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ABSTRACT Expression QTL (eQTL) detection has emerged as an important tool for unraveling the relationship between genetic risk
factors and disease or clinical phenotypes. Most studies are predicated on the assumption that only a single causal variant explains the
association signal in each interval. This greatly simplifies the statistical modeling, but is liable to biases in scenarios where multiple local
causal-variants are responsible. Here, our primary goal was to address the prevalence of secondary cis-eQTL signals regulating
peripheral blood gene expression locally, utilizing two large human cohort studies, each .2500 samples with accompanying whole
genome genotypes. The CAGE (Consortium for the Architecture of Gene Expression) dataset is a compendium of Illumina microarray
studies, and the Framingham Heart Study is a two-generation Affymetrix dataset. We also describe Bayesian colocalization analysis of
the extent of sharing of cis-eQTL detected in both studies as well as with the BIOS RNAseq dataset. Stepwise conditional modeling
demonstrates that multiple eQTL signals are present for �40% of over 3500 eGenes in both microarray datasets, and that the number
of loci with additional signals reduces by approximately two-thirds with each conditioning step. Although ,20% of the peak signals
across platforms fine map to the same credible interval, the colocalization analysis finds that as many as 50–60% of the primary eQTL
are actually shared. Subsequently, colocalization of eQTL signals with GWAS hits detected 1349 genes whose expression in peripheral
blood is associated with 591 human phenotype traits or diseases, including enrichment for genes with regulatory functions. At least
10%, and possibly as many as 40%, of eQTL-trait colocalized signals are due to nonprimary cis-eQTL peaks, but just one-quarter of
these colocalization signals replicated across the gene expression datasets. Our results are provided as a web-based resource for
visualization of multi-site regulation of gene expression and its association with human complex traits and disease states.
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SINCE the first genome-wide association study (GWAS)
results were published in 2005 (Klein et al. 2005), thou-

sands of genetic regions in human chromosomes have been
found to be associated with human phenotypes, including

disease states (Visscher et al. 2017). Since it is now assumed
that the majority of single nucleotide polymorphism (SNP)-
trait associations identified by GWAS can be attributed to
effects on gene expression, precise estimation of the location
and effect sizes of regulatory polymorphisms has become
important for understanding the relationship between
genetic and phenotypic variation (Maurano et al. 2012;
Farh et al. 2015). The minimal expectation is that expression
quantitative trait loci (eQTL) analysis can identify the gene
within a locus that accounts for a GWAS signal, although it
has become clear that even this goal is far from trivial (Chung
et al. 2014; Pickrell 2014). Many investigators make the
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stronger assumption that colocalization of regulatory vari-
ants (eSNPs) and GWAS signals to a tight linkage disequilib-
rium interval implies the ability to define, if not the causal
variant, then at least a credible set of SNPs that include the
causal site (Trynka et al. 2013; Gaulton et al. 2015; Kichaev
and Pasaniuc 2015; Liu et al. 2015).

However, high resolution fine mapping of eQTL results
aligned with GWAS studies for diverse phenotypes has, as
yet, provided only dozens of instances with unambiguous
evidence that a specific variant affects a human complex trait
or disease through its effect on gene expression. Several recent
studies have begun to question the presumed identity of eQTL
andGWAShits:eventhoughthere isahighlysignificantoverlap
at the level of the locus, it is not so clear that theprecise variants
are the same. For example, Farh et al. (2015) estimated that
only�10% of the GWAShits take function as eQTL despite the
vast majority of those hits mapping to noncoding DNA. Simi-
larly, two recent studies of autoimmune disease have also ar-
gued that only around one-quarter of examined GWAS loci
may act as eQTL in the profiled immune cells (Chun et al.
2017; Huang et al. 2017). Furthermore, work based on GTEx
gene expression profiling aiming to integrate GWAS and eQTL
results found that only a minority of GWAS loci match pre-
cisely to eQTL, while the diversity of regulatory effects across
tissues can complicate interpretation (Hormozdiari et al. 2016;
Gamazon et al. 2018). These results raise the question of
why there are so many instances of discordant fine localiza-
tion: are we simply limited by the low statistical power to
detect association signals (Udler et al. 2010), is there mis-
estimation of signal strength and location in the case of
multiple eQTL per transcript (Zeng et al. 2017), or are reg-
ulatory effects so cell-type and context-specific that true
colocalization is often missed? In this study, we will focus
on the first two issues by addressing the concordance of
signals in two large eQTL datasets where the expectation
was that, despite technical differences between the plat-
forms, shared cis-eQTL signals at the gene level would map
to the same credible intervals.

The detection of eQTL is dependent on the accuracy of
the technologies designed to estimate transcript abundance
(gene expression) and to genotype or impute genetic variants.
Genotype calling, whether based on gene chip platforms or
whole-genome sequencing, is thought to be highly accurate
and robust (1000 Genomes Project Consortium 2015), and
methods for imputation of missing genotypes are now gen-
erally accepted to be valid for minor allele frequencies of 0.01
or higher. Constraints on gene expression measurement are
more problematic, being subject both to the properties of the
detection method and of the algorithms use to statistically
analyze the data. Microarrays, principally Illumina- and
Affymetrix-based for human studies, have been used widely
tomeasure gene expression, and have supported the develop-
mentof eQTLanalyses.By far the largestpublished study is the
12,000 sample Blood eQTL compendium(Westra et al.2013),
now approaching 30,000. However, the nature of microarray
probes provides incomplete coverage of the exons within

genes, and there are analytical limitations due to the dynamic
range of quantitative detection of expression, with the result
that estimates of transcript abundance are strongly platform-
specific. eQTL artifacts are also known to arise due to linkage
disequilibrium between regulatory variants and SNPs located
within transcript probes. Nevertheless, well-powered studies
have detected primary eQTL for over half of all expressed
genes in blood, providing ample opportunity to compare
the fine-mapping of these signals (Lloyd-Jones et al. 2017).

A small number of studies have argued for high replicability
of eQTL detected on the same platform. The Genotype-Tissue
Expression (GTEx) project discovered eQTLs from postmor-
tem analysis of over 40 tissues, finding extensive sharing of
promoter-proximal signals for around half the loci (Ardlie
et al. 2015). Zhernakova et al. (2017) found that 84% of
previous cis-eQTL genes detected on an Illumina platform
replicated in an RNAseq data set, the vast majority showing
the same direction of allelic effect. Multiple Illumina-based
peripheral blood studies carried out on different cohorts by
different groups have also reported in excess of 70% shared
signals for eQTL detected at 5% false discovery rates (FDRs;
Zeller et al. 2010; Lloyd-Jones et al. 2017). However, differ-
ences between platforms seem to be much larger than
expected; for example, only between one-quarter and one-
third of eQTL association signals in the MRCE Illumina-based
study replicated in a companion MRCE Affymetrix study
(Liang et al. 2013). The differences may in part be due to
the differential effects of alternative splicing on transcript
abundance detected with probes that cover one or a few
exons (Illumina) or more of the extent of each gene (Affyme-
trix), or to the effects of the normalization and other statisti-
cal procedures that are used to associate genotypes with
transcript abundance estimates. It is also important to recog-
nize that what is described as a shared signal where a geno-
type associates with gene expression in two studies may often
simply reflect linkage disequilibrium between two indepen-
dent signals.

Consequently, methods have been developed to evaluate
and fine-map colocalization signals, whether across gene
expression platforms, or between eQTL and GWAS signals.
Most of the current methods seek to distinguish true colocal-
ization from “shared” signal due to linkage disequilibrium
(LD). COLOC was one of the first Bayesian methods which
evaluates the relative statistical support of each eQTL-GWAS
colocalization hypothesis contingent on LD (Giambartolomei
et al. 2014). However, COLOC assumes the default model
that a single-causal eQTL exists, which implies a strong prior
that variants taking function as eQTL (or associated with a
trait), also affect the trait (or expression), potentially leading
to false positive colocalization. SMR, or Summary Mendelian
Randomization, jointly evaluates the strength of eQTL and
GWAS signals using a procedure known as HEIDI to filter
heterogeneity of GWAS and eQTL signals in the presence of
LD (Zhu et al. 2016). SMR is strongly dependent on the ac-
curacy of LD inference from a reference panel, and the HEIDI
test has been reported to be conservative. Another Bayesian
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method, eCAVIAR, calculates a posterior probability of eQTL-
GWAS colocalization while allowing for multiple signals in
the interval (Hormozdiari et al. 2016). The dependencies of
all these methods on sample size have not been well charac-
terized, and we found only �50% agreement between them
in evaluation of causal variants in a Crohn’s disease study
(Marigorta et al. 2017). Furthermore, lack of control for pop-
ulation structure or relatedness requires further modification
when applied to data sets with large sample size.

In this study, we collected cis-eQTL results from three
large data sets following a strategy summarized in Supple-
mental Material, Figure S1, and developed a statistical pipe-
line to achieve the following goals: (a) to evaluate the
prevalence of multiple cis-eQTL regulation in human pe-
ripheral blood; (b) to estimate the extent of eQTL signal
sharing across three expression platforms; and (c) to detect
colocalization of eQTL signals with GWAS hits contingent
on the LD at each locus, revealing the possible biological
regulatory mechanisms linking genetic variants to complex
human phenotypes.

Materials and Methods

Datasets

We analyzed three different peripheral blood eQTL data
sets. The Consortium for the Architecture of Gene Expression
(CAGE) dataset (Lloyd-Jones et al. 2017) consists of Illumina
HT12 v3microarray-based gene expression profiles, as well as
whole genome genotype information, from five research stud-
ies: the Brisbane Systems Genetics Study (BSGS, N = 926)
(Powell et al. 2012), Atlanta-based Centre for Health Dis-
covery and Well-Being (CHDWB, N = 439) (Wingo and
Gibson 2015) and Emory Cardiology Genebank (N = 147,
Kim et al. 2014), Estonian Genome Centre—University of
Tartu (EGCUT) study (N = 1065, Schramm et al. 2014),
and the Morocco Lifestyle study (N = 188, Idaghdour
et al. 2010), for a total of 2765 individuals. Institutional re-
view board (IRB) approval was obtained for the combination
of data into amega-analysis both by the University of Queens-
land and for each participating site.

The second dataset from the Framingham Heart Study
(FHS) (Huan et al. 2015) contains two-generation data gen-
erated on the Affymetrix Human Exon Array ST 1.0 for gene
expression, and the Affymetrix 500Kmapping array and Affy-
metrix 50K gene-focused MIP array for genotyping. A total of
5075 participants with both genotype and gene expression
information from the offspring (N = 2119, eighth exami-
nation) and third-generation (N = 2956, second examina-
tion) cohorts were included in this study. Raw genotype
and gene expression data were downloaded from dbGAP
(phs000007.v25.p9) with IRB approval.

The BIOS RNAseq summary data were derived from a
meta-analysis of results for a total of 2100 participants
from four cohorts (Zhernakova et al. 2017): the Cohort
on Diabetes and Atherosclerosis Maastricht (CODAM, 184

individuals included); LifeLines-DEEP (LLD, 626 individu-
als); the Leiden Longevity Study (LLS, 654 individuals); and
the Rotterdam Study (RS, 652 individuals). We downloaded
only the summary results of cis-eQTL signals from https://
genenetwork.nl/biosqtlbrowser/, so were unable to perform
the sequential stepwise regression analyses to detect second-
ary signals.

Genotype imputation

Genotype imputation for the CAGE cohort was performed
jointly for the five contributing studies to ensure uniformity of
assignment of strand identities of SNPs, and is described in
detail in Lloyd-Jones et al. (2017) and at https://github.com/
CNSGenomics/impute-pipe. Briefly, the pipeline involved
preimputation quality control, and data-consistency checks,
imputation to the 1000G reference panel with Impute2
(Howie et al. 2012), postimputation quality control (filtering
on various data features), and merging of the datasets on
common SNPs.

For the FraminghamHeart Studydata, therewere a total of
6950 individuals before imputation, from which 29 individu-
als with genotype missing rate $5% were removed. Subse-
quently, any SNPs with genotype missing rate$5%were also
removed along with SNPs with Hardy-Weinberg test P #

1026. Prior to imputation, the genotypes were prephased
using Shapeit2 (Delaneau et al. 2013) using the “duohmm”

parameter to account for pedigree information. Each chro-
mosome was divided into 5 Mb chunks, incorporating the
centromere-adjacent region (acen region) into the neighbor-
ing chunk, and similarly joining any chunk with ,200 SNPs
into a neighboring chunk. Imputation was performed with
Impute2 (Howie et al. 2012), using qctool to convert gprobs
to gen file format, and only SNPs with info value .0.3 were
retained for subsequent analyses. The gen file was converted
to plink file format, and SNPs with multiple alleles as well as
InDel variants were filtered out. The remaining variants were
further reduced to �6 million SNPs with a .95% call rate
across all 5075 individuals represented by both genotype and
gene expression data.

To be sure that imputation accuracy did not bias our results,
weaskedwhether there is any relationship between imputation
info score and peak eQTL signal detection. In CAGE, 72% of
peak signals had info score .0.9, compared with 66% of all
remaining SNPs—a slight but nonsignificant excess. Simi-
larly, in FHS there was no relationship between info score
and peak detection or number of peak. However, it should
be recognized that missing variants not called by the impu-
tation algorithm could account for �10% of all eQTL peaks
(Zeng et al. 2017).

Probe reannotation

Since SNP imputation for the CAGE cohort was based on
hg19/GRCH37, whereas the Illumina probe annotation was
based on hg18/GRCH36, we reannotated the probe informa-
tion by mapping the probe sequences to hg19/GRCH37 with
BWA (Li and Durbin 2009), retaining only the uniquely
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mapped probes. All probe sequences were secondarily
mapped to the reference genome with BLAT (Kent 2002),
and only probe sequences uniquely mapped with both meth-
ods were determined to be high confidence and subsequently
used for eQTL detection. Of a total of 45,931 probes mapped
to the reference genome, 7349 probe sequences mapped to
multiple regions or remained unmapped, leaving 38,582
probes taken forward for the eQTL analyses. See Table S1
for summary statistics. Since it is well known (Walter et al.
2007) that SNPs in a probe influence microarray hybridiza-
tion, we also discarded 3856 Illumina probes containing
SNPs with minor allele frequencies (maf) .1% in the
1000 Genomes European sample (Lappalainen et al. 2013).
Similarly, SNPs in the Affymetrix probesets were also con-
verted to positions in the hg19 assembly by applying liftOver
(UCSC Genome Browser) to the GPL5188 annotation file
downloaded from dbGAP, and annotated to the 1000 Ge-
nomes dataset. Any SNPwith amaf.1% in the 1000Genome
European population, and located within a probeset, was
deemed to be potentially unreliable, and was included as a
covariate during the eQTL estimation steps. Among the
280,000 core probesets, 35,000 (12.5%) have such SNPs,
and 15,368 transcripts contain at least one SNP in a probe.

Gene expression normalization

The gene expression normalization strategy for CAGE re-
quired aggressive procedures to account for study-specific
biases, as described in detail in Lloyd-Jones et al. (2017). It
consisted of five steps: (1) Variance stabilization using the
vsn package (Lin et al. 2008); (2) Quantile normalization
forcing the intensity distribution across all probes to have
the same shape for all samples; (3) Batch effect correction
via linear regression to account for known technical effects,
such as RNA extraction date, and physical batch; (4) Batch
effect correction [via principal component (PC) analysis, re-
moving the first 10 PC to account for unknown confounding
procedural, or population-based influences]; and (5) Rank
normal transformation, namely a final transformation of
each probe to a normal distribution with mean 0 and
variance 1.

For the FHS data, raw gene expression processed by Affy-
metrix APT software (version 1.12.0) was downloaded from
dbGAP, log2 transformed, and surrogate variable analysis
(SVA) (Leek et al. 2012) was used to remove confounding
factors, fitting a total of 62 surrogate variables by a linear
regression model. Note that the published FHS gene expres-
sion study (Huan et al. 2015) reported results of a different
normalization that included fitting blood cell counts, which
we chose to avoid since a similar procedure was not applied
to the CAGE data, and because the blood counts were abro-
gated by the SVA fitting.

Multi-site eQTL detection

For this study, local SNPs were stringently defined as SNPs
located within 200 kb upstream or downstream of the gene
(defined as the first TSS and last TES listed in the hg19

annotation) containing the probe. Sequential conditional
analyses were performed for each probe, and the genes with
significant eSNPs were called eGenes. Since both the CAGE
and FHS cohorts contain family-based data [the former for a
quarter of the samples, from the BSGS twin study (Powell
et al. 2012); the latter for all participants], a mixed linear
model was used for eQTL detection in GEMMA (Zhou and
Stephens 2012), which fits a genetic relatedness matrix
(GRM) as a covariate alongside fixed genotype effects. The
multiTrans tool (Joo et al. 2016), which accounts for family
structure, was used to specify a study-wise FDR of 5% for
genes with multiple independent eSNPs, which was empiri-
cally observed to be approximately P, 1025. After first scan-
ning for evidence of at least one local eSNP at this threshold,
the residuals after fitting the sentinel SNP were used in a
sequential conditional scan for an independent secondary
eSNP. This process was iterated until no more signals were
observed below P = 1025. SNPs in high LD with each pre-
viously detected signal (r2 $ 0.9) were also filtered out of
each sequential analyses. The effect sizes of each discovered
SNP were recorded as the sequential conditional estimates.
Subsequently, for the multi-site effect size estimates, all dis-
covered independent peak SNPs were fit with the GRM in one
mixed model. However, since the GEMMA software does not
report the effect sizes of all fixed effects simultaneously, we fit
the multi-site models with one SNP specified as the target
effect, including the other significant SNPs as fixed effects, as
well as the GRM, as covariates. This estimation procedure
was repeated for each included SNP, controlling for related-
ness, recording the effect size of the target SNP as the multi-
site effect. Note that the total amount of variance explained is
the same for all such models fit for each gene. To control the
influence of SNPs located in probes in the FHS data, we in-
corporated in-probe SNPs with an LD r2 cutoff 0.75 as cova-
riates during the multi-site modeling step. This cutoff was
chosen as a compromise between losing too many sites and
controlling for LD between the eSNP and SNP-in-probe.

Fine-mapping with polyQTL

Fine-mapping to localize causal variants influencing gene
expression was performed using PolyQTL (Zeng and Gibson
2018), a modification of DAP (Wen et al. 2016) which we
developed to account for population structure and ancestry
during Bayesian localization in the presence of multiple
linked cis-acting variants. We incorporated an option for first
performing sequential stepwise regression, using the mixed
linear regression component of GEMMA (Zhou and Stephens
2012) as above to identify independent QTL regions for each
transcript. PolyQTL also offers the option to estimate poste-
rior probabilities for all eQTL at a locus simultaneously, but
this was not performed here owing to the computational
burden.

For each independent eQTL, we subsequently evaluated
the importance of each variant in the LD region, defined as
SNPs with r2 $ 0.3 with the peak variant. PolyQTL assumes
that there is a single causal variant associated with each

908 B. Zeng et al.



independent QTL, and evaluates the posterior probability,
given the LD structure at the locus, that each variant in the
interval is causal, such that the sum of the posterior proba-
bilities for each independent QTL is between 0 and 1. Genes
were modeled as being under partial control of local geno-
types as well as the polygenetic background, expressed as y=
Xibi + G +e, where y is a vector of transcript abundance
phenotypes, G represents the influence of the polygenic back-
ground, Xi and bi are the genotype and effect of the explored
variant, and e is a random environmental factor also normally
distributed N(0, V2

e). PolyQTL uses REML to estimate genetic
and environmental variances, V2

g and V2
e given the estimated

GRM, K (Yang et al. 2010). To remove the influence of pop-
ulation structure, we transform the phenotype (y) and geno-
type (Xi) with the square root of the covariance of the

phenotype,
�cV2

gK þ cV2
eI
�21=2

, where I is the identity matrix,
as this results in independent multivariate normal distribu-
tions. We then compute a posterior inclusion probability
(PIP) for each variant, leading to a ranking of candidate
causal variants (Zeng and Gibson 2018).

eQTL sharing across expression platforms

Despite the expectation that expression platform influences
eQTL detection, we reasoned that cis-eQTL results can com-
plement one another leading to enhanced detection of shared
signals by overcoming false negative results from single stud-
ies. To this end, we performed joint analysis of the cis-eQTL
signals obtained on all three platforms, namely Illumina, Affy-
metrix, and RNAseq. We devised a new method based on the
eCAVIAR strategy (Hormozdiari et al. 2016), named
DPolyQTL, which explores the signal sharing for two pheno-
types (either molecular traits or phenotype traits) even where
the collected samples are family-based or from diverse ethnic-
ities. DPolyQTL calculates a posterior probability that the
causal variants are shared for two phenotype traits, such as
expression of a gene measured on two platforms, by multiply-
ing the two posterior probabilities together to generate a coloc-
alization posterior probability (CLPP: Hormozdiari et al.
2016). We validated the performance of DPolyQTL by per-
forming 200 simulations assuming pairs of normally distrib-
uted gene expression traits in the absence of relatedness, but
with mild population structure (Fst = 0.1), where an eQTL
explains 4% of the variance in one study and from 2 to 10% of
the variance in the second one. Table S2 shows the proportion
of CLPP values at thresholds from 0.001 to 1 for N = 1000 or
N = 1600 samples in each study. Power increases with effect
size and sample size as expected, and is over 98% for CLPP
0.001,�80% for CLPP 0.01, dropping to between 25 and 35%
for CLPP 0.5 and ,8% variance explained for N = 1000.

Since interpretationof thecalculatedposteriorprobabilityas
a measure of sharing of causal variants is confounded by the
complex LD structure in the human genome, we conducted
permutations to obtain the null distribution of the CLPP given
that a trueeQTL isdetected in oneof thedatasets, thediscovery
dataset, and is replicated in the other one, the replication

dataset. To do so, the phenotype was permuted in the replica-
tion dataset, and the posterior probabilitywas recalculated.On
this basis, the colocalization signalwas determined to be true if
the CLPP$ 0.001 and permutation P-value# 0.05, similar to
Hormozdiari et al. (2016).

eQTL and GWAS colocalization analysis

Acurated summaryofGWAS results for 1263phenotype traits
or disease was generated by eQTLgen Consortium members
(UV,ACandLF)with citations listed inTable S3. For each trait
or disease, we defined candidate independent candidate
regions as all variants within 100 kb of a peak association
signal atP # 5 3 1028, thoughwe recognize that aminority
of associations may be driven by more distant variants. To
reduce the computational burden, we also excluded all var-
iants in the interval with P $ 0.05.

Colocalization of the eQTL and GWAS signals was then
assessed for all genes located within 1 Mb of the peak GWAS
signal. Similar to the analysis of eQTL sharing between ex-
pression platforms, we used DPolyQTL on the GWAS and
eQTL summary statistics to identify likely regulatory influ-
ences of gene expression on complex phenotypes or disease.

Data availability

Gene expression data for the CAGE studies is available from
GEO under study accession numbers GSE61672 (CHDWB),
GSE49925 (CAD), GSE17065 (Morocco), GSE53195 (BSGS),
and GSE48348 (EGCUT), while the FHS data can be
accessed from the dbGaP as phs000007.v25.p9. We have
made all eQTL data publically available through two shiny
apps, http://cnsgenomics.com/shiny/CAGE/, and for the
conditional analysis of both CAGE and FHS at http://
bloodqtlshiny.biosci.gatech.edu or in Excel format at https://
ggibsongt.wixsite.com/gibsongatech/supplementary-data.
Supplemental material available at Figshare: https://doi.org/
10.25386/genetics.7175219.

Results

Multiple eQTL regulation is ubiquitous in human blood

Our first objective was to estimate the proportion of transcripts
that are regulated by multiple independent eQTL in the two
large cohort studies, CAGE and FHS. Since both datasets
include siblings, we used GEMMA (Zhou and Stephens
2012) to perform sequential conditional eQTL analysis
deploying a genetic relationship matrix based on all mea-
sured and imputed genotypes to model family structure
and population structure. Applying sequential conditional
analysis to CAGE, we detected 5974 eGenes (37.8% of
15,812 tested genes) with at least one significant eSNP at
P , 1025, corresponding to a FDRof�5%. Of these eGenes,
2187 (36.6%) contain probes influenced by more than one
eSNP, and, hence, appear to be regulated by multiple regu-
latory elements. (Note that, in the case of genes withmultiple
probes on the Illumina platform, we only required that at
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least one probe was associated with an eQTL, and for multi-
SNP regulation included only the probe with the largest num-
ber of significant independent eSNPs). Similarly, in the FHS
data, we detected 5597 (35.3% of 15,853 tested genes),
2114 (37.8%) of which were regulated by multiple eQTLs.
In CAGE, the average variance explained by detected eSNPs
was 6.1%, the same as in FHS, 6.1%, and in both cases these
estimates account for more than half of the previously esti-
mated heritability attributed to the cis region (Lloyd-Jones
et al. 2017). For those genes withmultiple eQTL regulation in
CAGE, which have a mean explained variance of 7.2%, the
newly detected secondary eSNPs typically explained 20%
more variance than the peak SNP alone, namely �1.2% of
the phenotypic variance (6.0% vs. 7.2%), also in line with
estimates from Lloyd-Jones et al. (2017) and Powell et al.
(2013). For eGenes with multiple eQTLs in FHS, the mean
explained variance is 6.3%, and the secondary signals in-
crease the explained variance from 6.5 to 8.3%, an increase
of �28%.

Figure 1 shows frequency histograms for the number of
detected eQTL per gene after each sequential step in both
studies: the number of loci with additional independent sites
reduces by approximately two-thirds with each additional
SNP in both CAGE and FHS, up to half a dozen variants,
and a few loci have 10 sites. This reduction likely reflects
the true prevalence of multi-site effects as well as reduced
power to detect SNPs that explain less of the variance than
the primary signal. A detailed example of multi-site associa-
tion is shown for the HBZ locus in CAGE (Figure S2), where
from left to right, and top to bottom are the results of step-
wise conditional analysis yielding nine independent eQTL

signals. The total explained variance is 39.8%, one-third more
than that explained by the highest single peak (28.4%). An
example from the FHS is ABHD2, where we detect five inde-
pendent eQTLs explaining 9.3% of the variance, compared
with 5.6% for the peak eSNP (note that the Affymetrix probe-
set contains a common variant, rs2283435, that is in linkage
equilibriumwith each of the five regulatory signals). All of our
multiple eQTL results can be downloaded both in tabulated
format and as locuszoom plots from our BloodQTL Shiny app
at http://bloodqtlshiny.biosci.gatech.edu

We also computed the difference between the estimates
fitting all discovered variants jointly and by summation of the
conditional single-site estimates following eSNP sequential
conditional discovery. The average change in estimated
beta was just 0.04 6 0.06 sdu, but with a long tail of large
deviations.

Directional consistency of effects was evaluated by esti-
mating the correlation between effect size estimates between
the two platforms. Figure 1B shows that the primary eQTL
discovered in CAGE replicate the sign of effect in 90% of cases
with overall correlation of effect sizes 0.69 in FHS; and con-
versely those discovered in FHS have 92% replication of the
sign, and overall correlation 0.65. These rates are similar to
those observed across dozens of studies reported by the Blood
eQTL Consortium (Võsa et al. 2019).

To directly compare signal replication from cohorts based
on the same platform, we independently conducted eQTL
detection for probes on chromosome 1 in the CHDWB and
EGCUT cohorts in the CAGE study. Controlling FDR # 0.01,
we detected 665 significant e-signals (SNP to probe) in
EGCUT, and 364 in CHDWB, among which 315 primary

Figure 1 Discovery of eQTL in CAGE and FHS. (A) Counts of independent cis-eQTL detected in the CAGE and FHS cohorts. Red (CAGE) and blue (FHS)
bars indicate the number of primary, secondary, tertiary, etc., eQTL detected conditional on the prior peaks at P , 1025 in each sequential step. (B)
Directional consistency of primary eQTL effects is indicated by plotting the magnitude and sign of eQTL effects (bs) in the validation study (y-axis) against
discovery dataset (x-axis) for CAGE (left) or FHS (right).
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eQTL were in common (86.5% of the CHDWB eQTL), while
74.6% of the peak eSNPs were located in the same credible
interval (genotype r2 $ 0.8). This high degree of concor-
dance supports our mega-analysis strategy of combining cis-
eQTL results from the different study cohorts, and provides a
baseline for comparisons across platforms.

Limited overlap of cis-eQTL credible intervals between
CAGE and FHS

Despite the similar overall rates of eQTL detection, direct
comparison of the results from the CAGE and FHS analyses
suggested a disappointingly low level of replication. Primary
peaks in CAGE were detected for 53.0% of the eGenes rep-
resented in theFHS,and reciprocally56.5%of theFHSeGenes
had primary signals in CAGE, very similar to the proportions
reported for eSNPs at P , 1028 across four peripheral blood
studies (Zeller et al. 2010) that also had a variety of technical
differences. However, the overall overlap between CAGE and
FHS for eSNPs within credible intervals defined by LD
r2 . 0.8 was just 29.1%. Furthermore, only 41.5% of the
primary signals in FHS are in LD (r2 . 0.8) with the primary
eSNP in CAGE, suggesting that different largest-effect

regulatory variants are tagged in the two datasets. This overall
eSNP replication rate was slightly higher (47.2%) when map-
ping to 1314 probesets that map directly to the same exon and
have an eQTL signal on both platforms. Figure 2 and Figure 3
illustrate examples of loci each with two independent cis-eQTL
signals associatedwith the same credible intervals. Whereas at
ORMDL3 the relativemagnitudes of the effects are the same, at
JAZF1, the primary and secondary effects are rank-changed.

The replication rate of secondary, tertiary, and quaternary
signals in FHS irrespective of LD was just 19.0, 11.3, and
11.0%, indicating successive decay, likely due to reduced
power for weaker signals. The reasons for the discrepancies
between studiesmay have to dowith collapsing of probe-level
data down to gene-level signals losing information on splice
isoforms, the different normalization strategies [which alone
can double discovery rates (Qin et al. 2012)], and cross-study
biological heterogeneity. Comparison of the percent variance
explained by discovered SNPs on the two platforms in Figure
S3 shows that effect sizes for many genes are disproportion-
ately tagged by eQTL in the two studies, implying platform
effects. Among 139 genes with .20% of the variance
explained by cis-eSNPs, the replication rates are 64.7% for

Figure 2 Example of shared cis-eQTL signals, at the ORMDL3 locus in CAGE (A) and FHS (B). In both studies, two independent cis-eQTL were detected.
rs12936231 and rs8067378 are the respective peak eSNPs for a credible interval of �50 SNPs, and are in complete LD (r2 = 1), whereas the peak
conditional secondary association is at rs17608925 in both studies.
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the primary signal, 34.8% for the secondary, 14.4% for the
tertiary, and 8.5% for the quaternary. The subsequent panels
in Figure S3 confirm that all of these replication rates are pro-
portional to the percent variance explained overall, confirming
that statistical power is a major source of low replication.

For the HT12 v3 Illumina probes, 10% of the uniquely
mapping probes contain at least one SNP with MAF .1% in
1000 Genome European population samples. The prevalence
of eQTL was twice as great for these probes (59% vs. 30% of
23,681 “clean” probes), so we just removed the Illumina
probes containing SNPs in order to control the FDR. However,
since most of the Affymetrix probesets contain at least one
SNP, this was not practical for the FHS dataset, and instead
we employed a conditional analysis strategy incorporating
SNPs in probes as covariates. For �15,000 detected eSNPs,
one-third of the association signals were abrogated by condi-
tioning on the SNPs in probes, and the number of eGenes
correspondingly reduced by 25%. Table 1 contrasts the eQTL
results from both platforms before and after controlling for
the SNP-in-probe effects. The first three data columns show
the cumulative number of eGenes with at least 1, 2, 3, 4, or
more detected eSNPs before SNP-in-probe removal, and the

next three show the cumulative numbers after. The propor-
tion of overlapping signals is not greatly affected. The last
column shows that the number of eGenes where at least one
detected signal is likely capturing the same variant is �44%
(689/1562), and that the number where all of the multiply
detected signals are within r2 . 0.8 is very small. There are
214 genes with at least two signals in high LD with one
another.

DPolyQTL increases the proportion of cis-eQTL sharing
across different expression platforms

Next, we used DPolyQTL to enhance the power to detect
shared cis-eQTL credible intervals in the CAGE, FHS, and
BIOS datasets. We extracted variants located in high LD with
the reported peak variants in each eQTL locus for each pair of
studies, and computed a posterior probability to evaluate the
likelihood that each variant influences the trait, controlling
for LD at the locus. Since the available BIOS dataset consisted
only of summary results, it was used solely as a discovery
dataset. Where genes in CAGE and FHS contained multiple
probes or probesets, replication is reported where at least one
probe in each dataset contained a signal.

Figure 3 Example of rank-changed cis-eQTL signals, at the JAZF1 locus in CAGE (A) and FHS (B). For CAGE, rs2158799 and rs498475 are the peak
eSNPs in two independent credible intervals, the second of which is captured by rs849333 as the primary peak in the FHS. However, rs563289 is the
secondary peak in FHS and appears to be a novel association, despite lying in the same physical region as the primary peak in CAGE.
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Approximately one-third of all eQTL were detected by all
three of theCAGE, FHS, andBIOSdatasets. Shared signals are
indicated for 62.6% of the detected cis-eQTL of CAGE in FHS,
and for 53.3% of the FHS eGenes in CAGE. For the detected
cis-eQTL in BIOS, we found a similar replication rate, namely
53.6 and 54.7%. However, considering that for some of the
eGenes reported by BIOS, no expression information was
available in CAGE and FHS, the replication rate considering
all genes is 44.7% in CAGE, and 54.5% in FHS. Since
DPolyQTL allows multiple eQTL signals to be explored simul-
taneously, we were able to estimate that whereas 43%–49%
of primary eSNPs showed evidence for replication, the repli-
cation rate was considerably lower, only�10%, for secondary
eSNPs.

Taken together, these results indicate .50% pairwise
cross-platform replication of eGenes, with evidence that the
majority of primary eQTL detected on one platform are also
eQTL on another. However, the primary regulatory variant
maps to a different credible interval in more than a third of
cases, and replication of secondary variants is strongly re-
duced by low statistical power in the presence of multisite
regulation.

Biological annotation of detected multiple eQTLs

Since chromatin marks are often used to enhance fine-map-
ping, on the basis that peak eSNPs are enriched in the vicinity
of ENCODE features such as DNAse hypersensitivity, methyl-
ation, and histone modification, we asked whether there is a
difference in functional attributes of primary and secondary
eQTL. CADD (Kircher et al. 2014) and deltaSVM (Lee et al.
2015) are two commonly used scores that summarize multi-
ple types of functional evidence. For CADD, we created a list
of background SNPs with similar allele frequencies in the
neighboring regions of peak eSNPs, and compared the distri-
butions of the background and peak scores. Although the
distribution of CADD scores was significantly higher for the
reported-peak variants, suggesting elevated likelihood that
they are pathogenic (Figure 4A for CAGE, and Figure 4B for
FHS), the magnitude of the effect is small relative to the
variance in CADD scores.

Correspondingly, the positive predictive value for each SNP is
low and functional discrimination of primary and secondary
signals by this measure is poor (see also Liu et al. 2019).
Potential causal variants defined by fine-mapping also
have only a slightly elevated probability of locating within
regulatory enhancers in the human genome as defined by
the deltaSVM score. Setting any variant with a posterior
probability $0.8 as a causal variant, we found that there is
a weak, but significant, positive correlation between the re-
ported beta value and deltaSVM (P # 1026 in both CAGE
and FHS, Figure 4, C and D respectively). There is no differ-
ence between CAGE and FHS in the location of primary eQTL
peaks relative to the transcription start site (TSS), although
there is a slight increase in the dispersion of secondary rela-
tive to primary peak locations.

In order to evaluate whether eGenes associated with phe-
notypes are enriched for certain molecular functions, we next
combined the full summary statistics of 1263 GWAS results
with the eQTL signals from CAGE, FHS, and BIOS. Statistical
power was maximized by performing colocalization analysis
with DPolyQTL based on cis-eQTL detected on all three plat-
forms. This colocalization analysis resulted in 1349 genes
associated with 591 human complex phenotype traits or dis-
eases, with a colocalization posterior probability (CLPP)
. 0.001 (49. 8% of those explored). Simulations suggest
that this CLPP cutoff captures almost all shared signals but
with a FDR of�10%, whereas at the less permissive cutoff of
0.01, just 80% of signals are captured with FDR ,5%. The
highest single platform discovery rate was for the CAGE data
on the Illumina platform, and the replication rate across plat-
forms ranged from 24 to 30% as shown in Figure 5.

PANTHER pathway analysis (Mi et al. 2017) revealed
over-representation of colocalized genes annotated to pro-
tein kinase activity or to DNA binding activity. Among the
most strongly implicated pathways are insulin/IGF path-
way-mitogen activated protein kinase kinase/MAP kinase
cascade (4.2-fold enrichment, 8.5 3 1024), VEGF signaling
pathway (3.2 fold enrichment, 4.4 3 1024), interleukin sig-
naling pathway (3.1 enrichment, 8.6 3 1025), Ras Pathway
(2.7-fold enrichment, 2.4 3 1023), PDGF signaling path-
way (2.3-fold enrichment, 6.0 3 1024), gonadotropin-
releasing hormone receptor pathway (2.0 fold enrichment,
7.2 3 1024), and inflammation mediated by chemokine
and cytokine signaling pathway (1.92-fold enrichment,
1.1 3 1023). Furthermore, these 1349 detected genes were
enriched for association with several diseases, notably with
327 causing Mendelian diseases (1.4-fold enrichment to
background, P = 8.6 3 1027), providing further evidence
that genes defined by highly penetrant mutations also harbor
quantitative regulatory variants that influence disease.

The colocalization results highlight a number of gene sets
that interact together to influence disease susceptibility. For
example, we found five genes associatedwith coronary artery
disease, PSRC1, IL6R, LIPA, SWAP70, and VAMP8 in the
CAGE dataset (Figure 6A). Four of these genes have previ-
ously been reported to be associated with coronary artery

Table 1 Cross-platform comparison of eSNP detection after
adjustment for probe SNPs

With SNPs-in-probes Without SNPs-in-probes

No. CAGE FHS Both_anya CAGE FHS Both_any Both_highLDb

#1 3987 3881 1402 3787 3483 1182 474
#2 5570 5983 1790 5242 4675 1433 616 (34)
#3 6115 6925 1902 5732 5163 1514 669 (7)
#4 6282 7327 1928 5881 5391 1534 686 (1)
.0 6383 7713 1970 5974 5605 1562 689 (0)
a Number of eGenes detected in both studies with at least the indicated number of
independent associations, irrespective of whether they colocalise to the same fine-
mapped interval.

b Cumulative number of eGenes with at least one eSNP localized within r2 . 0.8 in
both CAGE and FHS, namely eQTL that do fine-map to the same interval. Numbers
in brackets indicates cases with 2, 3, or 4 eSNPs all in high LD between datasets.
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disease. PSRC1 encodes a cysteine protease that has been
associated with HDL and LDL levels (Kathiresan et al.
2008), and its expression in mouse liver is significantly asso-
ciated with plasma LDL cholesterol level (Schadt et al. 2008).
LIPA encodes lipase A, which catalyzes the hydrolysis of cho-
lesteryl esters and triglycerides, and is associated with CAD,
where the lead CAD risk allele also associates with increased
expression of LIPA mRNA in monocytes (Zeller et al. 2010)
and liver [Coronary Artery Disease (C4D) Genetics Consor-
tium 2011] SWAP70 encodes a signaling molecule involved
in the regulation of filamentous-actin networks in cell migra-
tion and adhesion, and an intronic SNP has been reported to
be a cis-eQTL in naïve and challenged monocytes (Nikpay
et al. 2015). Notably, we found colocalization of eQTL at
the IL6R gene with GWAS signals for both rheumatoid arthri-
tis and coronary artery disease, hinting at a mechanistic basis
for genetic correlation between these two conditions. Coloc-
alization signals between the two different expression

platforms complemented one another, since, for FHS gene
expression, 11 genes also associated with CAD (ADAMTS7,
CARF, CDKN2A, GGCX, HECTD4, IL6R, LIPA, PCSK9, PSRC1,
USP39, VAMP8), including four of the CAGE genes (IL6R,
LIPA, VAMP8, and PSRC1). Manual review of the literature
finds that five of the remaining seven have previously been
reported to be associated with CAD.

An example of colocalization linking a gene to multiple
phenotypes is provided by IKZF3 (Figure 6B), which is known
to associate with the autoimmune diseases Crohn’s disease,
ulcerative colitis, and rheumatoid arthritis (Mancuso et al.
2017). These findings are replicated in our data, and en-
hanced further by associations with the additional autoim-
mune diseases, type 1 diabetes, and primary biliary cirrhosis
as well as with asthma. Expression of IKZF3 is also associated
with neutrophil cell and white blood cell counts. Most of
these colocalization signals are replicated in either the FHS
or BIOS data.

Figure 4 Biological annotation of detected cis-eQTL signals. (A and B) Comparison of CADD score distributions for Primary and Secondary eSNPs and
neighboring background SNPs at similar minor allele frequencies in the CAGE (A) and FHS (B) studies. (C and D) Relationship between observed beta and
predicted deltaSVM score for significant peak eSNPs in the respective studies. P-values for comparisons are indicated.
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Gene expression regulated by nonprimary cis-eQTL
mediates phenotype associations

Recent colocalization studies have reported that only a limited
proportion of GWAS variants clearly function as eQTL (Farh
et al. 2015; Chun et al. 2017; Huang et al. 2017). Since those
studies focused on primary cis-eQTL, we asked whether con-
ditional eQTL might increase the rate of discovery of colocal-
ized eQTL-GWAS signals. For each expression-phenotype pair
with at least nominally significant colocalized signals, we first
identified variants where the credible interval maps to the
primary cis-eQTL. If no such variants were found, we then
evaluated joint signals at secondary cis-eQTL, tertiary signals,
and so forth until no cis-eQTL remained to be evaluated.

For the 2138 colocalized signals in CAGE,weobserved that
82.0% of the colocalized signals are with the primary eQTL,
11.0% from secondary signals, and3.9% from tertiary signals.
Similarly, in FHS, of 958 colocalized eQTL-GWAS signals,
69.5%are attributable to primary signals, 15.1% to secondary
signals, and11.9%to tertiary signals. For instance, inFigure3,
the secondary cis-eQTL for JAZF1 in CAGE, which is the
primary cis-eQTL in FHS, locates in high LD with a type 2
diabetes GWAS hit. These colocalization results indicate
a meaningful contribution of nonprimary cis-eQTL to trait
variation.

Discussion

In summary, we find extensive evidence for secondary and
tertiary cis-eQTL associations explaining gene expression
variation in peripheral blood. At least a third of all highly
expressed genes display such effects, consistent with recent
evidence from very large-scale GWAS that at least one-quarter
of all loci harbor multiple associations within a 1-Mb interval.
However, the finemapping of eQTL across platforms is consid-
erably lower than expected, and, accordingly, replication of
colocalization with visible phenotypes and disease risk is also
modest, despite the large sample size of our two cohorts. Since
secondary and tertiary effect sizes are generally smaller than
primary ones, statistical power remains a major detriment to
the joint finemapping of regulatory variants to GWAS credible
intervals.

Nevertheless, resolution of GWAS associations to single
causal variants is amajor current objective of human genetics.
Four general strategies are being deployed: very large GWAS
and eQTL studies, including cross-population analyses,
intended to narrow peaks; sophisticated colocalization ap-
proaches; filtering on functional attributes associated with
SNPs; and high-throughput experimental validation. The first
objective is to define credible intervals that are highly likely to
contain the causal variant or variants within a linkage dis-
equilibrium block. However, several recent studies have re-
ported that as few as one-third of disease associations map to
the same credible interval as the lead eQTL, even in cases such
an autoimmune Crohn’s disease, where the eQTL mapping is
carried out in the, presumably relevant, peripheral blood tis-
sue consisting of immune cells (Chun et al. 2017; Huang et al.
2017).

Two classes of explanation may account for this discrep-
ancy between expectation and observation: biological and
technical. Theobviousbiological explanation is that the causal
variant detected by GWAS for some phenotypic trait does not
directly regulate gene expression. It may, for example, influ-
ence chromatin structure, preparing the locus for induction
under conditions not sampled in the transcriptomic study
(Alasoo et al. 2018), and indeed there is some evidence for
greater overlap of methylation QTL than expression QTLwith
Crohn’s disease associations (Huang et al. 2017). A corollary
would be that the influence on gene expression would be
seen only if the appropriate tissue (or the most important cell
type within a mixture of cell types, such as peripheral blood)
is sampled, or under more appropriate conditions of stimula-
tion either ex vivo or in vivo (such as inflamed tissue-resident
immune cells). The prevalence of response-eQTL provides
good evidence in support of this claim (Fairfax and Knight
2014).

Technical explanations relate to statistical methodology
and power, as well as platform effects. It is remarkable in our
study that both the Illumina and Affymetrix datasets yielded
very similar proportions of eGenes, as well as distributions of
secondary and tertiary signals. Yet the overlap between these
signals was only approximately one-half for the primary

Figure 5 Extent of replication of eQTL-GWAS colocalization with differ-
ent expression platforms. The Venn diagram shows number of eQTL-
GWAS joint associations (CLPP .0.001) in the three studies, and the
percentage of all of the 3908 total associations in each sector.
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eSNPs, and ,20% for conditional associations. Implementa-
tion of DPolyQTL provided evidence that statistical power is
a major source of failure to replicate, both by enhancing the
detection of shared primary signals between the datasets and
showing that detection rates drop as effect sizes of secondary,
tertiary, and quaternary associations reduce. Nevertheless, it
is also clear that platform effects result in major differences in
blood cis-eQTL detection. These are only partially amelio-
rated by focusing on probes that capture the same exon
within a transcript, implying that detection of alternate splic-
ing and isoform usage is just one aspect of the platform effect.

Irrespective of the causes of differential localization of
primary eSNPs, an important practical implication of our
findings is cautioning against the common use of summary
eQTL statistics as evidence that a GWAS hit acts as an eQTL.
Given the extensive linkage disequilibrium typically observed
over long stretches of regulatory DNA, it is not uncommon for
the GWAS variant to be included in a list of eQTL highly
significant summary statistics listed on browsers such as the
Blood eQTL browser. Visual inspection of the profile of asso-
ciation across the locuswill often be sufficient to illustrate that
theeQTLandGWASpeaksarenotactually the same,as seen in
Figure 3. Formal tests of the hypothesis of equivalence are
provided by software tools such as COLOC (Giambartolomei
et al. 2014), but these are designed for supervised analysis
locus-by-locus and may be biased by the assumption that a
single causal variant is responsible for each eQTL effect. The
HEIDI test in SMR attempts to adjust the inference that an
eQTL mediates the phenotypic association for local LD, pro-
viding genome-wide estimation of cases of heterogeneity of
effects (Zhu et al. 2016). Alternatively, the Bayesian eCaviar
approach (Hormozdiari et al. 2016), implemented here in
DPolyeQTL to adjust for population structure and familial
relatedness (Zeng and Gibson 2018), more directly adjusts
for LD in the derivation of posterior probabilities of joint
association. We recommend using a combination of these

approaches to explore the likelihood that eQTL explain
GWAS effects, and to this end have developed a web browser,
which, for the first time, allows users to explore the profile of
primary and secondary signals in peripheral blood.

Contrary to the expectation that mega-analysis of large
eQTL studies would improve the resolution of eQTL signals,
we insteadfind levels of complexity that complicate the ability
to reduce genetic associations to single causal variants. Most
clearly, it is apparent that multiple regulatory variants affect
the expression of the majority of transcripts expressed in
peripheral blood. Similarly, meta-analysis of GWAS including
hundreds of thousands of individuals increasingly find sec-
ondary associations at individual loci (Wood et al. 2014;
Yengo et al. 2018). We have previously shown by simulation
that the presence of multiple variants in LD blocks typical of
human genes biases both the localization of eSNPs and the
estimation of their effect sizes, with as many as 20% of effects
potentially located outside detected credible intervals (Zeng
et al. 2017). While functional data collected by the ENCODE
project and measures of evolutionary conservation are often
used to filter or adjust eQTL estimation, our analyses only
confirm a modest enrichment of such marks at eQTL peaks.
Elsewhere, we show that this is in large part due to the high
correlation of functional scores within credible intervals (Liu
et al. 2019). Consequently, functional assays (Tewhey et al.
2016; Gasperini et al. 2017) will continue to provide the gold
standard for demonstration that specific SNPs associate with
traits function through gene regulation, though these too
have yet to be shown to have the capacity to distinguish
causal from background variants.
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