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ABSTRACT Thousands of genes responsible for many diseases and other common traits in humans have been detected by Genome
Wide Association Studies (GWAS) in the last decade. However, candidate causal variants found so far usually explain only a small
fraction of the heritability estimated by family data. The most common explanation for this observation is that the missing heritability
corresponds to variants, either rare or common, with very small effect, which pass undetected due to a lack of statistical power. We
carried out a meta-analysis using data from the NHGRI-EBI GWAS Catalog in order to explore the observed distribution of locus effects
for a set of 42 complex traits and to quantify their contribution to narrow-sense heritability. With the data at hand, we were able to
predict the expected distribution of locus effects for 16 traits and diseases, their expected contribution to heritability, and the missing
number of loci yet to be discovered to fully explain the familial heritability estimates. Our results indicate that, for 6 out of the 16 traits,
the additive contribution of a great number of loci is unable to explain the familial (broad-sense) heritability, suggesting that the gap
between GWAS and familial estimates of heritability may not ever be closed for these traits. In contrast, for the other 10 traits, the
additive contribution of hundreds or thousands of loci yet to be found could potentially explain the familial heritability estimates, if this
were the case. Computer simulations are used to illustrate the possible contribution from nonadditive genetic effects to the gap
between GWAS and familial estimates of heritability.
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UNDERSTANDING the genetic architecture of complex
traits has become a fundamental topic of study in human

genetics (Gibson 2012; Timpson et al. 2018). In recent years,
huge efforts have been made to investigate the genetic basis
of human complex traits through Genome-Wide Association
Studies (GWAS) or meta-analyses of their results (Paternoster
et al. 2015; Gormley et al. 2016; Justice et al. 2017; Visscher
et al. 2017). There has been a parallel increase in the number
of big Consortiums able to carry out large GWAS with higher
and higher numbers of individuals, and, therefore, with in-
creasing statistical power (SIGMAType 2 Diabetes Consortium
et al. 2014; Yengo et al. 2018), as well as of genomic reposi-
tories and online resources, including databases specialized

in published GWAS results (Sudlow et al. 2015; MacArthur
et al. 2017; Canela-Xandri et al. 2018). To date, thousands of
SNPs have been identified to be associated with hundreds of
human diseases or other traits with genome-wide significance,
according to data recorded by the NHGRI-EBI GWAS Catalog
(MacArthur et al. 2017). However, SNP markers of known var-
iants explain but a small percentage of the heritabilitymeasured
by cohort studies for almost every studied trait, what has been
referred to as “missing” heritability (Manolio et al. 2009; Nolte
et al. 2017).

The most common assumption to explain the missing
heritability is that many common variants of small effect pass
unnoticed in most GWAS due to a lack of statistical power
(Yang et al. 2010), and a number of loci on the order of
hundreds to thousands are yet to be found (Visscher et al.
2017). In fact, the missing heritability gap of well-studied
traits such as human height has been reduced as GWAS
had been performed with increasingly larger sample sizes
and statistic power (Wood et al. 2014; Yengo et al. 2018),
although the newly found SNPs tend to have smaller effect
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sizes on average (Park et al. 2010), and the gap is reduced slowly
(Nolte et al. 2017). In addition, common genotyped SNPs can
capture up to 60% of familial heritability estimates (Yang et al.
2010; de los Campos et al. 2013; Nolte et al. 2017) or even higher
proportions (Yang et al. 2015).

The narrow-sense heritability explained by SNPs found in
GWAstudies is comparedwith estimates obtained from family
data, usually twin designs. These may involve nonadditive
(dominance and epistasis) genetic components as well
as other interaction terms including environmental effects
(Zuk et al. 2012; Chen et al. 2015; Ni et al. 2018). Therefore,
although it has been suggested thatmost genetic variation for
human traits is of additive nature (Hill et al. 2008; Polderman
et al. 2015; Zhu et al. 2015), some part of the gap between
GWAS and familial heritability estimates may also be due to
the bias involved in the familial estimates (Zuk et al. 2012;
Hemani et al. 2013). One way to address this issue is to try
getting the expected full contribution to narrow-sense heri-
tability from loci detected by GWAS, and compare it with the
familial estimates. In this work we attempt to do so by using
information from the GWAS Catalog.

Our analysis consists of extracting information on effects
and frequencies of variants for a number of human traits and
diseases from the GWAS Catalog with the following objec-
tives: (1) To investigate the nature of the distribution of locus
effect sizes already discovered and their contribution to nar-
row-sense heritability, and (2) to predict the expected full
distribution of effects and frequencies of loci in order to
ascertain whether or not this could be able to explain the
estimates of heritability obtained from family studies. Our
results indicate that the familial heritability of 10 out of the
16 traits studied could be potentially explained by the con-
tribution of the average effects of hundreds to thousands of
loci yet to be found by GWAS. However, for the other six traits
there is a substantial gap between the expected GWAS her-
itability and the familial heritability, suggesting that an addi-
tive contribution of single loci is unable to explain the familial
heritability values.

Methods

In short, we began by processing the GWAS Catalog in two
steps, in order to get a set of data with the most meaningful
information associated to SNPs and GWA studies. First, by
filtering incomplete or low informative data and, second, by
clustering together traits with a highly overlapping genetic
background. Additional processing was required for sub-
sequent analyses involving locus effect sizes, frequencies,
and contributions to heritability. Computer simulations
were carried out to illustrate the possible impact of non-
additive genetic variation on familial estimates of
heritability.

Processing of the GWAS catalog

All data manipulation, including statistical analysis, was car-
ried out using theR language (RCore Team2017).Weworked

with the NHGRI-EBI GWAS Catalog data (MacArthur et al.
2017), publicly available at https://www.ebi.ac.uk/gwas/,
and accessed on December 5, 2017. We started by selecting
a limited number of fields from the database for each scien-
tific study PubMed ID (PMID), as the SNP ID itself, the
mapped gene, the effect, reported as an odds ratio (OR)
or beta-coefficient (BETA), the frequency of the risk allele,
and the reported P-value. PMID-related variables were also
gathered, as the name of the disease or trait examined in the
study and the total population sample, computed from
the information of the initial and replication samples used.
The Catalog contains some ambiguity regarding the units
of the effects registered. Doubtful cases were checked by
looking at the corresponding publications, and, if their ef-
fect could not be assigned as BETA or, e.g., because it was
measured in trait units rather than in standardized units,
they were disregarded.

We checked for the occurrence of a list of necessary var-
iables (effect, gene, P-value, SNP, and trait), and removed
any row corresponding to a SNP without a complete infor-
mation on these variables. We also limited our study to the
most significant associations, eliminating SNPs with a signif-
icance level higher than the standard P-value = 5 3 1028.
A separate dataset without filtering for statistical significance
was also considered for the final set of traits. For all purposes,
only one SNP per associated Catalog gene (that with the
lowest P-value) was considered. Thus, the gene or intergenic
name was the unit considered in the analysis aimed at rep-
resenting a potential causal locus. Thus, hereafter each dif-
ferent GWAS-Catalog gene represents a locus corresponding
to the information of a single SNP. For example, for the trait
Height, the Catalog version analyzed contained a total of
855 SNP entrances from 25 different PMIDs. Many of these
SNPs were associated to the same Catalog gene or intergenic
sequence. Considering only different gene names and select-
ing the SNP with the lowest P-value associated to each gene,
only 370 different loci remained. Later, after filtering by type
of effect (BETA), which implied removing one PMID with
ambiguous type and another with OR type, the remaining
final set of data for this trait contained 346 loci arising from
10 PMID.

Because we wanted to investigate the distribution of locus
effects with robustness, we only considered traits with a wide
and well-known genetic background composed by at least
30 unique genes detected. We initially differentiated as many
traits as unique names were given to the mapped disease or
trait field in the original GWAS Catalog. However, it often
occurs that different researchers studying the same trait
publish their results using different trait names (e.g., “LDL”
and “LDL levels”). In order to avoid working with duplicated
or redundant traits, we clustered some of them (see Supple-
mental Material, Table S1) on the basis of their common ge-
netic background and carried out some additional processing
steps, as explained in File S1. After this step, we restricted the
traits analyzed to those represented by at least three different
PMIDs.
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Contribution of loci to heritability

From the filtered GWAS database, narrow-sense locus-specific
heritability ðh2locÞ was estimated through the calculation of the
contribution of each locus to the additive variance VAloc by
using the classical formula (Falconer and Mackay 1996),
VAloc ¼ 2a2

locqlocð12 qlocÞ, where qloc is the risk allele frequency
and aloc is the average effect of the gene substitution for the
locus (henceforth, the average effect or locus effect). For BETA
traits, the additive variance equals the heritability ðh2loc ¼ VAlocÞ,
as the average effects are measured in phenotypic SD. For OR
traits, we estimated the locus-specific heritability h2loc (i.e., var-
iance in liability) following the method described by So et al.
(2011), assuming additivity of SNP effects, and the prevalence
values published in different epidemiology and genetic papers
(Table S2). From the h2loc and frequency values, locus effects
for OR traits were obtained in the same units of phenotypic SD
as BETA traits. Finally, the contribution to heritability of all loci
corresponding to a given trait were added together to obtain
the GWAS heritability ðh2gwasÞ for each trait.

After all the above filtering steps, the dataset for locus
effects and heritability analyses had a total of 7886 loci
corresponding to 328 studies and 42 human traits. The esti-
mated h2gwas values are shown in Table S2 along with the
reported values of familial heritability ðh2famÞ found in the
literature.

In order to measure the proportional contribution of dif-
ferent classes of locus effects to global h2gwas we defined three
arbitrary, but well-defined, effect classes: low, medium, and
high. These classes were assigned to each trait according
to the mean and SD of their distribution of effect sizes.
Low-effect sizes were defined as those with a value lower
than e21 SD below the mean effect size. Medium-effect sizes
were those between e21 SD below and above the mean, and
high-effect sizes those with effects larger than e21 SD above
the mean. With these definitions, an average of �50% of the
loci were in the low-effect class, �36% in the medium-effect
class, and �14% in the high-effect class.

Analysis of the change in locus effect size, frequency,
and explained heritability for increasing sample sizes

Weassumedthat locuseffects and frequencieswouldbebetter
estimated in studies with larger sample sizes (N), in agree-
ment with previous studies (Auer and Lettre 2015; Visscher
et al. 2017) as well as our own observation from the GWAS
Catalog. Thus, estimates obtained in studies with larger N
were reassigned to the corresponding gene identity, indepen-
dently of the study. That is, if we consider two studies, PMID1

and PMID2, regarding the same human trait, with sample
sizes N1 ,N2, the SNP effects and frequencies associated to
genes found in PMID1 that were also present in PMID2 were
assigned the values of the corresponding genes in PMID2.
Therefore, a locus found in different studies would have an
associated effect and frequency corresponding to a single
SNP from the study with the largest sample size, usually,
but not always, the most recent one.

We tested three different regressionmodels tomeasure the
relationship between variables in the analyses of locus effects,
frequencies (in terms of the minor allele frequency, MAF) or
heritability. These regression models were: simple linear
regression: logY ¼ aþ b � X; two-parameter exponential
regression: Y ¼ a � Xb; and four-parameter logistic re-
gression: Y ¼ cþ d2 c

1þeb�½lnX2lne�; where the dependent variable Y
may refer to themean locus effect size, frequency, heritability,
or any other related variable, such as the parameters of the
distribution of locus effects, and the independent variable X is
the number of loci found at a given stage in studies with
increasing sample sizes.

When these models were performed using the accumu-
lated number of loci as an independent variable, we only
considered those traits that had at least three observations
(i.e., three PMIDs) in which the cumulated number of loci
was at least 30, so that every regression analysis had at least
three points, each corresponding to an estimate obtained
with at least 30 loci. This corresponds to a subset of 16 traits,
177 PMIDs, and 5692 loci. For model selection, the Akaike
Information Criterion (AIC) was used (Akaike 1974). The
final dataset with all unique loci described for each trait after
all above processing steps, and after updating locus effect
sizes and frequencies, is shown in Table S3. This is the dataset
used for estimating heritabilities from the GWAS Catalog
shown in Table S2.

Inferring the distribution of locus effects, the missing
number of loci, and the expected value of heritability

Locus effects and MAFs were fitted into known probability
distributions using the R package “fitdistrplus” (Delignette-
Muller and Dutang 2015) using the maximum likelihood es-
timation method. In order to determine which distribution
best fitted the observed locus effects, we considered the fol-
lowing possible continuous distributions: Beta, Exponential,
Gamma, Gaussian, Logistic, and Log-normal. We then se-
lected the best fit by using AIC (see Table S4).

Given that the change in the parameters of the distribution
of locuseffectsandMAFasnewloci arebeingdiscoveredcould
also be predicted with the regression parameters described in
the previous section, the expected distribution of locus effects
and frequencies, including those yet unobserved, could be
inferred. From these, we could obtain the number of loci
necessary to explain the observed value of familial heritability
ðh2famÞ, or the closest one. To do so, we assumed an increasing
number of loci for each trait, and sampled that number from
the predicted distribution of effect sizes and MAF. For each
number of loci sampled, the distribution parameters were
those predicted from the corresponding regression parame-
ters (Table S5). This process was repeated 10,000 times for
each set of loci that were added (up to 20,000 loci), providing
a distribution of expected heritability values. From this dis-
tribution, the expected parameters and numbers of loci that
could explain h2fam within 95% confidence intervals were cho-
sen. If h2fam could not be explained by any expected distribu-
tion and any number of added loci, the median heritability
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estimate closest to h2fam was chosen. A detailed example of the
prediction procedure is shown in File S2 and Figure S1
therein.

Cross-validation of predictions

Weevaluated the accuracy of the predictions on a different set
of data composed of new variants published in a more recent
versionof theGWASCatalogaccessedonAugust27,2018.For
validation purposes, we only considered new gene-associated
SNPs that belong to traits already present on our final dataset
of 16 traits used for inferring the distribution of locus effects.
This test set contained data of 153 SNPs mapping new gene
names (loci) described in11different PMIDs corresponding to
the following eight traits: Body mass index, Height, Prostate
cancer, Psoriasis, Rheumatoid arthritis (including Rheuma-
toid arthritis ACPA-positive), Systemic lupus erythematosus,
Type 2 diabetes, and Waist-to-hip ratio adjusted for BMI, i.e.,
Waist-to-hip-related traits (Table S6).

Computer simulations

Computer simulations were carried with an in-house C pro-
gram to illustrate the possible biases inherent to estimates of
heritability obtained from family data, particularly twin stud-
ies, when dominance and epistasis models are assumed. The
expected distributions of locus effect sizes and frequencies for
the trait “Digestive disease”were used for illustration. A pop-
ulation of size 2 3 106 randomly mated diploid individuals
was considered where alleles for 660 biallelic loci have
homozygous effects a, where a values are twice the allelic
average effects sampled from the inferred log-normal distri-
bution of average effects for the Digestive disease trait (mean
a = 0.029). Heterozygous effects (ah) were assumed either
additive (h = 0.5), partially recessive (h = 0.2), or fully re-
cessive (h = 0). Allelic frequencies (q) were taken from the
expected distribution of frequencies for the Digestive disease.
Individual genotypes for the quantitative trait were the sum of
the genotypic values for all loci involved, and phenotypic ef-
fects were obtained by adding an environmental deviation
normally distributed with mean zero and variance VE adjusted
such that the phenotypic variance is VP = 1.

The additive (VAg) and dominance (VDg) variances in the
absence of epistasis (genic variances) were obtained from the
sum of the variances of individual loci. Thus, VAg = S2a2pq
and VDg = S(2dpq)2, where a = ah – 2dq, d = a(h – 1/2),
the summation is over all loci, h2g = VAg/VP is the narrow-
sense genic heritability, and d2g = VDg/VP the genic domi-
nance contribution to phenotypic variance. The genotypic
variance (VG) was calculated from the multilocus genotypic
values of individuals, and the broad-sense heritability was
obtained as H2 = VG/VP.

A twindesignwas carriedoutproducing106 families of two
monozygotic and two dizygotic twins. The phenotypic corre-
lations between monozygotic (tMZ) and dizygotic (tDZ) twins
were obtained from ANOVA. Estimates of familial heritabil-
ities were calculated as h2twins = 2(tMZ–tDZ). No shared envi-
ronmental effects were assumed between twins. Thus, h2twins

is expected to estimate h2g + 1.5d2g in the absence of epistasis
(Lynch and Walsh 1998, p. 538). Average locus effects (a)
were estimated from the regression of the individual pheno-
typic values on the number of copies of the alleles for each
locus, and the contribution of each locus to heritability was
obtained as VA;loc ¼ h2loc ¼ 2a2qð12 qÞ; because VP = 1,
where q is the allele frequency. The analogous to GWAS her-
itability ðh2gwasÞ was obtained as the sum of contributions
from all loci.

A multilocus epistatic model was assumed where homo-
zygous genotypes for the trait interactwith one another. Thus,
epistasis occurs only between homozygous loci such that their
multilocus genotypic effects for the trait are doubled. Four
scenarios were then considered combining within-locus ad-
ditive or recessive gene action, and between-locus additive or
epistatic gene action. Under dominance, the epistatic model
assumed involves additive by additive (VAA), additive by
dominance (VAD) and dominance by dominance (VDD) com-
ponents. Allelic homozygous and dominance effects account-
ing for the epistatic effects imply an increase in the additive
variance relative to the case of no epistasis (Cheverud and
Routman 1995). The GWAS heritability ðh2gwasÞ is expected to
estimate the narrow-sense heritability (h2) while the twins
heritability ðh2twinsÞ is expected to estimate h2 + 3

2VD/VP +
3
2VAA/VP +

7
4VAD/VP +

15
8 VDD/VP + higher order epistatic com-

ponents (Lynch andWalsh 1998, p. 583). All simulation val-
ues and estimates were averaged over 20 replicates.

Data availability

The GWAS Catalog database is publicly accessible and down-
loadable from https://www.ebi.ac.uk/gwas/. The Supple-
mental Material contains two Files, five Figures, with
Figure S1 included in File S2, and seven Tables. Relevant
code has been made available in a public repository at Github
(https://github.com/armando-caballero/Missing-heritability).
Supplemental material available at FigShare: https://doi.org/
10.25386/genetics.7798580.

Results

The observed distribution of locus effect sizes

Locus effect sizes for most traits (90%) fitted better to a log-
normal distribution than to any of the other distributions
assessed (beta, exponential, gamma, Gaussian, and logistic),
the remaining10%fittingbest to abetadistribution(TableS4).

Figure 1 shows how the average locus effect (a) steadily
declines as new loci are found with larger samples sizes. The
total number of loci considered for each of the traits is avail-
able in Table S2. This decline is remarkably consistent across
traits, with a two-parameter exponential model fitting best
the observations (average R2 = 0.96). The trend observed is
in accordance with the expectation that loci of large effect are
likely to be found with low sample sizes, whereas decreas-
ingly lower locus effects would only be found with larger
and larger sample sizes. The rate of decline of a on number
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of accumulated loci was substantially lower for skeletal
traits (b = 20.19 6 0.05), i.e., Height- and Waist-related
traits, than for the rest of traits (b = 20.48 6 0.04) (see
Figure 1 and Table S5A). Finally, higher average locus
effects were associated with lower MAF for all 42 traits
(see Table S4) with a linear regression of locus effects on
MAF of b = 20.263 6 0.033, averaged across traits.

Loci contributions to heritability

Estimates of the heritability explained by the contribution of
individual loci ðh2gwasÞ and of familial heritability estimates
ðh2famÞ for 42 human traits are given in Table S2, with aver-
ages 0.13 6 0.02 and 0.53 6 0.03, respectively. The pro-
portion of h2fam explained by h2gwas was 25% on average,
ranging widely from 1.6% (Migraine) to 100% (Basal cell
carcinoma, and Red blood cell traits).

Figure 2 shows the increase in h2gwas for each trait as more
loci are found with higher sample sizes (as for Figure 1). A
two-parameter exponential model gave the best fit to the
data with average R2 = 0.97 (Table S5C). The figure shows
that, for most traits, there is a substantial increase in the
heritability explained as new loci have been found. However,
for some traits (e.g., Digestive disease, number 6 in Figure 2)
it looks like h2gwas is approaching an asymptotic value. It can
also be seen that in many cases the intercept is expected to be
well above zero, suggesting that loci contributing most to the
heritability were found in the studies with the lowest sample
sizes, usually the earliest ones.

The proportional contribution of loci with different effect
sizes to h2gwas is shown in Figure 3. Three arbitrary classes of

effect sizes were made such that �50% of loci were within
the low-effect class, �36% within the medium-effect class,
and �14% within the high-effect class (panel A). Most of the
heritability, however, was explained by loci of large effect
(57.2% 6 19.5; panel B), with those of medium and low
effect explaining much lower proportions (29.8% 6 13.5
and 13.0% 6 7.2, respectively), even though there is a neg-
ative correlation between allele frequencies and locus effect
sizes. Similar results are obtained when considering all
42 traits (data not shown).

Expected distribution of effects, and inference of the
missing number of loci to explain the estimates of
familial heritability

Because, as shown above, the observed distribution of locus
effect sizesfittedwell toa log-normaldistribution, theMAFs to
a normal distribution (Table S4), and the change of their
distribution parameters with the number of loci found to an
exponential regression model (Figure 1 and Table S5, D–G),
we were able to predict their expected distributions for any
given number of loci, and thus infer the expected heritability
closest to h2fam. The results are summarized in Figure 4, which
shows the current values of h2gwas (dark bars) and h2fam (light
bars). The heritability computed from the expected distribu-
tion of locus effects, which explains or approachesmost to the
familial heritability, is shown as a dot (median value) and a
95% confidence interval. The height of the error bar is highly
related to the magnitude of the variance parameter (and
therefore skewness) of the log-normal distribution. The
expected number of loci necessary to explain the familial

Figure 1 Decline of the average locus
effect (a) with the number of loci found.
The points represent the cumulated re-
sults of successive GWAS with increas-
ing larger sample sizes. The first point at
the left of the series is the mean effect
of loci found in the GWAS with the low-
est sample size (conditional on finding
at least 30 loci), and the following points
give the mean effect of loci as additional
ones are found by studies with larger
sample sizes (usually, but not always, by
more recent studies). The lines are the fit
of the observations to an exponential
model (average R2 = 0.96). Traits are
colored depending on the functional do-
main they belong: cancer (green), derma-
tological (pink), endocrine (orange),
gastrointestinal (brown), hematological
(red), immunological (yellow), metabolic
(beige), skeletal (gray). The final set of
data corresponding to the last (right-
hand side) points for each line are given
in Table S3.
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heritabilities (when reachable) are given over the bars. The
expected distributions of effects obtained for all traits are
shown in Figures S2 and S3, and the corresponding param-
eters in Table S7.

For 10 out of 16 traits, the expected distribution found
would be able to predict the familial heritability accounting
only for the contribution of average effects of single loci.
Thus, if a number of loci (within those indicated over the
bars) were found, and their contribution to heritability were
added, the values of the familial heritability could be poten-
tially reached, although this does not mean that this would
actually be the case. In contrast, for the remaining six traits
(Psoriasis, Body mass index, Type 2 diabetes, Digestive
disease, Ulcerative colitis, and Rheumatoid arthritis), the
familial heritability could not be reached when considering
the average effects of single loci. Thus, even if an increasingly
large number of loci from the expected distribution are
considered, their additive contribution to h2gwas would not
be able to reach h2fam.

Cross-validation of predictions

We tested the predictions on a set of new data from a more
recent release of the Catalog, incorporating 11 new studies on
eight of the 16 traits previously analyzed (Figure 5). The change
in mean locus effect and h2gwas was rather consistent with the
previous results, as indicated by the approximate concordance
between the large dots (new results) and the projections based
on thepreviousdata (lines). The inferreddistributionparameters

based on the cumulated number of loci showed a low bias when
applied to the new data (Figure S4).

Simulation results

Simulation results assuming the distribution of locus effects
inferred for the Digestive disease trait under different models
of gene action (additive or recessive within loci, and additive
or epistatic between loci) are shown inTable 1. This shows the
difference between the heritability estimated by a twin study
ðh2twinsÞ and the GWAS heritability ðh2gwasÞ.

Under a full additive model, the estimates h2twins and h2gwas
are equal, as expected. In contrast, under a recessive-epistatic
model, twin heritability can be substantially biased with re-
spect to h2gwas. Note, however, that the difference tMZ – 2tDZ is
relatively small (, .1), which could suggest that there is no
substantial deviation from a full additivemodel. Note that tMZ

is expected to be equal to H2, as it is, and that the difference
4tDZ – tMZ is expected to be very close to the narrow-sense
heritability, which agrees with the value of h2gwas.

Discussion

By extracting the relevant data from the GWAS Catalog we
have been able to infer the number and distribution of locus
effects that could potentially explain the missing heritability
assuming the cumulative contribution of average effects of
single loci. Within the limitations of the data and the pro-
cedure followed, we found that, for 10 out of the 16 studied

Figure 2 Increase of heritability explained
by loci found ðh2gwasÞ as the number of
these increases. The points represent the
observed values, while the lines are the
fit to an exponential model (average
R2 = 0.97). Traits are colored depending
on the functional domain they belong:
cancer (green), dermatological (pink), en-
docrine (orange), gastrointestinal (brown),
hematological (red), immunological (yel-
low), metabolic (beige), skeletal (gray).
The final set of data corresponding to
the last (right-hand side) points for each
line are given in Table S3.
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traits, this additive explanation appears, at least, feasible,
whereas for the remainder is not.

Nature of the variation detected by GWAS

Our results show strong evidence indicating that the distri-
bution of locus effects for different human traits fits better to a
log-normal distribution than to other commonly used distri-
butions, including the gammadistribution,widely assumed in
population genetic studies (Pérez-Figueroa et al. 2009; Jiang
et al. 2010; Schneider et al. 2011; Caballero et al. 2015;
Keightley et al. 2016). In the field of genetics, the log-normal
distribution has been previously suggested for Drosophila
DNA polymorphism data (Loewe and Charlesworth 2006),
and is usually assumed in models and natural processes aris-
ing not only in biology (Nei and Imaizumi 1966) but also in
very different scientific disciplines (Limpert et al. 2001;
Grönholm and Annila 2007).

We have also shown (Figure 1) that the average effect size
tends to decrease for all traits studied as the number of dis-
covered GWAS Catalog associated genes increases, the de-
crease fitting an exponential model. This supports the idea
that higher-effect loci were discovered in the first GWAS
(with lower sample sizes), while posterior analyses involving
larger sample sizes allowed lower-effect loci to be discovered
(Park et al. 2010; Simons et al. 2018).

We also observed a negative linear relationship (average
across traits b = 20.263 6 0.033) between the effect of
loci and the minor allele frequency. This could be explained
by a more likely detection by GWAS of loci of small effect
when they are common than when they are rare. It could also

(or in addition) be due to the action of purifying selection
acting more strongly on large-effect than low-effect sizes.
This is in agreement with previous evidence provided by
Zeng et al. (2018), who detected signatures of negative (pu-
rifying) selection in multiple traits. It has been further de-
scribed that nonsynonymous variants on core (coding)
genes, as well as conserved regions, play an important role
particularly for high effect mutations that segregate at lower
frequencies (Gazal et al. 2018). If loci of large effect are
maintained at low frequencies because of negative selection,
they could contribute proportionately less to heritability than
loci of small effect. Contrary to this, the results of Figure 3
show that there is a disproportionately larger contribution
from loci of large effect to heritability, with those of small
effect contributing generally little (Figure 3). This is in agree-
ment with previous predictions (e.g., Caballero et al. 2015),
and contradicts models suggesting that most of the heritabil-
ity for complex traits in humans must be due to loci of small
effect (Eyre-Walker 2010).

Expected distribution of locus effects and
missing heritability

With the Catalog data, we could infer the expected distribu-
tion of locus effect sizes for a number of complex traits. This
allowedus to investigatewhether the cumulative contribution
of the average effect of single loci would make it possible to
explain familial heritability estimates, thus inferring themiss-
ing number of loci yet to be potentially found and their nature.
In a pioneering work, Park et al. (2010) used information
from the first round of GWA studies and an approach based

Figure 3 Percentage of loci for differ-
ent classes of effect sizes and their con-
tributions to heritability (in %). (A) Three
arbitrary classes of locus effect sizes
(high, medium, and low effects) are as-
sumed such that �50% of loci are
within the low-effect class (high trans-
parency), �36% within the medium-
effect class (low transparency), and
�14% within the large-effect class
(solid colors). (B) Contribution (in per-
centage) of the three classes to herita-
bility. Traits are ordered and colored by
functional domain: Cancer (green), der-
matological (pink), endocrine (orange),
gastrointestinal (brown), hematological
(red), immunological (yellow), metabolic
(beige), skeletal (gray).
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on the power of detection of variants, to make predictions of
the total number of loci needed to explain up to 20% of the
genetic variance for height, Crohn’s disease and cancers
(breast, prostate, and colorectal). With the limited informa-
tion at that time it was not possible, however, to make pre-
dictions of whether genetic variance could ever be fully
explained or not with additional findings. Currently, many
more data are available, and we could base our approach
on this cumulative data in a different way.

Our results concur with those of Park et al. (2010) in
pointing to lower effect sizes discovered with higher sample
sizes, and an increasingly lower contribution of these loci to
heritability. We could additionally give evidence on the para-
metric nature of the distribution of effects (log-normal), and
thus predict the expected number of loci needed to explain or
not the estimates of familial heritability. Our results indicate
that, for 10 out of 16 traits, the familial heritability could
potentially be completely explained by the cumulative con-
tribution of average effects of single loci found by GWAS
(Figure 4). The number of loci required for this is , 1000
for Prostate cancer, Neutrophil traits, HDL, Triglycerides, and
Waist-to-hip-related traits, or around a few thousand for
Testicular germ cell tumor, Systemic lupus erythematosus,
Cholesterol, Height, andWaist-related traits. Thus, according
to our results, a few hundred or a few thousand loci would be
able to explain the missing heritability for this set of traits,
assuming an additive contribution of locus average effects to
heritability, in line with previous predictions (Visscher et al.
2017). For example, for human height, we infer that �1800
loci would be necessary to explain the estimates of familial

heritability (Figure 4). Yengo et al. (2018) have recently
found 3290 SNPs for Height clustered to 712 genomic loci,
which could account for �25% of the variation in Height.
Our predictions thus suggest that a further 1000 loci would
be necessary to explain the full familial heritability. This
prediction should, however, be taken with reservations
from a quantitative perspective, as the definitions of locus
in both studies are different, the estimate of familial heri-
tability for height could be overestimated (Yang et al.
2015), and because of the limitations of our approach
(see below).

For 6 out of 16 traits, however, our results indicate that
the additive contribution of effects of single loci, even in large
numbers, cannot explain the familial heritability. For these
traits, the expected heritability is close to, or slightly above,
that already explain by GWAS (Figure 4). One anomalous
result occurs with body mass index, for which the expected
value of heritability was slightly below the currently observed
value. The reason for this maladjustment is likely to be the
bias generated when inferring the expected distribution for
this trait. The observation that, for some traits, the expected
heritability cannot reach the familial one, relies on the fact
that, for these traits, the expected change in the shape of
the distribution of locus effects predicts effect sizes too small
to contribute significantly to heritability as the number of
loci increases. In fact, the reason why some estimates of the
missing number of loci to reach the familial heritability are
rather high in Figure 4 (e.g., for waist-related-traits, requiring
�3000 loci), is that the approach of the expected heritabil-
ity to the familial one is rather slow as the number of loci

Figure 4 Observed and expected val-
ues of heritability. The full length of bars
indicate the mean familial heritability
ðh2famÞ for the studied traits (average val-
ues are shown when there is a range of
estimates from the Literature, Table S2).
In solid color it is shown the heritability
explained by the loci already found and
available from the Catalog ðh2gwasÞ. The
blue error bar gives the inferred value of
heritability (the dot corresponds to the
median value) that approaches most to
the familial heritability with a 95% con-
fidence interval, using data from the
expected distribution of locus effects.
The expected number of loci for each
trait required to explain the familial her-
itabilities within the error bars assuming
an additive contribution of single loci
are given over the bars. Traits are colored
depending on the functional domain
they belong: Cancer (green), dermato-
logical (pink), endocrine (orange), gastro-
intestinal (brown), hematological (red),
immunological (yellow), metabolic (beige),
skeletal (gray).
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found increases because these have lower and lower effect
sizes.

Our inference that, for some traits, the familial heritability
could not be retrieved by the accumulation of the contribution
of averageeffects of single loci canalsobededuced fromFigure
2. If the increase in heritability with the accumulated number
of loci is predicted from the figure for future numbers of loci to
be found (regression parameters shown in Table S5C), it
seems that, for some traits, such as Psoriasis, Type 2 diabetes,
Digestive disease, Ulcerative colitis, and Rheumatoid arthri-
tis, the heritability will reach an asymptotic value below h2fam;
even when up to thousands of loci are considered. It may
be noted, however, that, for some traits, such as Psoriasis, the
number of loci found so far is small, and predictions can
be less accurate than for traits for which many data are
available.

Our predictions should be taken with caution, and consid-
ered asmere approximations, given the assumptions onwhich
are basedand thepossible sources of bias involved.Wemadea
selectionof themost informativeSNPsavailable in theCatalog
for each trait, i.e., those with P-value # 53 1028. The reason
was to consider only those for which the evidence of associ-
ation with the trait is strong. This means that the number of
loci assumed to be found is generally lower than that pro-
vided by the GWAS Catalog. With this assumption, we would
expect our predictions of number of loci and heritability from
their effects ðh2gwasÞ to be underestimations. We made a re-
analysis without filtering by P-value (Table S7). For a few
traits h2gwas was increased significantly, even .1, probably
due to the presence of many false positives or overestimation

because of linkage disequilibrium between loci (see below).
However, the average predicted heritability across all traits
was very similar when the restrictive filtered data were used
(0.352) or not (0.358).

Anotherpossible sourceofbias is thatwe took theSNPmost
significantly associated (with the lowest P-value) to a given
GWAS-Catalog gene or intergenic sequence, and assumed
that the estimated effect and frequency of that SNP is the
same as for the corresponding associated gene (locus). Thus,
we assumed that the selected SNPs were at complete LD with
the associated locus. Therefore, the average effect size of the
considered loci, and their contribution to heritability, would
be expected to be overestimations. An additional source of
overestimation of average effects could arise from the fact
that, even though we considered different gene Catalog
names as units of analysis (with a single associated SNP to
each), different SNPs in high LD could be associated to dif-
ferent Catalog genes. These sources of overestimation can, in
fact, be taking place in our analysis for some traits. For ex-
ample, for Height, the 346 loci considered in our final set of
analysis explain h2gwas = 0.26, which is very close to that
obtained by Yengo et al. (2018) (h2gwas = 0.25) but ascribed
to 712 associated genomic loci (although the definitions of
locus differ between both studies; see below). Nevertheless,
the average h2gwas obtained for the set of 16 traits analyzed is
0.16 on average (ranging from 0.05 to 0.35; Table S7), which
is within the majority of estimates of h2gwas observed for the
analyzed traits (Speliotes et al. 2010; McAllister et al. 2011;
Reiner et al. 2011; Jostins et al. 2012; Tsoi et al. 2012; Hara
et al. 2014; Tada et al. 2014; Litchfield et al. 2015; Mancuso

Figure 5 Decline of the average locus
effect (upper graph), and increase of
the heritability explained ðh2gwasÞ (lower
graph) as the number of loci found is
increasing. The small points represent
the observed values of the previous
analyses (Figure 1 and Figure 2) and
the large points those of a more re-
cently collected set. Lines are the fit to
an exponential model. Traits are col-
ored depending on the functional do-
main they belong: Cancer (green),
dermatological (pink), endocrine (or-
ange), immunological (yellow), skeletal
(gray).
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et al. 2015). In addition, the average h2gwas from the loci con-
sidered in this study for all traits is, on average, 25% of fa-
milial heritability (Table S2), a proportion of the order of
those found in the literature (Zuk et al. 2012).

In order to consider the possibility of an overestimation of
loci effects because linkage disequilibrium can correlate effect
sizes between close loci, we performed an additional filtering
following the definition of locus by Wood et al. (2014) and
Yengo et al. (2018), as one or multiple jointly associated
SNPs located within 1-Mb window. This definition of locus
does not coincide with that followed in our analysis, where a
locus refers to a single gene or intergenic sequence referred to
in the Catalog with attached estimates from the single most
associated SNP. However, to apply the former definition, we
removed from all our analyses all loci that were within 1 Mb
distance of another one. With this approach, 24% of the loci
were removed, and the final number of traits available for
prediction was reduced from 16 to 11. The results of this
analysis are given in Figure S5. As mentioned above, with
the original analysis the average h2gwas for the 16 traits was
0.16. After the 1-Mb pruning, the average h2gwas was reduced
down to 0.10 (Table S7). Our main predictions, however, did
not change qualitatively from the previous ones for the
11 remaining traits, except for 1 trait. In the new analysis,
the familial heritability for Prostate cancer could not be
reached by adding more loci (Figure S5) whereas in the
former analysis it could (Figure 4). For the other 10 traits,
however, the same conclusion held regarding the possibility,
or not, of explaining familial heritability, although there were
substantial differences in the number of loci predicted to
reach the familial heritability (e.g., .6000 missing loci for
Height), always assuming an additive contribution of loci.

Our results could also be affected by Winner’s curse
(Lohmueller et al. 2003), which causes estimates of genetic
effects to be upwardly biased because only variants with
highly significant evidence of association are considered.

Xiao and Boehnke (2009) showed that the bias incurred by
Winner’s curse in the estimation of average effects decreases
with the power of the analysis, and that, for a fixed power, the
bias is reduced as the cut-off significance level is more
restrictive. In this respect, we used a rather restrictive ge-
nome-wide significance level in our analyses (5 3 1028).
It is, however, possible that the estimated effects in the earlier
studies (with lower sample sizes and, therefore, lower
power) were more upwardly biased by Winner’s curse than
the estimates obtained in later studies (with higher statistical
power). But, as explained in the methods section, we
replaced the estimated effects of the loci in the earlier studies
by the estimated effects in the later ones. In fact, 87% of the
loci effects were obtained, or their effects were updated, in
studies with the largest samples sizes. Therefore, we would
expect a low impact of Winner’s curse on our results.

Another source of uncertainty could be the distribution of
locus effects assumed. We fitted the locus effect sizes to a log-
normal distribution, which was that fitting best to 90% of the
traits studied (Table S4). We repeated the inferences of
expected heritabilities assuming other distributions (beta,
gamma and exponential; Table S7). These analyses result
on inferences of h2 that sometimes fit in appearance the
expected h2fam. However, the apparent fit is likely to be the
result of an upward bias due to overestimation of the average
effects, as very often the estimates of heritability are well
above 1. Thus, our inferences based on the log-normal distri-
bution seem to be justified.

Finally, the estimates of familial heritability for the differ-
ent traits vary between studies and populations. We used
values available in the literature and averaged them when
there was a range of values, but these are subject to some
variation, and are lacking for some traits, so that values for
analogous traits need to be used. In summary, the different
possible sources of over and underestimations attached to the
analysis, the scarcity of data available for some traits, the
uncertainty of some estimates and the limitations of the data
provided by the Catalog, require treating our results with
caution.

Gap between the expected GWAS and
familial heritabilities

Our results emphasize that, for 6 out of 16 traits, the expected
decrease in effect size for new loci is such that it seems not
feasible to explain the observed h2fam by h2gwas, even if the
contribution of thousands of loci were assumed. For 10 traits,
however, it appears that the additive contribution of hun-
dreds to thousands of further loci could potentially explain
the familial heritabilities. This does not imply, however, that
this will be the case. It is possible that the actual number of
missing loci is lower than that predicted and, therefore, that
the familial heritability will not ever be reached either. What
we conclude here is that, according to the GWAS Catalog and
its limitations, this appears to be possible.

The expected distributions of effects inferred in this study
(Figure 4, Figures S2 and S3, and Table S7), show amain lack

Table 1 Simulation results assuming the distribution of locus
effects predicted for the Digestive disease trait

Within-locus Additive Additive h = 0.2 h = 0.2 h = 0
Between-locus Additive Epistatic Additive Epistatic Epistatic

Parameters
h2g 0.103 0.102 0.068 0.068 0.050
d2
g 0.000 0.000 0.016 0.016 0.043

H2 0.103 0.332 0.084 0.347 0.370
Estimations
h2gwas 0.104 0.282 0.069 0.234 0.196
tMZ 0.104 0.332 0.084 0.347 0.370
tDZ 0.052 0.155 0.039 0.146 0.143
h2twins = 2(tMZ – tDZ) 0.103 0.355 0.091 0.403 0.455
h2twins – h2gwas 20.001 0.073 0.022 0.169 0.259
tMZ – 2tDZ 20.000 0.022 0.007 0.055 0.085

h2g; genic narrow-sense heritability; d2
g ; genic contribution of dominance to pheno-

typic variance; H2, broad-sense heritability; h2gwas; GWAS estimate of heritability;
tMZ, intraclass phenotypic correlation among monozygotic twins; tDZ, intraclass phe-
notypic correlation among dizygotic twins; h2twins; estimate of heritability from
twins. The phenotypic variance is one in all cases and no common environmental
effects are assumed.
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of loci of small effects to be found. This is in line with the
observation that the mean effect size monotonically de-
creases asmore loci are being discovered (Figure 1), in agree-
ment with Park et al. (2010). Therefore, it is expected that
the missing heritability gap will be reduced very slowly
with higher sample sizes and statistic power (Kim et al.
2017). However, we find that not only loci of small effect
are missing, and it is also expected to continue finding loci
of moderate effect that have passed undetected so far, and
that could still explain a substantial part of the missing
heritability.

It has been suggested that our inability to find the remain-
ing loci by GWAS may be explained on technical grounds
(Manolio et al. 2009). Rare SNPs (say with MAF, 5%) have
low coverage in current genotyping technology and are usu-
ally missing. Whole genome sequencing then could provide
the clue to find the proportion of missing heritability attribut-
able to moderate or high effect loci, but it is expected that
SNPs with extremely low frequencies contribute little to her-
itability, which has been already reported for diseases as
Type 2 diabetes (Fuchsberger et al. 2016). In fact, simulation
studies (Thornton et al. 2013; Caballero et al. 2015) predict
that full sequencing data accounting for SNP variation will
not be able to increase substantially the estimates of herita-
bility. However, it is possible that copy number variation, such
as insertions and deletions that could be found by whole
genome sequencing could make a substantial contribution
to missing heritability (Locke et al. 2006; McCarroll 2008;
Bassett et al. 2017). Furthermore, genome-wide markers
may overcome other statistical limitations for SNPs of com-
plex traits, as inconsistent estimations of the locus effects due
to SNPs in LDwithmore than oneQTL aswell as imperfect LD
(de los Campos et al. 2010, 2015).

For some traits, an asymptotic value of h2gwas is expected to
be substantially lower than h2fam, and other phenomena ad-
ditional to the additive contribution of single average effect
loci may be involved. In fact, most estimates of h2fam have been
obtained with twin data designs, which are known to give
estimates of broad-sense heritability that include contribu-
tions from dominance and epistasis. In a large meta-analysis
of the heritability of human traits based on 50 years of twin
studies including nearly 18,000 traits, Polderman et al.
(2015) found that genetic variation for a majority of traits
is inconsistent with a substantial influence from shared envi-
ronment or nonadditive genetic sources. This conclusion was
reached by testing the difference between the correlations of
monozygotic twins (tMZ) and twice the correlation of dizy-
gotic twins (tDZ). A positive value of this difference would
imply a contribution from nonadditive (dominance and epis-
tasis) variance whereas a negative difference would imply a
substantial contribution of shared environment (Hill et al.
2008). Polderman et al. (2015) found that the difference
was not significantly different from zero for �69% of the
traits (they actually rather tested the ratio tMZ/tDZ = 2).
Yet, in the remaining 31% there was a significant deviation,
what would imply some contributions from nonadditive or

environmental effects in twin heritability estimates. In addi-
tion, Zhu et al. (2015) analyzed the contribution of domi-
nance to genetic variation for 79 human traits, concluding
that the contribution of dominance variance is only about a
fifth of the additive variance on average, suggesting a rela-
tively low contribution from dominance to genetic variation,
although for some traits this contribution could be very sub-
stantial. These theoretical studies and empirical analyses
thus suggest that most variation for human traits is of addi-
tive nature. However, the contribution from nongenetic fac-
tors may be non-negligible for some traits.

Estimating the contribution of epistasis to genetic variation
is elusive given the difficulties to evaluate it properly, and the
empirical test carried out by Polderman et al. (2015) using the
correlations between monozygotic and dizygotic twins may
not fully consider the possibility that epistatic effects contrib-
ute substantially to variation. Therefore, it is possible that, for
at least some traits, the difference between the additive con-
tributions from average locus effects found from GWAS can-
not reach the familial heritability estimates because these are
broad-sense heritabilities inflated by nonadditive genetic
components. In fact, our computing simulations assuming
dominance and epistasis show that theremay be a substantial
gap (. 0.2) between the heritability obtained from GWAS
and the estimate of heritability obtained from twin studies
ðh2twinsÞ, even though the difference between the correlations
of monozygotic twins and twice the correlation of dizygotic
twins is, 0.1 (Table 1). The epistatic model assumed in our
simulations, involving a doubling of the effect of homozygous
loci is, of course, an arbitrary one, but allows for illustrating
this issue.

There is increasing evidence that epistasis is a major de-
terminant of additive variance (Bloom et al. 2013; Brookfield
2013; Mackay 2013; Monnahan and Kelly 2015; Huang and
Mackay 2016; Csilléry et al. 2018). In fact, epistasis has al-
ready been described playing an important role in psoriasis
through the interaction of the HLA–ERAP1 loci (Strange et al.
2010) and other immunity disorders (Cortes et al. 2015).
Dominance could also take a place in biasing the familial
estimates of heritability for some traits, including height
and BMI (Chen et al. 2015; Zhu et al. 2015), and the contri-
bution from dominance variance for life-history traits is of the
same order as that from additive variance, according to the
meta-analyses of Mousseau and Roff (1987) and Crnokrak
and Roff (1995). In addition, estimates of familial heritability
for some traits, such as human height, can also be overesti-
mated if assortative mating is not properly modeled (Lynch
and Walsh 1998; Yang et al. 2015). Finally, any source of
genotype-covariate interaction is likely to have an effect on
the estimates of SNP-heritability (Evans and Keller 2018; Ni
et al. 2018). For example, genotype-environment interac-
tions have also been proposed to explain part of the genetic
variance of complex traits (Zheng et al. 2013; Robinson et al.
2017) and, thus, their heritability.

Concluding, GWA analyses are a powerful tool to discover
variants associated to complex diseases, and the success in
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finding the missing heritability may depend, in many in-
stances, on our ability to detect low variant effects with
accuracy. For some traits, however, the contribution of single
loci found by GWAS does not appear enough to explain the
familial heritability, and other sources of genetic or environ-
mental variation contributing to this may be involved.

Acknowledgments

We are grateful to Naomi Wray, S. Hong Lee, Humberto
Quesada, and two anonymous referees for helpful comments,
and to Aurora García-Dorado and Carlos López-Fanjul for
helpful discussions. The analyses reported here were per-
formed on the FinisTerrae machine provided by Centro de
Supercomputación de Galicia (CESGA; Galicia Supercomput-
ing Center). This work was funded by the Agencia Estatal de
Investigación (AEI) (CGL2016-75904-C2-1-P), Xunta de Gali-
cia (ED431C 2016-037) and Fondos Feder: “Unha maneira de
facer Europa.”

Literature Cited

Akaike, H., 1974 A new look at the statistical model identifica-
tion. IEEE Trans. Automat. Contr. 19: 716–723. https://doi.org/
10.1109/TAC.1974.1100705

Auer, P. L., and G. Lettre, 2015 Rare variant association studies:
considerations, challenges and opportunities. Genome Med. 7:
16. https://doi.org/10.1186/s13073-015-0138-2

Bassett, A. S., C. Lowther, D. Merico, G. Costain, E. W. C. Chow
et al., 2017 Rare genome-wide copy number variation and
expression of schizophrenia in 22q11.2 deletion syndrome.
Am. J. Psychiatry 174: 1054–1063. https://doi.org/10.1176/
appi.ajp.2017.16121417

Bloom, J. S., I. M. Ehrenreich, W. Loo, T. V. Lite, and L. Kruglyak,
2013 Finding the sources of missing heritability in a yeast cross.
Nature 494: 234–237. https://doi.org/10.1038/nature11867

Brookfield, J. F. Y., 2013 Quantitative genetics: heritability is not
always missing. Curr. Biol. 23: R276–R278. https://doi.org/
10.1016/j.cub.2013.02.040

Caballero, A., A. Tenesa, and P. D. Keightley, 2015 The nature of
genetic variation for complex traits revealed by GWAS and re-
gional heritability mapping analyses. Genetics 201: 1601–1613.
https://doi.org/10.1534/genetics.115.177220

Canela-Xandri, O., K. Rawlik, and A. Tenesa, 2018 An atlas of
genetic associations in UK Biobank. Nat. Genet. 50: 1593–
1599. https://doi.org/10.1038/s41588-018-0248-z

Chen, X., R. Kuja-Halkola, I. Rahman, J. Aspegard, A. Viktorin et al.,
2015 Dominant genetic variation and missing heritability for
human complex traits: insights from twin vs. genome-wide com-
mon SNP models. Am. J. Hum. Genet. 97: 708–714. https://
doi.org/10.1016/j.ajhg.2015.10.004

Cheverud, J. M., and E. J. Routman, 1995 Epistasis and its con-
tribution to genetic variance components. Genetics 139: 1455–
1461.

Cortes, A., S. L. Pulit, P. J. Leo, J. J. Pointon, P. C. Robinson et al.,
2015 Major histocompatibility complex associations of anky-
losing spondylitis are complex and involve further epistasis with
ERAP1. Nat. Commun. 6: 7146. https://doi.org/10.1038/
ncomms8146

Crnokrak, P., and D. A. Roff, 1995 Dominance variance: associa-
tions with selection and fitness. Heredity 75: 530–540. https://
doi.org/10.1038/hdy.1995.169

Csilléry, K., A. Rodríguez-Verdugo, C. Rellstab, and F. Guillaume,
2018 Detecting the genomic signal of polygenic adaptation
and the role of epistasis in evolution. Mol. Ecol. 27: 606–612.
https://doi.org/10.1111/mec.14499

Delignette-Muller, M. L., and C. Dutang, 2015 fitdistrplus. An R
package for fitting distributions. J. Stat. Softw. 64: 1–34.
https://doi.org/10.18637/jss.v064.i04

de los Campos, G., D. Gianola, and D. B. Allison, 2010 Predicting
genetic predisposition in humans: the promise of whole-genome
markers. Nat. Rev. Genet. 11: 880–886. https://doi.org/
10.1038/nrg2898

de los Campos, G., A. I. Vazquez, R. Fernando, Y. C. Klimentidis,
and D. Sorensen, 2013 Prediction of complex human traits
using the genomic best linear unbiased predictor. PLoS Genet.
9: e1003608. https://doi.org/10.1371/journal.pgen.1003608

de los Campos, G., D. Sorensen, and D. Gianola, 2015 Genomic
heritability: what is it? PLoS Genet. 11: e1005048. https://
doi.org/10.1371/journal.pgen.1005048

Evans, L. M., and M. C. Keller, 2018 Using partitioned heritability
methods to explore genetic architecture. Nat. Rev. Genet. 19:
185. https://doi.org/10.1038/nrg.2018.6

Eyre-Walker, A., 2010 Genetic architecture of a complex trait and
its implications for fitness and genome-wide association studies.
Proc. Natl. Acad. Sci. USA 107: 1752–1756. https://doi.org/
10.1073/pnas.0906182107

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quan-
titative Genetics, Ed. 4. Longmans Green, Harlow, Essex.

Fuchsberger, C., J. Flannick, T. M. Teslovich, A. Mahajan, V. Agarwala
et al., 2016 The genetic architecture of type 2 diabetes. Nature
536: 41–47. https://doi.org/10.1038/nature18642

Gazal, S., P. Loh, H. Finucane, A. Ganna, A. Schoech et al., 2018
Functional architecture of low-frequency variants highlights
strength of negative selection across coding and non-coding
annotations. Nat. Genet. 50: 1600–1607.

Gibson, G., 2012 Rare and common variants: twenty arguments.
Nat. Rev. Genet. 13: 135–145. https://doi.org/10.1038/
nrg3118

Gormley, P., V. Anttila, B. S. Winsvold, P. Palta, T. Esko et al.,
2016 Meta-analysis of 375,000 individuals identifies 38 sus-
ceptibility loci for migraine. Nat. Genet. 48: 856–866 (erratum:
Nat. Genet. 48: 1296). https://doi.org/10.1038/ng.3598

Grönholm, T., and A. Annila, 2007 Natural distribution. Math. Bio-
sci. 210: 659–667. https://doi.org/10.1016/j.mbs.2007.07.004

Hara, K., N. Shojima, J. Hosoe, and T. Kadowaki, 2014 Genetic
architecture of type 2 diabetes. Biochem. Biophys. Res. Commun.
452: 213–220. https://doi.org/10.1016/j.bbrc.2014.08.012

Hemani, G., S. Knott, and C. Haley, 2013 An evolutionary per-
spective on epistasis and the missing heritability. PLoS Genet.
9: e1003295. https://doi.org/10.1371/journal.pgen.1003295

Hill, W. G., M. E. Goddard, and P. M. Visscher, 2008 Data and
theory point to mainly additive genetic variance for complex
traits. PLoS Genet. 4: e1000008. https://doi.org/10.1371/
journal.pgen.1000008

Huang, W., and T. F. C. Mackay, 2016 The genetic architecture of
quantitative traits cannot be inferred from variance component
analysis. PLoS Genet. 12: e1006421. https://doi.org/10.1371/
journal.pgen.1006421

Jiang, X., B. Mu, Z. Huang, M. Zhang, X. Wang et al.,
2010 Impacts of mutation effects and population size on mu-
tation rate in asexual populations: a simulation study. BMC Evol.
Biol. 10: 298. https://doi.org/10.1186/1471-2148-10-298

Jostins, L., S. Ripke, R. K. Weersma, R. H. Duerr, D. P. McGovern
et al., 2012 Host-microbe interactions have shaped the genetic
architecture of inflammatory bowel disease. Nature 491: 119–
124. https://doi.org/10.1038/nature11582

Justice, A. E., T. W. Winkler, M. F. Feitosa, M. Graff, V. A. Fisher
et al., 2017 Genome-wide meta-analysis of 241,258 adults

902 E. López-Cortegano and A. Caballero

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1186/s13073-015-0138-2
https://doi.org/10.1176/appi.ajp.2017.16121417
https://doi.org/10.1176/appi.ajp.2017.16121417
https://doi.org/10.1038/nature11867
https://doi.org/10.1016/j.cub.2013.02.040
https://doi.org/10.1016/j.cub.2013.02.040
https://doi.org/10.1534/genetics.115.177220
https://doi.org/10.1038/s41588-018-0248-z
https://doi.org/10.1016/j.ajhg.2015.10.004
https://doi.org/10.1016/j.ajhg.2015.10.004
https://doi.org/10.1038/ncomms8146
https://doi.org/10.1038/ncomms8146
https://doi.org/10.1038/hdy.1995.169
https://doi.org/10.1038/hdy.1995.169
https://doi.org/10.1111/mec.14499
https://doi.org/10.18637/jss.v064.i04
https://doi.org/10.1038/nrg2898
https://doi.org/10.1038/nrg2898
https://doi.org/10.1371/journal.pgen.1003608
https://doi.org/10.1371/journal.pgen.1005048
https://doi.org/10.1371/journal.pgen.1005048
https://doi.org/10.1038/nrg.2018.6
https://doi.org/10.1073/pnas.0906182107
https://doi.org/10.1073/pnas.0906182107
https://doi.org/10.1038/nature18642
https://doi.org/10.1038/nrg3118
https://doi.org/10.1038/nrg3118
https://doi.org/10.1038/ng.3598
https://doi.org/10.1016/j.mbs.2007.07.004
https://doi.org/10.1016/j.bbrc.2014.08.012
https://doi.org/10.1371/journal.pgen.1003295
https://doi.org/10.1371/journal.pgen.1000008
https://doi.org/10.1371/journal.pgen.1000008
https://doi.org/10.1371/journal.pgen.1006421
https://doi.org/10.1371/journal.pgen.1006421
https://doi.org/10.1186/1471-2148-10-298
https://doi.org/10.1038/nature11582


accounting for smoking behaviour identifies novel loci for obe-
sity traits. Nat. Commun. 8: 14977. https://doi.org/10.1038/
ncomms14977

Keightley, P. D., J. L. Campos, T. R. Booker, and B. Charlesworth,
2016 Inferring the frequency spectrum of derived variants to
quantify adaptive molecular evolution in protein-coding genes
of Drosophila melanogaster. Genetics 203: 975–984. https://
doi.org/10.1534/genetics.116.188102

Kim, H., A. Grueneberg, A. I. Vazquez, S. Hsu, and G. de Los Cam-
pos, 2017 Will big data close the missing heritability gap?
Genetics 207: 1135–1145. https://doi.org/10.1534/genetics.
117.300271

Limpert, E., W. A. Stahel, and M. Abbt, 2001 Log-normal distributions
across the sciences: keys and clues. Bioscience 51: 341–352. https://
doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2

Litchfield, K., H. Thomsen, J. S. Mitchell, J. Sundquist, R. S. Houl-
ston et al., 2015 Quantifying the heritability of testicular germ
cell tumour using both population-based and genomic approaches.
Sci. Rep. 5: 13889. https://doi.org/10.1038/srep13889

Locke, D. P., A. J. Sharp, S. A. McCarroll, S. D. McGrath, T. L.
Newman et al., 2006 Linkage disequilibrium and heritability
of copy-number polymorphisms within duplicated regions of the
human genome. Am. J. Hum. Genet. 79: 275–290. https://
doi.org/10.1086/505653

Loewe, L., and B. Charlesworth, 2006 Inferring the distribution of
mutational effects on fitness in Drosophila. Biol. Lett. 2: 426–
430. https://doi.org/10.1098/rsbl.2006.0481

Lohmueller, K. E., C. L. Pearce, M. Pike, E. S. Lander, and J. N.
Hirschhorn, 2003 Meta-analysis of genetic association studies
supports a contribution of common variants to susceptibility
to common disease. Nat. Genet. 33: 177–182. https://doi.org/
10.1038/ng1071

Lynch, M., and B. Walsh, 1998 Genetics and Analysis of Quantita-
tive Traits. Sinauer, Sunderland, MA.

MacArthur, J., E. Bowler, M. Cerezo, L. Gil, P. Hall et al., 2017 The
new NHGRI-EBI Catalog of published genome-wide association
studies (GWAS Catalog). Nucleic Acids Res. 45: D896–D901.
https://doi.org/10.1093/nar/gkw1133

Mackay, T. F. C., 2013 Epistasis and quantitative traits: using
model organisms to study gene-gene interactions. Nat. Rev.
Genet. 15: 22–33. https://doi.org/10.1038/nrg3627

Mancuso, N., N. Rohland, K. A. Rand, A. Tandon, A. Allen et al.,
2015 The contribution of rare variation to prostate cancer
heritability. Nat. Genet. 48: 30–35. https://doi.org/10.1038/
ng.3446

Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A.
Hindorff et al., 2009 Finding the missing heritability of com-
plex diseases. Nature 461: 747–753. https://doi.org/10.1038/
nature08494

McAllister, K., S. Eyre, and G. Orozco, 2011 Genetics of rheuma-
toid arthritis: GWAS and beyond. Open Access Rheumatol. 3:
31–46.

McCarroll, S. A., 2008 Extending genome-wide association stud-
ies to copy-number variation. Hum. Mol. Genet. 17: R135–
R142. https://doi.org/10.1093/hmg/ddn282

Monnahan, P. J., and J. K. Kelly, 2015 Epistasis is a major de-
terminant of the additive genetic variance in Mimulus guttatus.
PLoS Genet. 11: e1005201. https://doi.org/10.1371/journal.p-
gen.1005201

Mousseau, T. A., and D. A. Roff, 1987 Natural selection and the
heritability of fitness components. Heredity 59: 181–197.
https://doi.org/10.1038/hdy.1987.113

Nei, M., and Y. Imaizumi, 1966 Effects of restricted population
size and increase in mutation rate on the genetic variation of
quantitative characters. Genetics 54: 763–782.

Ni, G., J. van der Werf, X. Zhou, E. Hypponen, N. R. Wray et al.,
2018 Genotype-covariate correlation and interaction disentangled

by a whole-genome multivariate reaction norm model. bioRxiv
https://doi.org/10.1101/377796.

Nolte, I. M., P. J. van der Most, B. Z. Alizadeh, P. I. de Bakker, H. M.
Boezen et al., 2017 Missing heritability: is the gap closing? An
analysis of 32 complex traits in the Lifelines Cohort Study.
Eur. J. Hum. Genet. 25: 877–885. https://doi.org/10.1038/
ejhg.2017.50

Park, J., S. Wacholder, M. H. Gail, U. Peters, K. B. Jacobs et al.,
2010 Estimation of effect size distribution from genome-wide
association studies and implications for future discoveries. Nat.
Genet. 42: 570–575. https://doi.org/10.1038/ng.610

Paternoster, L., M. Standl, J. Waage, H. Baurecht, M. Hotze et al.,
2015 Multi-ancestry genome-wide association study of 21,000
cases and 95,000 controls identifies new risk loci for atopic
dermatitis. Nat. Genet. 47: 1449–1456. https://doi.org/
10.1038/ng.3424

Pérez-Figueroa, A., A. Caballero, A. García-Dorado, and C. López-
Fanjul, 2009 The action of purifying selection, mutation and
drift on fitness epistatic systems. Genetics 183: 299–313.
https://doi.org/10.1534/genetics.109.104893

Polderman, T. J. C., B. Benyamin, C. A. de Leeuw, P. F. Sullivan, A.
van Bochoven et al., 2015 Meta-analysis of the heritability of
human traits based on fifty years of twin studies. Nat. Genet. 47:
702–709. https://doi.org/10.1038/ng.3285

R Core Team, 2017 R: A Language and Environment for Statistical
Computing. R Found Stat Comput, Vienna. Available at: https://
www.R-project.org/.

Reiner, A. P., G. Lettre, M. A. Nalls, S. K. Ganesh, R. Mathias et al.,
2011 Genome-wide association study of white blood cell count
in 16,388 African Americans: the continental origins and genetic
epidemiology network (COGENT). PLoS Genet. 7: e1002108.
https://doi.org/10.1371/journal.pgen.1002108

Robinson, M. R., G. English, G. Moser, L. R. Lloyd-Jones, M. A.
Triplett et al., 2017 Genotype-covariate interaction effects
and the heritability of adult body mass index. Nat. Genet. 49:
1174–1181. https://doi.org/10.1038/ng.3912

Schneider, A., B. Charlesworth, A. Eyre-Walker, and P. D. Keightley,
2011 A method for inferring the rate of occurrence and fitness
effects of advantageous mutations. Genetics 189: 1427–1437.
https://doi.org/10.1534/genetics.111.131730

SIGMAType 2 Diabetes Consortium, A. L., Williams, S. B. Jacobs, H.
Moreno-Macías, A. Huerta-Chagoya et al., 2014 Sequence var-
iants in SLC16A11 are a common risk factor for type 2 diabetes
in Mexico. Nature 506: 97–101. https://doi.org/10.1038/
nature12828

Simons, Y. B., K. Bullaughey, R. R. Hudson, and G. Sella, 2018 A
population genetic interpretation of GWAS findings for human
quantitative traits. PLoS Biol. 16: e2002985. https://doi.org/
10.1371/journal.pbio.2002985

So, H., A. H. S. Gui, S. S. Cherny, and P. C. Sham, 2011 Evaluating
the heritability explained by known susceptibility variants: a
survey of ten complex diseases. Genet. Epidemiol. 35: 310–
317. https://doi.org/10.1002/gepi.20579

Speliotes, E. K., C. J. Willer, S. I. Berndt, K. L. Monda, G. Thorleifsson
et al., 2010 Association analyses of 249,796 individuals reveal
18 new loci associated with body mass index. Nat. Genet. 42:
937–948. https://doi.org/10.1038/ng.686

Strange, A., F. Capon, C. C. A. Spencer, J. Knight, E. W. Michael
et al., 2010 Genome-wide association study identifies new pso-
riasis susceptibility loci and an interaction between HLA-C and
ERAP1. Nat. Genet. 42: 985–990. https://doi.org/10.1038/
ng.694

Sudlow, C., J. Gallacher, N. Allen, V. Beral, P. Burton et al.,
2015 UK biobank: an open access resource for identifying
the causes of a wide range of complex diseases of middle and
old age. PLoS Med. 12: e1001779. https://doi.org/10.1371/
journal.pmed.1001779

Missing Heritability Inferred from GWAS 903

https://doi.org/10.1038/ncomms14977
https://doi.org/10.1038/ncomms14977
https://doi.org/10.1534/genetics.116.188102
https://doi.org/10.1534/genetics.116.188102
https://doi.org/10.1534/genetics.117.300271
https://doi.org/10.1534/genetics.117.300271
https://doi.org/10.1038/srep13889
https://doi.org/10.1086/505653
https://doi.org/10.1086/505653
https://doi.org/10.1098/rsbl.2006.0481
https://doi.org/10.1038/ng1071
https://doi.org/10.1038/ng1071
https://doi.org/10.1093/nar/gkw1133
https://doi.org/10.1038/nrg3627
https://doi.org/10.1038/ng.3446
https://doi.org/10.1038/ng.3446
https://doi.org/10.1038/nature08494
https://doi.org/10.1038/nature08494
https://doi.org/10.1093/hmg/ddn282
https://doi.org/10.1371/journal.pgen.1005201
https://doi.org/10.1371/journal.pgen.1005201
https://doi.org/10.1038/hdy.1987.113
https://doi.org/10.1101/377796
https://doi.org/10.1038/ejhg.2017.50
https://doi.org/10.1038/ejhg.2017.50
https://doi.org/10.1038/ng.610
https://doi.org/10.1038/ng.3424
https://doi.org/10.1038/ng.3424
https://doi.org/10.1534/genetics.109.104893
https://doi.org/10.1038/ng.3285
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1371/journal.pgen.1002108
https://doi.org/10.1038/ng.3912
https://doi.org/10.1534/genetics.111.131730
https://doi.org/10.1038/nature12828
https://doi.org/10.1038/nature12828
https://doi.org/10.1371/journal.pbio.2002985
https://doi.org/10.1371/journal.pbio.2002985
https://doi.org/10.1002/gepi.20579
https://doi.org/10.1038/ng.686
https://doi.org/10.1038/ng.694
https://doi.org/10.1038/ng.694
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779


Tada, H., H. Won, O. Melander, J. Yang, G. M. Peloso et al.,
2014 Multiple associated variants increase the heritability
explained for plasma lipids and coronary artery disease.
Circ Cardiovasc Genet 7: 583–587. https://doi.org/10.1161/
CIRCGENETICS.113.000420

Thornton, K. R., A. J. Foran, and A. D. Long, 2013 Properties and
modeling of GWAS when complex disease risk is due to non-
complementing, deleterious mutations in genes of large effect.
PLoS Genet. 9: e1003258. https://doi.org/10.1371/journal.
pgen.1003258

Timpson, N. J., C. M. T. Greenwood, N. Soranzo, D. J. Lawson, and
J. B. Richards, 2018 Genetic architecture: the shape of the
genetic contribution to human traits and disease. Nat. Rev.
Genet. 19: 110–124. https://doi.org/10.1038/nrg.2017.101

Tsoi, L. C., S. L. Spain, J. Knight, E. Ellinghaus, P. E. Stuart et al.,
2012 Identification of 15 new psoriasis susceptibility loci high-
lights the role of innate immunity. Nat. Genet. 44: 1341–1348.
https://doi.org/10.1038/ng.2467

Visscher, P. M., N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy et al.,
2017 10 years of GWAS discovery: biology, function, and
translation. Am. J. Hum. Genet. 101: 5–22. https://doi.org/
10.1016/j.ajhg.2017.06.005

Wood, A. R., T. Esko, J. Yang, S. Vedantam, T. H. Pers et al.,
2014 Defining the role of common variation in the genomic
and biological architecture of adult human height. Nat. Genet.
46: 1173–1186. https://doi.org/10.1038/ng.3097

Xiao, R., and M. Boehnke, 2009 Quantifying and correcting for
the winner’s curse in genetic association studies. Genet. Epide-
miol. 33: 453–462. https://doi.org/10.1002/gepi.20398

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders et al.,
2010 Common SNPs explain a large proportion of heritability

for human height. Nat. Genet. 42: 565–569. https://doi.org/
10.1038/ng.608

Yang, J., A. Bakshi, Z. Zhu, G. Hemani, A. E. A. Vinkhuyzen et al.,
2015 Genetic variance estimation with imputed variants finds
negligible missing heritability for human height and body mass
index. Nat. Genet. 47: 1114–1120. https://doi.org/10.1038/
ng.3390

Yengo, L., J. Sidorenko, K. E. Kemper, Z. Zheng, A. R. Wood
et al., 2018 Meta-analysis of genome-wide association
studies for height and body mass index in �700,000 indi-
viduals of European ancestry. Hum. Mol. Genet. 27: 3641–
3649.

Zeng, J., R. de Vlaming, Y. Wu, M. R. Robinson, L. R. Lloyd-Jones
et al., 2018 Signatures of negative selection in the genetic
architecture of human complex traits. Nat. Genet. 50: 746–
753. https://doi.org/10.1038/s41588-018-0101-4

Zheng, J., D. K. Arnett, Y. Lee, J. Shen, L. D. Parnell et al.,
2013 Genome-wide contribution of genotype by environment
interaction to variation of diabetes-related traits. PLoS One 8:
e77442. https://doi.org/10.1371/journal.pone.0077442

Zhu, Z., A. Bakshi, A. A. E. Vinkhuyzen, G. Hemani, S. H. Lee
et al., 2015 Dominance genetic variation contributes little
to the missing heritability for human complex traits. Am.
J. Hum. Genet. 96: 377–385. https://doi.org/10.1016/j.ajhg.2015.
01.001

Zuk, O., E. Hechter, S. R. Sunyaev, and E. S. Lander, 2012 The
mystery of missing heritability: genetic interactions create phan-
tom heritability. Proc. Natl. Acad. Sci. USA 109: 1193–1198.
https://doi.org/10.1073/pnas.1119675109

Communicating editor: N. Wray

904 E. López-Cortegano and A. Caballero

https://doi.org/10.1161/CIRCGENETICS.113.000420
https://doi.org/10.1161/CIRCGENETICS.113.000420
https://doi.org/10.1371/journal.pgen.1003258
https://doi.org/10.1371/journal.pgen.1003258
https://doi.org/10.1038/nrg.2017.101
https://doi.org/10.1038/ng.2467
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1038/ng.3097
https://doi.org/10.1002/gepi.20398
https://doi.org/10.1038/ng.608
https://doi.org/10.1038/ng.608
https://doi.org/10.1038/ng.3390
https://doi.org/10.1038/ng.3390
https://doi.org/10.1038/s41588-018-0101-4
https://doi.org/10.1371/journal.pone.0077442
https://doi.org/10.1016/j.ajhg.2015.01.001
https://doi.org/10.1016/j.ajhg.2015.01.001
https://doi.org/10.1073/pnas.1119675109

