSCs that express elevated levels of NRF2 and HIF1α. This idea is supported by our recent 

gene profiling analyses of E- and M-BCSCs isolated from two patient derived xenograft 

(PDX) models of TNBC, which identified differential expression patterns of glycolysis and 

PPP pathway genes in M- and E-BCSCs[18]. Specifically, a wide variety of glycolytic 

enzymes ranging from HK1 to LDHD were highly elevated in M- but less robustly in E-

BCSCs. In contrast, various PPP enzyme genes, including G6PD, were highly upregulated in 

E- but less robustly in M-BCSCs [18]. This robust elevation of PPP genes in E- but not M-

BCSCs suggests that elevated expression of NRF2 and/or HIF1α in E-BCSCs redirects 

glycolytic intermediates to PPP pathway, promoting NADPH production and nucleotide 

biosynthesis to support the propagation of E-BCSCs.

6. Concluding remarks

Recent findings that E- and M-like CSCs significantly differ in their redox states, metabolic 

pathways and sensitivities to metabolic/oxidant stress have identified a novel framework 

exploiting metabolic vulnerabilities of distinct CSC states [18]. As increased oxidant stress, 

through activation of HIF1α and NRF2 signaling, promotes the transition of quiescent M-

CSCs to an E-like state that is more susceptible to the inhibition of redox metabolism 

especially NRF2-mediated antioxidant pathways [18], future pro-oxidant-based therapeutic 

strategies utilizing conventional cancer therapies (i.e., standard chemotherapeutic/

antiangiogenic agents, radiation therapy) together with agents targeting NRF2-mediated 

antioxidant responses may prove to be efficient in overcoming resistance associated with 

traditional cancer therapies by targeting both M- and E-like CSCs.

In addition to traditional cancer therapies that are associated with toxicity to normal cells, 

pharmacological ascorbate (high doses of Vitamin C given via intravenous injection) has re-

emerged as a non-toxic and easily implementable pro-oxidant which has the potential to 

increase treatment efficacy when combined with standard-of-care radio-chemotherapy [162–

164]. Recent studies have demonstrated that oxidant-mediated disruption of iron metabolism 

causes the selective susceptibility of NSCLC and GBM cancer cells to pharmacological 

ascorbate [165], supporting a generalized mechanism for the use of pharmacological 

ascorbate in cancer therapy. As iron-dependent accumulation of lipid hydroperoxides can 

trigger ferroptosis, a regulated cell death nexus linking metabolism, redox biology and 
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diseases [166], future studies are necessary to determine if pharmacological ascorbate 

disrupts NRF2-regulated iron metabolism in CSCs to induce ferroptosis.

Considering the central roles of NRF2 in regulating antioxidant defenses and metabolism, 

future metabolic tracing studies dissecting how activation of NRF2 rewires the metabolism 

of CSCs to promote their phenotypic/metabolic plasticity and proliferation under metabolic/

oxidative stress are also required, which will not only validate NRF2 as a critical target to 

abrogate CSC plasticity and proliferation, but also identify potential new targets downstream 

of NRF2 in driving CSC self-renewal/proliferation and treatment resistance. These 

mechanistic studies may reveal novel therapeutic strategies to target the metabolic 

vulnerabilities of CSCs, thereby improving treatment efficacy.
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Figure 1. Metabolic differences of E- and M-BCSCs versus the bulk tumor cells.
The CD24−CD44+ M-BCSCs and ALDH+E-BCSCs significant differ in many aspects of 

cellular metabolism as compared to the bulk tumor cells identified as ALDH−CD24+CD44−.

Luo and Wicha Page 25

Semin Radiat Oncol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. A pro-oxidant based therapeutic approach with potential to increase treatment 
responses for traditional cancer therapies.
Combination strategies utilizing traditional cancer therapies (i.e., standard radio-

chemotherapies or anti-angiogenic therapies) in combination with inhibitors of NRF2-

mediated antioxidant responses (i.e., NRF2 inhibitor Trig or inhibitors of TXN/GSH 

antioxidant pathways including AUR/BSO) enhance treatment responses by simultaneously 

targeting CSCs of distinct states.
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Figure 3. NRF2 acts as a central hub to facilitate the transition of BCSCs from the M to E state 
as well as the maintenance/proliferation of E-BCSCs under metabolic/oxidant stress.
The activation of NRF2 during metabolic/oxidant stress promotes CSC plasticity by 

mediating AMPK-dependent HIF1α stabilization, which is required for the conversion of 

M- to E-BCSCs. NRF2 activation also mediates the activation of HIF1α-NOTCH self-

renewal pathway and the expression of NRF2 target genes ALDH1A1/3 to facilitate the 

propagation of E-BCSCs.
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